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Abstract— Decision making in modern large-scale and com-
plex systems such as communication networks, smart electric-
ity grids, and cyber-physical systems motivate novel game-
theoretic approaches. This paper investigates big strategic (non-
cooperative) games where a finite number of individual players
each have a large number of continuous decision variables and
input data points. Such high-dimensional decision spaces and
big data sets lead to computational challenges, relating to efforts
in non-linear optimization scaling up to large systems of vari-
ables. In addition to these computational challenges, real-world
players often have limited information about their preference
parameters due to the prohibitive cost of identifying them or
due to operating in dynamic online settings. The challenge of
limited information is exacerbated in high dimensions and big
data sets. Motivated by both computational and information
limitations that constrain the direct solution of big strategic
games, our investigation centers around reductions using linear
transformations such as random projection methods and their
effect on Nash equilibrium solutions. Specific analytical results
are presented for quadratic games and approximations. In
addition, an adversarial learning game is presented where
random projection and sampling schemes are investigated.

I. INTRODUCTION
Game theory, which has its roots in economics, has recently
become a mainstream approach to a multitude of engineering
problems in communications [1], electricity grids [2]–[4],
and network security [5]–[7]. Providing a solid mathematical
foundation for multi-agent decision making, game theory has
also been used extensively in optimization and control of
networked and cyber-physical systems [8].

With the advent of large-scale data analytics, large-scale
decision problems have become prevalent in many engineer-
ing disciplines. Linear Programs with thousands of variables
are now common-place; and convex optimization on large-
scale data, aiming to overcome computational, storage and
communication bottlenecks [9], has emerged as a major
area of study. Strategic games with continuous decision
variables often rely on convex optimization and linear system
theory. Unlike games with finite states and actions, studies
on continuous-kernel games traditionally do not emphasize
scalability nor large-scale data. In contrast to numerous
works on game abstraction, there has been little discussion
in the classical game theory literature on games with large
numbers of continuous variables and big data sets.

Strategic games with a large number of continuous vari-
ables and high-dimensional strategy spaces share unique
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research challenges with those involving large number of
finite states and/or actions [10]. One research challenge,
common with convex optimization on large-scale data, is
computational. Finding Nash Equilibrium strategies is often
computationally prohibitive in large-scale games [11]. There
have recently been efforts to address these computational
issues using active-set or similar methods [12]. However,
even novel computational methods may be infeasible in
certain scenarios such as repeated games played in real-time.
The second and arguably more important challenge is a lack
of information. It is difficult and oftentimes infeasible to
identify the utility functions and preferences of individual
players for each decision variable, especially if the number
of variables grows to thousands or more.

This paper presents a framework for large-scale strategic
(non-cooperative) games where a finite number individual
players each have a large number of continuous decision
variables. Hence, it can be seen as complementary to
the existing literature on game abstraction which shares
similar aims [10]. The main difference is the focus on
continuous-kernel games and strategy/action spaces. Specif-
ically, nonzero-sum large-scale strategic games with high-
dimensional continuous decision spaces and random projec-
tion methods are investigated as a starting point. Our inves-
tigation centers around the reduction of large-scale strategic
games using transformations such as random projections
and their effect on Nash Equilibrium solutions. Analytically
tractable results are presented for quadratic games and in an
adversarial machine learning setting.

A. Related Work

Games with a large number of players are well-known
in the literature, cf. e.g., the concept of Wardrop Equi-
librium [13]. More recently, mean-field games have been
studied under the assumption of very large numbers of
players on large systems. The basic idea behind mean-field
games is approximating large games by a stylized model with
a continuum of players [14].

Scalability issues arise in games from a number of dif-
ferent perspectives. For example, in cooperative decision-
making among a large population of agents whose opinions
must be considered, [15] propose a Bayesian belief aggrega-
tion scheme among many agents holding a potentially diverse
range of opinions. [16] examine how the performance of a
team of diverse agents improves in cooperative games, as the
number of agents or possible actions increases.

Rather than cooperative games, this paper focuses on
strategic (non-cooperative) games. In our setting, recent work
has investigated how scalability issues arise in specific con-
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texts. [12] consider strategic games with sequential strategies,
in which large search spaces arise due to strategies that
require perfect memory of the history of play for ensuring
the existence of equilibria. The authors propose a hybrid
approach that combines a compact representation for strate-
gies with an incremental approach to strategy generation in
order to address the search space complexity. [17] address
the problem of Stackelberg security games, in which de-
fenders need to assign resources to protect targets against
attackers. The major challenge that they focus on is finding
defender strategies that satisfy the underlying constraints on
the resources that need to be allocated to each strategy. The
authors use a cutting-plane algorithm to speed up the search
in the defender’s solution space.

Game abstraction has emerged in recent years as a key
enabler for solving large incomplete-information games with
finite states and/or action sets. [10] presents an excellent
survey of abstraction of information or actions in games,
motivated by incomplete information or scalability. Distinct
to the literature on game abstraction, the focus of this paper
is on games with continuous decision variables.

Large-scale strategic games also arise in the context of ad-
versarial machine learning: the study of statistical inference
under adversarial influence. A number of threat models fall
under this umbrella [18]. While privacy-preserving learning
has been met successfully by the theoretical frameworks
of secure multi-party computation [19] and differential pri-
vacy [20], less is known about how to learn or predict on
poisoned data. The bulk of related work in computer security,
has been on one-shot attacker strategies seeking to force
classifier errors. Related case studies include attacks on spam
detection [21]–[23], polymorphic worm detectors [24], and
on network anomaly detectors [25], [26].

Little progress has been made on defenses in adversar-
ial learning. [27] considered patching of simple classifier’s
‘blind spots’ to attack by instances that optimize an attacker
cost function in a one-shot game-theoretic setting. [28] iden-
tify conditions for the existence of unique Nash equilibria
for static games for learning. However the models learned
in both works are linear, representing a useful but limited
model class. Regret minimizing learners [29] have been used
in security settings [7], [30] but not with popular “batch”
learners. Learning models in much larger classes such as
random forests or deep neural networks are significantly
high-dimensional, particularly in large-scale data settings
where the data set size can support learning of large numbers
of parameters in so-called non-parametric methods. These
problems thus motivate the study of large-scale strategic
games.

The adversarial learning setting relates to robust statis-
tics [31] and online learning theory or the theory of regret
minimization [29]. The former assumes that an infinitesimal
proportion of otherwise i.i.d. training data is contaminated
by unbounded noise: not modeling a real-world attacker but
rather a tool for studying break-down points and robustness
to passive, benign outliers. Online learning theory comes
closer to game theory, but the approach is typically to directly

represent and update mixed strategies over predictions based
on feedback in rounds. While there have been applications
in security [7], [26], [30], neither framework has so far had
a large impact on research in security.

Many machine learning problems involve inference over
high-dimensional data—such as images, gene expression
assays, text corpora—which can lead to both computational
and statistical challenges. As a consequence, many machine
learning researchers apply some form of dimensionality
reduction. While some appeal to heuristic approaches such as
performing principal components analysis prior to learning,
theoretical foundations of projections have now become
mainstream showing that learning on projected data requires
less data or equivalently can be more accurate, while in some
cases also requiring less time to achieve.

Projections used in machine learning are analogous to the
reductions for large-scale strategic games discussed in this
paper. The Johnson-Lindenstrauss Lemma [32] established
the existence of low-dimensional linear projections that ap-
proximately preserve inter-point distances, a key character-
istic used by many learning algorithms. The randomized
version proves the same for random linear projections, with
high probability. In their landmark paper, [33] built on
this property of random projections to show that model
classes (that are robust, with some margin) are still PAC
learnable [34] when randomly projected by data-independent
mappings. The consequence being that learning may be
possible with less data (in a formal sense) under projections.
Such projections may prove useful in large-scale game
reductions.

More recently, Rahimi & Recht [35] use random pro-
jections to reduce the computational complexity of training
support vector machine (SVM) classifiers on large data
sets. For many problems, non-linear SVMs achieve state-
of-the-art accuracy but take time cubic in the number of
training examples n to learn. SVM learning involves solving
a quadratically-constrained quadratic program [36] whose
dual involves the data only via inner-products—a kernel
matrix. Their novel randomized projections are constructed
such that inner-products are approximated uniformly, with
high probability depending on the image dimension. This
dimension can be taken to be much less than n, yielding
much faster training as fewer parameters are learned, with-
out paying with statistical performance since the SVM is
relatively stable with respect to perturbations of the kernel.

B. Contributions

The main contributions of the paper include:
• The characterization of large-scale strategic games;
• Reductions of large-scale strategic games using linear

transformations such as random projections and their
effect on equilibrium solutions;

• An analysis of convex and quadratic 2-player large-scale
games and their equilibrium solutions; and

• An adversarial machine learning game that incorporates
random projection and sampling based on a linear SVM
formulation.



II. MODEL AND DEFINITIONS
The general model presented in this section focuses

on nonzero-sum large-scale strategic games with high-
dimensional continuous decision spaces and reduced games
obtained through a linear mapping of player decision spaces.

Let N := {P1,P2, . . . ,PN} be the set of players in a static,
continuous kernel, N-Player strategic (non-cooperative)
game. Each player i ∈N chooses a pure strategy (decision)
vector, xi from its convex and compact decision set X i ⊆RM .
The joint decision space of the game is therefore the product
space X = X1× . . .XN ⊆ RM×N . Each player is associated
with a cost function Ji(xi,x−i) : X → R, where xi ∈ X i

and x−i is a shorthand for the decision vectors of all other
players, [x1, . . . ,xi−1,xi+1, . . . ,xN ]. The players are assumed
to be rational and choose their decisions based on a best
response strategy by solving the optimization problem

xi,BR ∈ arg min
xi∈X i

Ji(xi,x−i) ,

given the actions of all other players x−i.
Large-scale games are often identified by the fact that their

players have a very large strategy or decision space. The
following straightforward definition formalizes this important
distinction.

Definition 1. Consider the static, continuous kernel, N-
Player strategic (non-cooperative) game G (N ,X ,J), where
N is the set of players, X ⊆ RM×N is the joint decision
space, and J = [J1, . . . ,JN ] denotes the real-valued player
cost functions. The game is called a large-scale strategic
game, G B if the individual player decision spaces have a
very large dimension, i.e., M� 1.

Assumption 1. The large-scale game in Definition 1 is
assumed to be intractable in its original form.

This assumption holds in at least two well-motivated cases:
1) The players cannot fully identify their and others’ cost

functions due to a large number of decision variables
and preference parameters; or

2) The large-scale problem of finding best responses or
Nash equilibria is computationally infeasible within
timing and resource constraints.

As a starting point consider a reduced decision space
Y ⊆RK×N , where K <M, obtained through a linear transfor-
mation T : X →Y represented by per-player transformation
matrices Ai,

T : yi = Aixi, xi ∈ X i ⊆ RM, yi ∈ Y i ⊆ RK , ∀i ∈N , (1)

as illustrated in Figure 1. Based on Assumption 1, the
players of the large-scale game G B in Definition 1 make
decisions on a reduced space Y resulting in a tractable game
G T (N ,Y , J̃).

The transformation matrices Ai may, for example, ran-
domly select a subset of decision variables or data points,
as defined next, or represent a random projection.

Definition 2 (Dimension reduction through selection). A
transformation matrix A with K rows and M columns is

Fig. 1. Illustration of the decision space transformation for large-scale
strategic game reductions.

said to be a selection matrix, if it is of rank K < M and
its elements akm satisfy:

akm ∈ {0,1} and
M

∑
m=1

akm = 1 , ∀m .

Random projections are extremely popular techniques
in machine learning for dealing with the curse-of-
dimensionality [33], [35]. If a random projection matrix AR
is carefully chosen, then all pairwise Euclidean distances,
and hence, the geometry of the set of points in X are
preserved in Y with high probability. There are many
possible constructions for the random projection matrix AR
that preserve pairwise distances. The most common one is
choosing entries as i.i.d. standard Gaussian random variables.
Another common alternative is the random sign matrix
whose entries are set to +1 or −1 with equal probability. The
well-known Johnson-Lindenstrauss Lemma [32] formalizes
this idea. A version adopted to this paper’s notation and
context is presented next for completeness.

Theorem 1. Let x1,x2 ∈X ⊂ Rd and y1 = 1√
r x1AR, y2 =

1√
r x2AR be a pair of vectors in X and their corresponding

mapping to Y . Let AR be an d× r random matrix whose
entries are chosen independently from either a zero-mean
unit-variance Gaussian distribution or as +1 or −1 with
equal probability. Then, for γ > 0,

P
[
(1− γ)

∥∥x1− x2∥∥2 ≤
∥∥y1− y2∥∥2 ≤ (1+ γ)

∥∥x1− x2∥∥2
]

≥ 1−2e−(γ
2−γ3) r

4 .

Note that, while it is possible to make the selection of
the linear mapping T and matrices A introduced in the
previous section a part of the decision problem, doing so
would obviously defeat the purpose of the transformation
since (A,y) has a higher dimension than the original large-
scale game decisions, x.

Lemma 2. The combined problem of a player i optimally
choosing (Ai,yi) as a reduction has a higher-dimension than
the original problem of optimally choosing xi in the large-
scale game G B for a generic linear transformation Ai.

Proof. The proof immediately follows from definitions.
Since A has K rows and M columns, the total number of
variables in (A,y) is K(M + 1) > M in the reduced case,
which defeats the purpose since xi has M elements.



III. ANALYSIS OF LARGE-SCALE AND
REDUCED GAMES

A fundamental question of interest in large-scale games
is how a Nash Equilibrium (NE) solution of the original
game, G B, relates to that of the tractable game G T obtained
through a linear transformation such as random projection
in the decision space. First, basic results will be discussed
for the general case of N-players. Then, specific results for
two-player quadratic games will be presented.

Lemma 3. If the cost function of player i, Ji in a large-scale
game G B is convex in xi, then J̃ of the tractable game G T

is also convex in yi.

Proof. The result is due to linearity of the mapping T , see
e.g., [37, Chap. 3.2.2].

The following well-known result from [38] establishes
sufficient conditions for existence of NE in the game G B.

Proposition 4. If the decision space X i of each player i in
the large-scale game G B is closed, bounded, and convex, and
the cost function Ji is jointly continuous in all its arguments
and strictly convex in xi for any x−i and for all i ∈N , then
the game admits a (pure) Nash Equilibrium solution.

Combining Lemma 3 and Proposition 4 leads to:

Proposition 5. If the large-scale game G B satisfies the
sufficient conditions in Proposition 4 and admits a (pure)
NE, then the tractable game G T also admits a (pure) NE.

A. Convex Large-Scale and Reduced Games

Proposition 5 leads to the question of when and where
can Large-Scale and Reduced Games be equivalent. The
player costs in the large-scale and reduced games G B, G T ,
are defined as Ji(xi,x−i) and J̃i(yi,y−i) = J̃i(Aixi,A−ix−i),
respectively. Assume that Ji is convex in xi for all players i.
Hence, G T is also convex and both admit NE solutions from
Lemma 3 and Proposition 4. Let x? be the NE of G B. The
Taylor series expansions of the costs Ji and J̃i around x?i given
x−i,? provide the following second-order approximations:

Ji(xi,x−i)≈ Ji(xi,,x−i,?)+
[
∇xiJi]T · (xi− xi,?)

+ (xi− xi,?)T [
∇

2
xi xiJi] · (xi− xi,?) (2)

and

J̃i(Aixi,A−ix−i)

≈ J̃i(Aixi,?,A−ix−i,?)+
[
Ai,T

∇xi J̃i]T · (xi− xi,?)

+ (xi− xi,?)T [Ai,T
∇

2
xi xi J̃iAi] · (xi− xi,?) , (3)

where ‖x− x?‖< ε for a small ε > 0.
The convex games G B and G T are locally approximately

equivalent around the NE x?, if

Ji(xi,x−i) = J̃i(Aixi,A−ix−i)+δ

for {x ∈X | ‖x− x?‖< ε}, where the scalar δ > 0 accounts
for the discrepancy due to higher-than-second-order terms.
Then, the following relationships, obtained using basic linear

algebraic manipulations, establish a connection between the
first- and second-order terms in the large-scale and reduced
games such that:

∇xi J̃i = (AiAi,T )−1Ai [
∇xiJi(xi,x−i)

]
(4)

and

∇
2
xi xi J̃i = (AiAi,T )−1Ai [

∇
2
xi xiJi]Ai,T (AiAi,T )−1 , (5)

for all i and x such that ‖x− x?‖< ε .
Next, the relationship between large-scale and tractable

games is investigated for the special case of two-player
quadratic games.

B. Quadratic 2-Player Large-Scale And Reduced Games

Quadratic games are of particular interest in game theory
as they constitute second-order approximation to games with
nonlinear cost functions, while admitting closed-form equi-
librium solutions that provide useful insights [38]. They are
also related to Quadratic Programming which is encountered
in key machine learning training algorithms [39].

Consider the following special case of the game G T with
only two players P1 and P2 having the respective cost
functions:

J̃1 (y1,y2)= y1,T Q̃1y2− y1,T r̃1 + v1 , (6)

J̃2 (y1,y2)= y2,T Q̃2y1− y2,T r̃2 + v2 . (7)

The game parameters are the scalars v1, v2, the vectors r̃1,
r̃2, and matrices Q̃1, Q̃2.

The corresponding cost functions (6)–(7) of the original
Large-scale Game G B can be written as

J1 (x1,x2)= x1,T Q1x2− x1,T r1 + v1 , (8)

J2 (x1,x2)= x2,T Q2x1− x2,T r2 + v2 . (9)

If the matrices Q1 and Q2 are positive definite and hence
invertible [40], then the cost functions J1 and J2 are both
quadratic and strictly convex. Therefore, the first derivatives
vanishing serves as necessary and sufficient for optimality in
calculating player best responses

x1,? = (Q2)
−1 r2 and x2,? = (Q1)

−1 r1 .

Thus, x? = [x1,?,x2,?] is the unique NE of the original large-
scale game. Note that the NE strategy of one player is
determined by the parameters of the other player.

When are the outcomes of these two games equivalent?
To answer this question, let J1 = J̃1 for Player 1. Since y1 =
A1x1 and y2 = A2x2, the equivalence between linear terms
are immediately established by r1 = A1,T r̃1 and r2 = A2,T r̃2.
Focusing on the quadratic terms,

x1,T Q1x2 = y1,T Q̃1y2

and
x1,T Q1x2 = x1,T A1,T Q̃1A2x2,

lead to
Q1 = A1,T Q̃1A2. (10)



Multiplying each side first with A1 and A2,T , and then with
(A1A1,T )−1 and (A2A2,T )−1 from left and right, respectively,
yields

Q̃1 = (A1A1,T )−1A1Q1A2,T (A2A2,T )−1. (11)

The analysis can be repeated similarly for J2 = J̃2.
From (10) and (11), it is observed that unless A1 = A2,

i.e., the players use the same reduction mappings, positive
definiteness of Qi does not guarantee the positive definiteness
of Q̃i and vice versa. However, if A1 = A2, then one matrix
being positive definite ensures that the other one is so as
well. In this case, the matrices can be decomposed as RiRi,T

and R̃iR̃i,T , respectively. Consequently,

R̃iR̃i,T = (AAT )−1ARiRi,T AT (AAT )−1, i = 1,2,

or
R̃i = (AAT )−1ARi, i = 1,2. (12)

The relationships (10)-(12) establish a connection between
the quadratic terms in the large-scale and reduced versions
of the game. These can be used in design of reductions and/or
choice of cost parameters.

IV. LARGE-SCALE GAMES FOR ADVERSARIAL
MACHINE LEARNING

Security games have been used increasingly to model
decision making in network and real-life problems with
resource constraints [5]–[7]. Adversarial machine learning
(AdvML) is the study of effective machine (or statistical)
learning techniques against an adversarial opponent, who
aims to disrupt the learning and hence subsequent decision
making process with malicious intent. Many adversarial
learning problems can be posed as security games. Moreover,
high-dimensional and high-volume data generated by modern
systems naturally lead to large-scale game formulations
which can be analyzed adopting an approach similar to the
one discussed in the previous sections. A specific adversarial
learning problem based on linear Support Vector Machines
(SVMs) is investigated next, which leads to a large-scale
game formulation.

Consider a linear SVM as a binary classifier trained using
a large and high-dimensional labeled data set consisting of
n d−dimensional real data vectors with respective {−1,+1}
labels, where n,d� 1. The choice of linear SVM is without
loss of any generality since nonlinear kernels can be em-
bedded into the random projection, i.e. the inner product
of projected points can approximate their original kernel
evaluation if the transformation is carefully selected [35].

The training of the SVM involves solving an optimization
problem where a hyperplane with normal vector, w?, is
obtained that maximizes the (soft) geometric margin (the
minimum distance of a data point to the hyperplane). The
dual formulation of the problem leads to the following well-
known formulation:

max
α

1T
α− 1

2
α

TY XXTY α

s.t. 1TYα = 0, 0≤ α ≤ C, (13)

where α is the vector of Lagrange multipliers, C > 0 is a
constant, 1 is a vector of ones, X ∈Rn×d is an n×d matrix
whose rows are the data vectors, and Y ∈Rn×n is a diagonal
matrix with diagonal entries the corresponding {−1,+1}
labels. The optimal separating hyperplane is represented by
w? = α?,TY X , where α? is the optimal solution to (13).
Note that, Y T = Y by definition and if an α?

i > 0 then the
corresponding data point is called a support vector.

Let the player who solves (13) with the aim of maximizing
the geometric (soft) margin be called “Defender”. Since the
data set has a large number of points, n � 1, and each
data point is high-dimensional, d� 1, the Defender adopts
random projection as dimension reduction and random data
selection as volume reduction strategies. Let AR be a d× r
random projection matrix, r < d, as defined in Theorem 1
and AS be a n×n matrix, which extends the selection matrix
in Definition 2 by adding zero rows to appropriate places.
Thus, XAR is a random projection of data vectors where their
distances are preserved with a high probability. The selection
mapping ASX , on the other hand, deletes a subset of data
vectors to reduce the data volume. The reduction in training
data dimension and volume decreases the computational
and information burden of the Defender. It also provides a
certain degree of robustness against malicious attacks in an
adversarial setting.

A common attack type in adversarial learning is malicious
distortion of training data points (vectors) by an Attacker. Let
X +D be the distorted data matrix, where D is determined
by the Attacker. The amount of injected distortion to the data
is often bounded due to either the computational burden or
increasing risk of discovery of the Attack(er). For example,
some of the rows of D may be zero indicating that the
Attacker distorts only a subset of the data.

The counterpart of (13) in the adversarial learning formu-
lation describes is then:

max
α

1T ASα− 1
2

α
TYAS(X +D)ARAT

R(X +D)T ASY α

s.t. 1TYASα = 0, 0≤ α ≤ C, (14)

The optimal geometric margin γ? of the canonical hyper-
plane w? obtained from (13) is defined as γ? = 1/‖w?‖2,
where ‖w?‖2

2 = ∑i αi. Define, likewise, γ̃? using (14). Since
geometric margin plays a foundational role in the formulation
of the binary SVM classification problem, it makes sense
to use it as a criterion in the adversarial learning game.
Hence, the player objectives can be posed as minimizing
(maximizing) the distortion in the geometric margin |γ?− γ̃?|
for the Defender (Attacker), respectively.

As a starting point of the analysis, the optimization prob-
lem (14) is reformulated by capturing the impact of random
selection mapping AS through a set of new constraints:

max
α

1T
α− 1

2
α

TY (X +D)ARAT
R(X +D)TY α

s.t. 1TYα = 0, 0≤ α ≤ C, (15)
and (I−AS)X = 0, (I−AS)α = 0. (16)



Note that,

α
TY (X +D)ARAT

R(X +D)TY α =
∥∥α

TY (X +D)AR
∥∥2

2 .

Using the triangle inequality,

(1−δ )
∥∥α

TY XAR
∥∥2

2 ≤
∥∥α

TY (X +D)AR
∥∥2

2 (17)

≤ (1+δ )
∥∥α

TY XAR
∥∥2

2 ,

where

δ :=

∥∥αTY DAR
∥∥2

2

‖αTY XAR‖2
2

< 1 .

Let Zpds(α
?
pds) be the optimal value of (14) and (15)-(16).

The value, Zpd(α
?
pd), obtained by resolving (15) without the

constraints in (16) clearly leads to a higher or equal value
such that

Zpd = βZpds , β ≥ 1 .

It is worth noting that β is a function of the data X as well
as AR, AS, and D.

Define

Zp(α
?
pd) := 1T

α
?
pd−

∥∥∥α
?,T
pd Y XAR

∥∥∥2

2
,

which is the optimal value without any malicious distortion,
D = 0, of the data set. Then, from (17),

Zp(α
?
pd)≥ Zpd(α

?
pd)−δ

∥∥∥α
?,T
pd Y XAR

∥∥∥2

2

and hence

Zp(α
?
pd)≥ βZpds(α

?
pds)−δ

∥∥∥α
?,T
pd Y XAR

∥∥∥2

2
. (18)

Let Z(α?) denote the optimal value of the original prob-
lem, (13). It is important to note that α?

pd is also a feasible
(but clearly not optimal) solution of (13). Hence, Z(α?) ≥
Zp(α

?
pd) by definition.

The rest of the analysis closely follows the one in [41]. Let
V ∈ Rd×ρ be any matrix with orthonormal columns. Define
E := V TV −V T ARAT

RV , and assume ‖E‖2 < φ for a given
AR. Then,

Z(α?)≥ Zp(α
?
pd)−

1
2
‖E‖2

∥∥∥α
?,T
pd Y X

∥∥∥2

2
.

It is shown in [41] that∥∥∥α
?,T
pd Y X

∥∥∥2

2
≤ 1

1−‖E‖2

∥∥∥α
?,T
pd Y XAR

∥∥∥2

2
.

Thus, from (18),

Z(α?)≥ βZpds(α
?
pds)

− β

2

(
‖E‖2

1−‖E‖2
+2δ

)∥∥∥α
?,T
pdsY XAR

∥∥∥2

2
. (19)

Remember that, from its definition w? = α?,TY X =

∑i α?
i and w?

pds = α
?,T
pdsY X = ∑i α?

pds,i. Therefore, Z(α?) =

0.5‖w?‖2
2, Zpds = 0.5

∥∥∥w?
pds

∥∥∥2

2
, and the geometric margins

are γ? = 1/‖w?‖2 and γ̃? = 1/
∥∥∥w?

pds

∥∥∥
2
. Combining these

definitions with (19) leads to

Z(α?)≥ β

(
1− ‖E‖2

1−‖E‖2
−2δ

)
Zpds(α

?
pds)

or
γ̃
?2 ≥ β (1−φ −2δ )γ

?2 . (20)

Now, the adversarial machine learning game between the
Defender and Attacker can be defined based on this worst-
case gap between the margins,∣∣γ?2− γ̃

?2∣∣/γ
?2 ≤ 1−β (1−φ −2δ ) .

Let (AR,AS) represent the actions of the Defender and D
of the Attacker. As one possibility, the Defender aims to
maximize β (1−φ −2δ ) to decrease the worst-case margin
gap, while the Attacker tries to minimize it. It is assumed
here that random projection, selection, and malicious distor-
tions do not inadvertently increase the margin and help the
Defender. The cost functions also capture the computational
gains for the Defender due to reductions and risk of detection
for the Attacker. Thus, the cost functions of the Defender and
Attacker are defined as:

min
AR,AS

JD(AR,AS,D) =−β (AS)(1−φ(AR)−2δ (D)) (21)

+cD
R ‖AR‖+ cD

S ‖AS‖ ,
min

D
JA(AR,AS,D) = β (AS)(1−φ(AR)−2δ (D))

+cA ‖D‖ (22)

The following observations can be made:
• β (AS) is increasing in ‖I−AS‖, i.e. the number of

samples deleted from the data set;
• φ(AR) is increasing as the random projection space

decreases in number of dimensions, i.e., number of
columns, r, in the d× r matrix AR decreases; and

• δ (D) is increasing in ‖D− I‖, i.e., the amount of dis-
tortion introduced to training data by malicious attacker
increases.

The adversarial machine learning game is then defined as

G AdvML ({De f ender,Attacker},{(AR,AS), D},{JD, JA}
)
,

where JD and JA are defined in (21), (22), respectively.
It is important to note that this game can only be solved
numerically due to the nonlinear nature of the functions
β (AS), φ(AR), and δ (D).

V. CONCLUSION

A framework for large-scale strategic games with contin-
uous decision variables has been introduced in this paper.
First, a characterization and basic definitions of large-scale
strategic games have been presented. Second, motivated by
information limitations, reduction of large-scale strategic
games using linear transformations such as random projec-
tions and their effect on equilibrium solutions have been
discussed. Third, a set of analytical results on convex and
quadratic 2-player large-scale games and their equilibrium



solutions have been obtained. Finally, a specific adversarial
machine learning game formulation has been used to illus-
trate context-specific selection of linear reductions in large-
scale games.

Large-scale strategic games as defined in this paper can
be seen as complementary to their finite state and/or action
counterparts, and hence to the game abstraction literature.
There are multiple interesting future research directions in
the continuous-kernel game domain. One open direction is
further investigation of specific transformation techniques
for reduction of large-scale games and projection meth-
ods. A second direction is exploration of practical solution
algorithms for large-scale data-driven games and learning
schemes, e.g. the game defined at the end of Section IV.
A third direction is additional applications of adversarial
learning games to specific problem domains.

VI. ACKNOWLEDGMENTS
The authors thank Dr. Sarah Monazam Erfani for the

helpful comments and discussions.

REFERENCES

[1] T. Alpcan, H. Boche, M.L. Honig, and H.V. Poor, Mechanisms and
Games for Dynamic Spectrum Allocation, Cambridge University Press,
December 2013.

[2] D. Chattopadhyay and T. Alpcan, “A Game-Theoretic Analysis of
Wind Generation Variability on Electricity Markets,” IEEE Trans. on
Power Systems, vol. 29, no. 5, pp. 2069–2077, September 2014.

[3] W. Saad, Zhu Han, H.V. Poor, and T. Basar, “Game-Theoretic Methods
for the Smart Grid: An Overview of Microgrid Systems, Demand-Side
Management, and Smart Grid Communications,” IEEE Signal Proc.
Magazine, vol. 29, no. 5, pp. 86–105, September 2012.

[4] Y.W. Law, T. Alpcan, and M. Palaniswami, “Security Games for
Risk Minimization in Automatic Generation Control,” IEEE Trans.
on Power Systems, vol. 30, no. 1, pp. 223–232, January 2015.
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[38] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory,
SIAM, 2nd edition, 1999.

[39] Christopher M. Bishop, Pattern Recognition and Machine Learning,
Springer-Verlag, 2006.

[40] K. B. Petersen and M. S. Pedersen, “The Matrix Cookbook,” October
2008.

[41] C. Boutsidis M. Magdon-Ismail P. Drineas S. Paul, “Random Pro-
jections for Linear Support Vector Machines,” ACM Transactions on
Knowledge Discovery from Data, vol. 8, no. 4, pp. 22:1–22:25, Oct.
2014.


	I INTRODUCTION
	I-A Related Work
	I-B Contributions

	II MODEL AND DEFINITIONS
	III ANALYSIS OF LARGE-SCALE AND  REDUCED GAMES
	III-A Convex Large-Scale and Reduced Games
	III-B Quadratic 2-Player Large-Scale And Reduced Games

	IV LARGE-SCALE GAMES FOR ADVERSARIAL MACHINE LEARNING
	V CONCLUSION
	VI ACKNOWLEDGMENTS
	References

