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Abstract

We consider an open quantum system described by a
Lindblad-type master equation with two times-scales.
The fast time-scale is strongly dissipative and drives the
system towards a low-dimensional decoherence-free
space. To perform the adiabatic elimination of this fast
relaxation, we propose a geometric asymptotic expan-
sion based on the small positive parameter describing
the time-scale separation. This expansion exploits geo-
metric singular perturbation theory and center-manifold
techniques. We conjecture that, at any order, it pro-
vides an effective slow Lindblad master equation and
a completely positive parameterization of the slow in-
variant sub-manifold associated to the low-dimensional
decoherence-free space. By preserving complete posi-
tivity and trace, two important structural properties at-
tached to open quantum dynamics, we obtain a reduced-
order model that directly conveys a physical interpre-
tation since it relies on effective Lindbladian descrip-
tions of the slow evolution. At the first order, we derive
simple formulae for the effective Lindblad master equa-
tion. For a specific type of fast dissipation, we show
how any Hamiltonian perturbation yields Lindbladian
second-order corrections to the first-order slow evolu-
tion governed by the Zeno-Hamiltonian. These results
are illustrated on a composite system made of a strongly
dissipative harmonic oscillator, the ancilla, weakly cou-
pled to another quantum system.
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1 Introduction

Solving the equation of evolution for a open quantum
system - the Lindblad master equation [3] - is generally
tedious. To gain better physical insight and/or for nu-
merical simulations, it is of wide interest to compute
rigorous reduced models of quantum dynamical sys-
tems. In a typical case, a system of interest is coupled
to an ancillary system expressing a measurement device
or a perturbing environment [10]. The quantum dynam-
ics describes the joint evolution of both systems and in
order to focus only on the system of interest we want to
determine a dynamical equation for the system of inter-
est only, from which we have “eliminated” the ancillary
system.

A standard tool for model reduction is to use the dif-
ferent timescales of the complete system to separate
the quantum dynamics into fast and slow variables and
then eliminate the fast ones. This technique is known
as adiabatic elimination. In quantum Hamiltonian sys-
tems, regular perturbation theory can be easily applied
as the propagator remains unitary, and the construction
of the reduced model to various orders of approxima-
tion is standard [17]. In contrast, for open quantum
systems, described by a Lindblad master equation [3],
the case is much more complicated and involves sin-
gular perturbation theory. Several particular examples
have been treated separately. In [4] different methods
are proposed to perform an adiabatic elimination up to
second-order on a lambda system. In [14] and [16] the
problem of excited states decaying towards n grounds
state is treated. A specific atom-optics dynamics is in-
vestigated in [1]. In the presence of continuous mea-
surement, [7] presents a method of adiabatic elimina-
tion for systems with Gaussian dynamics.

However, no general and systematic method has been
developed yet for adiabatic elimination in systems with
Lindblad dynamics. More precisely, treating the Lind-
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blad master equation as a usual linear system, or apply-
ing the Schrieffer-Wolff formalism which is generalized
in [11] to Lindblad dynamics, requires the inversion of
super-operators which can be troublesome both numer-
ically and towards physical interpretation. In [2] we
made a first attempt to circumvent this inversion, using
invariants of the dynamics. This provides a first-order
expansion only, and in general linear form — i.e. not
necessarily with the structure of a Lindblad equation.

In the present paper, we propose a geometric method
to perform an adiabatic elimination for open quan-
tum systems, whose key feature is that the resulting
reduced model is explicitly described by an effective
Lindblad equation. The reduced system is parameter-
ized by a reduced density operator and the mapping
from the reduced model to the initial system state space
is expressed in terms of Kraus operators, ensuring a
trace-preserving completely positive map. By preserv-
ing these structural properties of open quantum dynam-
ics, we obtain a reduced model that directly conveys
a physical interpretation. As far as we know, combin-
ing asymptotic expansion with completely positive map
and Lindbladian formulation has never been addressed
before. This work is a first attempt to investigate the
interest of such combination with lemmas 1, 2 and 3
underlying the conjecture illustrated on figure 1.

Our method applies to general open quantum systems
with two timescales, described by two general Lindbla-
dian super-operators (1), and where the fast Lindbladian
makes the system converge to a decoherence-free sub-
space of the overall Hilbert space. We then use a ge-
ometric approach based on center manifold techniques
[6] and geometric singular perturbation theory [9] to ob-
tain an expansion of the effect of the perturbation intro-
duced by the slow Lindbladian on this decoherence-free
subspace. For general Lindbladians satisfying this set-
ting, we get explicit formulas for the Lindblad operators
describing the first-order expansion. In the particular
case of a Hamiltonian perturbation, we retrieve the well
known Zeno effect. Furthermore, for a fast Lindbladian
described by a single decoherence operator and subject
to a Hamiltonian perturbation, we derive explicit formu-
las for the first-order effect on the location of the cen-
ter manifold and for Lindblad operators describing the
second-order expansion of the dynamics. This allows
to highlight how a first-order Zeno effect is associated
to second-order decoherence.

We apply our method to a quantum system coupled
to a highly dissipative quantum harmonic oscillator (an-
cilla). Our general formulas directly provide an ef-

fective Lindblad master equation of the reduced model
where this ancilla is eliminated. The result for this ex-
ample is well known [5], which allows us to emphasize
how the correct results are obtained also on infinite-
dimensional systems, and to appreciate the computa-
tional simplicity of our method in comparison with pre-
vious ones.

The paper is organized as follows. Section 2 presents
the structure of two-timescales master equation for open
quantum systems, as well as the assumptions and prop-
erties of the unperturbed system used for deriving our
results. In section 3 we present a geometric approach
for performing the adiabatic elimination and derive a
first-order reduced model for arbitrary perturbations. In
section 4 we develop the second-order expansion for a
class of systems. In section 5 we illustrate the method
where the ancilla is a highly dissipative harmonic oscil-
lator.

2 A class of perturbed master
equations

Denote byH a Hilbert space of finite dimension, by D
the compact convex set of density operators ρ on H (ρ
is Hermitian, nonnegative and trace one). We consider
a two-time scale dynamics on D described by the fol-
lowing master differential equation

d
dt
ρ = L0(ρ) + εL1(ρ) (1)

where ε is a small positive parameter and the linear
super-operators L0 and L1 are of Lindbladian forms [3].
That is, there exist two finite families of operators on
H , denoted by (L0,ν) and (L1,ν), and two Hermitian op-
erators H0 and H1 (called Hamiltonians) such that, for
r = 0, 1, we have

Lr(ρ) = −i[Hr, ρ]+
∑
ν

Lr,νρL†r,ν−
1
2 L†r,νLr,νρ−

1
2ρL†r,νLs,ν.

(2)
It is well known that if the initial condition ρ(0) belongs
to D, then the solution ρ(t) of (1) remains in D and is
defined for all t ≥ 0. It is also a known fact that the
flow of (1) is a contraction for many distances, such as
the one derived from the nuclear norm ‖ · ‖1: for any
trajectories ρ1 and ρ2 of (1), we have ‖ρ1(t) − ρ2(t)‖1 ≤
‖ρ1(t′) − ρ2(t′)‖1 for all t ≥ t′; see e.g. [15, Th.9.2].

We assume that, for ε = 0, the unperturbed master
equation d

dtρ = L0(ρ) converges to a stationary regime.



More precisely, we assume that the unperturbed master
equation admits a sub-manifold of stationary operators
coinciding with the Ω limit set of its trajectories. De-
note by

D0 =
{
ρ ∈ D

∣∣∣ L0(ρ) = 0
}

this stationary manifold: it is compact and convex.
We thus assume that for all ρ0 ∈ D, the solution of
d
dtρ = L0(ρ) with ρ(0) = ρ0 converges for t tending
to +∞ towards an element of D0 denoted by R(ρ0) =

limt→+∞ ρ(t). Since for any t ≥ 0, the propagator etL0 is
a completely positive linear map [15, Chap.8], R is also
a completely positive map. By Choi’s theorem [8] there
exists a finite set of operators on H denoted by (Mµ)
such that

R(ρ0) =
∑
µ

Mµρ0M†µ (3)

with
∑
µ M†µMµ = I, the identity operator on H . The

form (3) is called a Kraus map. We thus assume that

D0 =
{
R(ρ)

∣∣∣ ρ ∈ D}
and ∀ρ ∈ D0, R(ρ) = ρ.

An invariant operator attached to the dynamics d
dtρ =

L0(ρ) is an Hermitian operator J such that for any
time t ≥ 0 and any initial state ρ0 = ρ(0), we have
Tr

(
Jρ(t)

)
= Tr

(
Jρ0

)
. Such invariant operators J are

characterized by the fact that L∗0(J) = 0 where the ad-
joint map to L0 is given by

L
∗
0(A) = i[H0, A]+

∑
ν

L†0,νAL0,ν−
1
2 L†0,νL0,νA− 1

2 AL†0,νL0,ν

for any Hermitian operator A.
Thus by taking the limit for t tending to +∞ in

Tr
(
Jρ(t)

)
= Tr

(
Jρ0

)
, we have, for all Hermitian op-

erators ρ0, Tr
(
JR(ρ0)

)
= Tr

(
Jρ0

)
. Denote by R∗ the

adjoint map associated to R:

R∗(A) =
∑
µ

M†µAMµ (4)

for any Hermitian operator A on H . Then,
Tr

(
R∗(J)ρ0

)
= Tr

(
Jρ0

)
for any Hermitian operator ρ0

is equivalent to R∗(J) = J. I.e. invariant operators J are
characterized by L∗0(J) = 0 and satisfy R∗(J) = J.

We assume additionally that D0 coincides with the
set of density operators with support in H0, a subspace
of H . In other words the unperturbed master equation
features a decoherence-free spaceH0. Denote by P0 the
operator on H corresponding to orthogonal projection
onto H0. Consequently, for any Hermitian operator ρ,

we have P0R(ρ) = R(ρ)P0 = R(ρ). Thus Tr
(
R∗(P0)ρ

)
=

Tr
(
R(ρ)

)
= Tr

(
ρ
)

for all ρ which implies:

R∗(P0) = I. (5)

Moreover, for any vector |c〉 in H0, R(|c〉〈c|) = |c〉〈c|.
This implies that, for the Kraus map (3), there exists a
family of complex numbers λµ such that

∑
µ |λµ|

2 = 1
and

∀|c〉 ∈ H0, Mµ|c〉 = λµ|c〉. (6)

3 First order expansion for arbi-
trary perturbations

We consider here the perturbed master equation (1)
whose unperturbed part d

dtρ = L0(ρ) satisfies the as-
sumptions of Section 2: any trajectory converges to a
steady-state; the set of steady-states D0 coincides with
the set of density operators with support on a subspace
H0 ofH . This section develops a first-order expansion
versus ε of (1) aroundD0.

Denote by Hs (subscript s for slow), an abstract
Hilbert space with the same dimension as H0. Denote
by Ds the set of density operators on Hs. Denote by
{|ν〉} (resp. {|cν〉}) a Hilbert basis ofHs (resp. H0). Con-
sider the Kraus map K0 defined by

∀ρs ∈ Ds, K0(ρs) = S 0ρsS
†

0 ∈ D (7)

where S 0 =
∑
ν |cν〉〈ν|. We have S 0S †0 = P0, the or-

thogonal projector onto H0 and S †0S 0 = Is, the identity
operator onHs.

As illustrated on figure 1, we are looking for an ex-
pansion based on linear super-operators {Km}m≥0 be-
tween Ds and D and on Lindblad dynamics

{
Ls,m

}
m≥0

on Ds such that any solution t 7→ ρs(t) ∈ Ds of the
reduced Lindblad master equation

d
dt
ρs = Ls(ρs) =

∑
m≥0

εm
Ls,m(ρs) (8)

yields, via the map

ρ(t) = K(ρs(t)) =
∑
m≥0

εmKm(ρs(t)) , (9)

a trajectory of the perturbed system (1). We combine
here geometric singular perturbation theory [9] with
center manifold techniques based on Carr asymptotic
expansion lemma [6] to derive recurrence relationships
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Figure 1: Adiabatic elimination, based on geometric sin-
gular perturbation theory, of the fast relaxation dynamics
d
dtρ = L0(ρ) for an open-quantum system governed by the
Lindbladian master equation d

dtρ = L(ρ) = L0(ρ) + εL1(ρ)
where ε is a small positive parameter. It provides two asymp-
totic expansions of the slow dynamics. The parameteriza-
tion via density operators ρs of the slow invariant attractive
sub-manifold (related to L0(ρ) = 0) is based on the map
ρ = K(ρs) = K0(ρs) + εK1(ρs) + . . .. The slow dynamics
corresponds to d

dtρs = Ls(ρs) = εLs,1(ρs) + ε2Ls,2(ρs) + . . ..
The super-operators K0, K1, . . . and Ls,1, Ls,2, . . . are obtained
by identifying terms of identical order versus ε in the geomet-
ric invariance condition
L0

(
K0 + εK1

)
+ εL1

(
K0 + εK1 + . . .

)
= K0

(
εLs,1 +ε2Ls,2 + . . .

)
+εK1

(
εLs,1 +ε2Ls,2 + . . .

)
+ . . . .

We conjecture that, at any order versus ε, the super-operator K
is a Kraus map (up to higher-order corrections) and the slow
evolution d

dtρs = Ls(ρs) is of Lindbladian type.

for Km and Ls,m. These recurrences are obtained by
identifying the terms of the same order in the formal
invariance condition

L0

(
K(ρs)

)
+εL1

(
K(ρs)

)
=

d
dt
ρ = K

(
d
dt
ρs

)
= K

(
Ls(ρs)

)
.

This means that, for any ρs ∈ Ds, we have

L0

∑
m≥0

εmKm(ρs)

 + εL1

∑
m≥0

εmKm(ρs)


=

∑
m

εmKm

∑
m′
εm′
Ls,m′ (ρs)

 . (10)

For m = 0 we have

L0

(
K0(ρs)

)
= K0

(
Ls,0(ρs)

)
. (11)

With K0 defined in (7), we have L0

(
K0(ρs)

)
≡ 0 and

thus Ls,0(ρs) = 0. Consequently, for m ≥ 1, we have

L0
(
Km(ρs)

)
+ L1

(
Km−1(ρs)

)
=

m∑
m′=1

Km−m′
(
Ls,m′ (ρs)

)
. (12)

When m = 1, K1 and Ls,1 are defined by

L0

(
K1(ρs)

)
+ L1

(
K0(ρs)

)
= K0

(
Ls,1(ρs)

)
. (13)

The following lemma proves that the super-operator
Ls,1(ρs) defined by this equation is always of Lindblad
form.

Lemma 1. Assume that L1(ρ) = −i[H1, ρ] for some
Hermitian operator H1 on H . Then, if Ls,1 satis-
fies (13), we have Ls,1(ρs) = −i[Hs,1, ρs] where Hs,1 =

S †0H1S 0 is a Hermitian operator onHs.
Assume that L1(ρ) = L1ρL†1 −

1
2

(
L†1L1ρ + ρL†1L1

)
for

some operator L1 on H . Then, if Ls,1 satisfies (13), we
have

Ls,1(ρs) =
∑
µ

AµρsA†µ −
1
2

(
A†µAµρs + ρsA†µAµ

)
(14)

with Aµ = S †0 MµL1S 0 and the Kraus operators Mµ de-
fined by (3).

The result for a general Lindbladian dynamics (2) for
r = 1 follows by linearity.

Proof. Since R ◦ L0 = 0 and R ◦ K0 = K0 , we have

R
(
L1

(
K0(ρs)

))
= K0

(
Ls,1(ρs)

)
. Left multiplication by

S †0 and right multiplication by S 0 yields

Ls,1(ρs) = S †0R
(
L1

(
S 0ρsS

†

0

))
S 0

since S †0S 0 = Is is the identity operator onHs.
For L1(ρ) = −i[H1, ρ] we have, exploiting the fact

that MµS 0 = λµS 0 and S †0S 0 = Is:

S †0R
(
L1

(
S 0ρsS

†

0

))
S 0

= −i
∑
µ

S †0 Mµ

(
H1S 0ρsS

†

0 − S 0ρsS
†

0H1

)
M†µS 0

= −i
∑
µ

(
λ∗µS †0

)
MµH1S 0ρs + i

∑
µ

ρsS
†

0H1M†µ
(
λµS 0

)
= −i

∑
µ

S †0 M†µMµH1S 0ρs + i
∑
µ

ρsS
†

0H1M†µMµS 0

= −i
[
S †0H1S 0 , ρs

]
(15)



since
∑
µ M†µMµ = I. We get the Zeno Hamiltonian

Hs,1 = S †0H1S 0.

For L1(ρ) = L1ρL†1 −
1
2

(
L†1L1ρ+ρL†1L1

)
, similar com-

putations yield

S †0R
(
L1

(
S 0ρsS

†

0

))
S 0

=
∑
µ

S †0 MµL1S 0ρsS
†

0L†1M†µS 0

− 1
2

∑
µ

S †0 Mµ

(
L†1L1S 0ρsS

†

0 − S 0ρsS
†

0L†1L1

)
M†µS 0

=

∑
µ

AµρsA†µ

 − 1
2 S †0L†1L1S 0ρs − ρsS

†

0L†1L1S 0

with Aµ = S †0 MµL1S 0. It remains to prove that∑
µ A†µAµ = S †0L†1L1S 0 for showing that we indeed have

a Lindblad formulation. This results from the following
computations:∑

µ

A†µAµ =
∑
µ

S †0L†1M†µS 0S †0 MµL1S 0

= S †0L†1R∗(S 0S †0)L1S 0 = S †0L†1L1S 0,

where we use that S 0S †0 = P0 and R∗(P0) = I. �

4 Second order expansion for
Hamiltonian perturbations

We assume here that L0 is defined by a single operator
L0, L0(ρ) = L0ρL†0−

1
2

(
L†0L0ρ+ρL†0L0

)
, and that the per-

turbation L1 is Hamiltonian, L1(ρ) = −i|H1, ρ], where
H1 is a Hermitian operator. The following lemma gives
a simple expression for K1(ρs) solution of (13).

Lemma 2. Assume that L0(ρ) = L0ρL†0 −
1
2

(
L†0L0ρ +

ρL†0L0

)
and L1(ρ) = −i[H1, ρ]. Then Ls,1(ρs) =

−i
[
S †0H1S 0 , ρs

]
and K1(ρs) = −i

[
C1, S 0ρsS

†

0

]
sat-

isfy (13) where C1 is the Hermitian operator

C1 = 2(L†0L0)−1H1P0 + 2P0H1(L†0L0)−1

with P0 the orthogonal projector ontoH′ and (L†0L0)−1

standing for the Moore-Penrose pseudo-inverse of the
Hermitian operator L†0L0.

The associated first order ρs-parametrization of the
slow invariant attractive manifold,

K0(ρs) + εK1(ρs) =(
I − iε(L†0L0)−1H1

)
S 0ρsS

†

0

(
I + iε(L†0L0)−1H1

)
+0(ε2),

corresponds, up to second-order terms, to a trace-
preserving completely positive map.

Proof. With S 0Ls,1(ρs)S
†

0 = −i
[
P0H1P0, S 0ρsS

†

0

]
, (13)

reads

L0(K1(ρs)) = −i
[
P0H1P0, S 0ρsS

†

0

]
+ i

[
H1, S 0ρsS

†

0

]
= −i

[
P0H1P0 − H1 , S 0ρsS

†

0

]
.

With K1(ρs) = −i
[
C1, S 0ρsS

†

0

]
we have also

L0(K1(ρs)) = −iL0

[
C1, S 0ρsS

†

0

]
L†0

+ i
2

(
L†0L0

[
C1, S 0ρsS

†

0

]
+

[
C1, S 0ρsS

†

0

]
L†0L0

)
.

Since L0S 0 = 0 and S †0L†0 = 0 we have

L0

[
C1, S 0ρsS

†

0

]
L†0 = 0.

Since additionally, P0S 0 = S 0, L†0L0P0 = 0 and
L†0L0(L†0L0)−1 = I − P0, we have

L†0L0

[
C1, S 0ρsS

†

0

]
= 2(I − P0)H1P0S 0ρsS

†

0.

Thus

L0(K1(ρs)) = i(I−P0)H1P0S 0ρsS
†

0−iS 0ρsS
†

0P0H1(I−P0)

= −i
[
P0H1P0 − H1 , S 0ρsS

†

0

]
.

�

The second order term Ls,2(ρs) is solution of (12) for
m = 2:

L0
(
K2(ρs)

)
+L1

(
K1(ρs)

)
= K0

(
Ls,2(ρs)

)
+K1

(
Ls,1(ρs)

)
.

Using, once again, R ◦ L0 ≡ 0 and R ◦ K0 = K0, we get

Ls,2(ρs) = S †0R
(
L1

(
K1(ρs)

)
− K1

(
Ls,1(ρs)

) )
S 0. (16)

The following lemma shows that Ls,2(ρs) admits a Lind-
bladian form.



Lemma 3. The super-operator Ls,2 defined by (16) ad-
mits the following Lindbladian formulation

Ls,2(ρs) =
∑
µ

BµρsB†µ −
1
2

(
B†µBµρs + ρsB†µBµ

)
with Bµ = 2S †0 MµL0(L†0L0)−1H1S 0, Mµ defined by (3)
and (L†0L0)−1 standing for the Moore-Penrose pseudo-
inverse of L†0L0.

Proof. We have R
(
K1

(
Ls,1(ρs)

) )
= 0. This results from

(K s
0 stands for S 0ρsS

†

0 = K0(ρs))

K1

(
Ls,1(ρs)

)
= −i[C1, −i S 0[S †0H1S 0, ρs]S

†

0]

= −[C1, P0H1K s
0 − K s

0H1P0]

= −2(L†0L0)−1H1(P0H1K s
0 − K s

0H1P0)

+ 2(P0H1K s
0 − K s

0H1P0)H1(L†0L0)−1 (17)

where we have used Lemma 2 and P0K0 = K0.
Repeating computations similar to (15), we see that

for any operator A on H , R(AP0) = R(P0A) = P0AP0.
Since P0K s

0 = K s
0P0 = K s

0 we moreover have R(AK s
0) =

P0AK s
0 and R(K s

0A) = K s
0AP0. This gives the re-

sult of applying R on all the terms in (17), and since
P0(L†0L0)−1 = (L†0L0)−1P0 = 0, we conclude that
R(K1(Ls,1)) = 0.

Thus Ls,2(ρs) = S †0R
(
L1

(
K1(ρs)

) )
S 0. Exploiting

similar simplifications, we have

L1
(
K1(ρs)

)
= −H1(C1K s

0−K s
0C1)+(C1K s

0−K s
0C1)H1

= H1K s
0C1 + C1K s

0H1 − (H1C1K s
0 + K s

0C1H1)

= 2H1K s
0H1(L†0L0)−1 + 2(L†0L0)−1H1K s

0H1

− 2H1(L†0L0)−1H1K s
0 − 2K s

0H1(L†0L0)−1H1

and, using S †0R(AK s
0) = S †0P0AK s

0 = S †0AK s
0 and the

definition K s
0 = S 0ρss†0, we get

Ls,2(ρs) =

2S †0R
(
H1K s

0H1(L†0L0)−1 + (L†0L0)−1H1K s
0H1

)
S 0

− 2S †0H1(L†0L0)−1H1S 0ρs − 2ρsS
†

0H1(L†0L0)−1H1S 0.

Since for all A, R(L0(A)) = 0, we have the identity

R(L0AL†0) = R
(

1
2

(
L†0L0A + AL†0L0

))
.

With A = (L†0L0)−1H1K s
0H1(L†0L0)−1 we get

2R
(
L0(L†0L0)−1H1K s

0H1(L†0L0)−1L†0

)
=

R
(
(I −P0)H1K s

0H1(L†0L0)−1 + (L†0L0)−1H1K s
0H1(I −P0)

)
= R

(
H1K s

0H1(L†0L0)−1 + (L†0L0)−1H1K s
0H1

)
since R

(
P0H1K s

0H1(L†0L0)−1
)

= P0H1K s
0H1(L†0L0)−1P0

and (L†0L0)−1P0 = 0. Thus

Ls,2(ρs) =

4S †0R
(
L0(L†0L0)−1H1K s

0H1(L†0L0)−1L†0

)
S 0

− 2S †0H1(L†0L0)−1H1S 0ρs − 2ρsS
†

0H1(L†0L0)−1H1S 0.

Using the decomposition (3) of R we have

4S †0R
(
L0(L†0L0)−1H1K s

0H1(L†0L0)−1L†0

)
S 0 =

∑
µ

BµρsB†µ .

We conclude by the following computations:

1
2

∑
µ

B†µBµ =

2
∑
µ

S †0H1(L†0L0)−1L†0M†µS 0S †0 MµL0(L†0L0)−1H1S 0

= 2S †0H1(L†0L0)−1L†0R∗(P0)L0(L†0L0)−1H1S 0

= 2S †0H1(L†0L0)−1L†0L0(L†0L0)−1H1S 0

= 2S †0H1(L†0L0)−1H1S 0.

�

5 Illustrative example: low-Q cav-
ity coupled to another quantum
system

The developments above are rigorous in finite dimen-
sion, but they can be formally applied also on infinite-
dimensional systems, as illsutrated in the following ex-
ample.

We consider a strongly dissipative driven harmonic
oscillator (low-Q cavity) coupled to another, undamped
quantum system with the same transition frequency
(“target” system). Denote HA (resp. HB) the infinite-
dimensional Hilbert space of the strongly dissipative



harmonic oscillator (resp. the target system), spanned
by the Fock states {|nA〉}n∈N (resp. a possibly infinite ba-
sis {|nB〉}nB ); ρ is the density operator of the composite
system, onH = HA ⊗HB.

In the frame rotating at the common frequency of the
two systems, their coupled evolution is described by the
standard master differential equation:

d
dt
ρ = [uã† − u∗ ã, ρ] + κ

(
ãρã† −

1
2

(
ã† ãρ + ρã† ã

))
−ig

[
ã† b̃ + ãb̃†, ρ

]
.

(18)

Here ã = a ⊗ IB and b̃ = IA ⊗ b are the annihilation
operators respectively for the harmonic oscillator A and
for the quantum system B (possibly generalized if B is
not a harmonic oscillator; e.g. if B is a qubit, we have
b = |g〉〈e| the transition operator from excited to ground
state). The first line describes the driven and damped
evolution of harmonic oscillator A, while the second
line describes the exchange of energy quanta between
the two quantum systems. The constants (κ, g) ∈ R2

govern the speed of these dynamics. We here consider
κ � g, with the goal to adiabatically eliminate the fast
dynamics of the low-Q cavity and compute its effect on
the other quantum system. The dynamics (18) is then
equivalent to

d
dt
ρ = L0(ρ) + εL1(ρ) (19)

with L0 =
√
κ(ã − α), α = 2u/κ and εL1(ρ) =

−ig
[
ã† b̃ + ãb̃†, ρ

]
. For this typical example, the results

of Ls,1 and Ls,2 are well known (see e.g. [5, chap.12]).
Our results allow to readily retrieve their expression and
thus completely circumvent the trouble of the usual cal-
culation.

In the absence of coupling between the two subsys-
tems (ε = 0), the overall system trivially converges to-
wards R(ρ0) = |α〉〈α|A ⊗ TrA(ρ(0)). Here TrA is the par-
tial trace over HA and |α〉 denotes the coherent state of
amplitude α ∈ C, towards which a classically driven
and damped harmonic oscillator is known to converge.
Therefore we haveH0 = |α〉〈α| ⊗ HB, P0 = |α〉〈α| ⊗ IB,
and Mµ = |α〉〈µA| ⊗ IB with µ spanning N. We will nat-
urally describe ρS on the Hilbert space Hs ≡ HB and
with basis {|ns〉}ns , so S 0 =

∑
n |α〉|nB〉〈ns|.

For the first-order perturbation, using the property
ã|α〉 = α|α〉, Lemma 1 readily yields

Hs,1 = αb†s + α∗bs ,

denoting by qs the operator on Hs equivalent to q on
HB. This standard result shows that the oscillator A
can be approximated as a classical field of amplitude
α. Indeed, Hs,1 describes e.g. Rabi oscillations for a
qubit driven by a classical field (HB = span{|g〉, |e〉}); or,
whenHB describes another harmonic oscillator, Hs,1 is
the same Hamiltonian in fact as in the first line of (18),
with classical drive amplitude iu replaced by α.

Next, using Dα the unitary displacement operator
on HA, which satisfies DαaD†α = a − αI, we com-
pute (L†0L0)−1 = DαN−1

A D
†
α/κ, where NA = a†a =∑

n∈N n |nA〉〈nA| and the Moore-Penrose pseudo-inverse
of NA is just N−1

A =
∑

n≥1
1
n |nA〉〈nA|. We then compute

C1 =
2
κ
DαN−1

A D
†
α(ã† b̃ + ãb̃†)|α〉〈α| ⊗ IB + h.c.

=
2
κ
DαN−1

A ((ã†+α∗I)b̃+(ã+αI)b̃†)D†α|α〉〈α|⊗IB +h.c.

=
2
κ
DαN−1

A ((ã† +α∗I)b̃ + (ã +αI)b̃†)|0〉〈α| ⊗ IB + h.c.

=
2
κ
DαN−1

A ((α∗ b̃ + αb̃†)|0〉 + b̃|1〉)〈α| + h.c.

=
2
κ
Dα|1〉〈α| ⊗ b + h.c. .

From Lemma 2, we see that a pure state |ψS 〉 ∈ Hs gets
mapped at order zero to |α〉 ⊗ |ψB〉 with |ψB〉 ≡ |ψS 〉,
but at order one to a slightly rotated state |α〉 ⊗ |ψB〉 −
ig
κ

(Dα|1〉)⊗(b|ψB〉). This expresses that the coupled low-
Q cavity A contains slightly more energy than a coher-
ent state, to the detriment of system B.

For the second order perturbation, from Lemma 3 we
must compute Bµ = 2S †0 MµL0(L†0L0)−1H1S 0. The com-
putations made for C1 above can be used, writing:

Bµ = S †0 MµL0

(2
κ
Dα|1〉〈α| ⊗ b

)
S 0

=
2
√
κ

S †0 Mµ

(
Dαa|1〉〈α| ⊗ b

)
S 0

=
2
√
κ

∑
n,m

|ns〉〈nB|〈µA| |α〉〈α| ⊗ b |mB〉〈mS |

=
2
√
κ
〈µA|α〉bs .

All the obtained Bµ are in fact identical up to a scalar



factor, so they may be combined into a single operator:

ε2
Ls,2(ρs) = g2

∑
µ

BµρsB†µ −
1
2

(
B†µBµρs + ρsB†µBµ

)
=

4g2

κ

∑
µ

|〈µA|α〉|
2
(
bsρsb†s −

1
2

(
b†s bsρs + ρsb†s bs

))

=
4g2

κ

(
bρsb† −

1
2

(
b†bρs + ρsb†b

))
.

(Note that {|〈µA|α〉|
2}µ∈N just corresponds to the expan-

sion of the coherent state |α〉, of unit norm, in the Fock
basis.) We thus get the expected reduced dynamics:

d
dt
ρs = −ig

[
αb†s + α∗bs, ρs

]
+

4g2

κ

(
bsρsb†s −

1
2

(
b†s bsρs + ρsb†s bs

))
,

which expresses that the B system is subject to slow
damping due to the presence of the low-Q cavity.

Remark Note that if the slow dynamics includes a
Hamiltonian that acts only on the B system, i.e. of the
form H̃B = IA⊗HB (acting only on B), then C1 features
an additional term

2
κ
DαN−1

A D
†
α

(
IA ⊗ HB

)
|α〉〈α| ⊗ IB + h.c.

=
2
κ

(
DαN−1

A D
†
α|α〉〈α|

)
⊗ HB

=
2
κ

(
DαN−1

A |0〉〈α|
)
⊗ HB = 0 .

Thus the second-order correction vanishes and the Zeno
dynamics is the only addition up to second order:

d
dt
ρs = −ig

[
αb†s + α∗bs + HB, ρs

]
+

4g2

κ

(
bsρsb†s −

1
2

(
b†s bsρs + ρsb†s bs

))
.

6 Conclusion
We have shown how to eliminate the fast dynamics
in an open quantum system (Lindblad equation) with
two timescales, and obtain the resulting reduced dy-
namics explicitly in Lindblad form. This is important
to guarantee that the approximate model preserves the
structure of quantum states (positivity and trace). The

slow system is hence parameterized explicitly with a
quantum state on a lower-dimensional Hilbert space,
and mapped to the complete Hilbert space by a com-
pletely positive trace preserving map (Kraus map). We
have illustrated on a benchmark system (highly dissi-
pating quantum oscillator resonantly coupled to another
quantum system) how our explicit formulae directly re-
trieve the results previously obtained with lengthy ad
hoc computations.

We have obtained explicit formulae for the second-
order corrections only in the particular case of a fast
Lindbladian with single-channel damping L0, and a
slow “perturbation” in Hamiltonian form. Conceptu-
ally there should be no obstacle to extending this theory
to any Lindbladians, the key point being an appropriate
way to generalize the pseudo-inversion (L†0L0)−1. How-
ever, the special case completed here will already al-
low to answer currently open questions about the influ-
ence of small Hamiltonian perturbations on stable open
quantum systems built e.g. with engineered reservoirs
[13, 12].
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