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Abstract— This paper presents a novel Dynam-i-c Droop
(iDroop) control mechanism to perform primary frequency
control with gird-connected inverters that improves the net-
work dynamic performance. The work is motivated by the
dynamic degradation experienced by the power grid due to
the increase in asynchronous inverted-based generation. We
show that the widely suggested virtual inertia solution suffers
from unbounded noise amplification (infinite H2 norm) when
measurement noise is considered. This suggests that virtual
inertia could potentially further degrade the grid performance
once broadly deployed.

This motivates the proposed solution in this paper that
overcomes the limitations of virtual inertia controllers while
sharing the same advantages of traditional droop control. In
particular, our iDroop controllers are decentralized, rebalance
supply and demand, and provide power sharing. Furthermore,
our solution can improve the dynamic performance without
affecting the steady state solution. Our algorithm can be incre-
mentally deployed and can be guaranteed to be stable using
a decentralized sufficient stability condition on the parameter
values. We illustrate several features of our solution using
numerical simulations.

I. INTRODUCTION

Droop control has a long history in power system fre-
quency control [1]. It is perhaps one of the simplest – and
yet very effective – decentralized mechanisms that achieve
synchronization and supply-demand balance in a network
with several generating resources running in parallel [2].
While its implementation may vary depending on the specific
device, its basic operational principle remains unchanged:
whenever frequency is above (below) the nominal value,
decrease (increase) power proportionally to the frequency
deviation. Thus it is usually referred as the primary layer of
the frequency control architecture [3]. Not surprisingly, its
many benefits have made droop control one of the features
of power system engineering that have successfully survived
decades of technological advances.

Unfortunately, the very principles that this mechanism
relies on are becoming less and less valid due to sev-
eral reasons. Firstly, droop control relies on the fact that
demand is frequency dependent, yet with the increase of
power electronic based loads the aggregate load is becoming
less sensitive to frequency [4]. Secondly, while traditional
generation always provides some level of droop control,
renewable generation is insensitive to frequency fluctuations.
The remaining conventional generators are forced to handle
the whole burden of regulating the frequency. Thirdly, newer
types of generators have little or no inertia at all when
compared with traditional ones, which is slowly introducing
a dynamic degradation that concerns many utilities [5].
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Recently, a large body of literature has been developed on
the design of distributed control mechanisms with the objec-
tive to synthetically generate frequency responsive generation
and demand that can overcome the diminishing participation
of these elements in primary frequency control [6]–[9]. In
particular, the proposed strategies seek to introduce a more
frequency responsive devices, either on the load side [6],
[10] or on the generation side [9], that not only implements
droop characteristics for primary frequency control, but also
guarantee higher level operational constraints such as restor-
ing frequency to nominal value [11], preserving inter area
flow constraints, respecting thermal limits, and providing
efficiency [10]. While these solutions directly address the
loss of frequency responsiveness in the grid, they do not
explicitly address dynamic degradation.

Interestingly, droop control can in principle also provide
dynamic performance improvement by properly selecting the
droop coefficients [12]. For example, in an under-damped
power grid, decreasing the droop coefficient can reduce the
frequency Nadir (maximum frequency excursion) in the same
way increasing friction can reduce the overshoot of an under-
damped spring-mass system. However this is not a practical
solution since it also requires the generator to take a larger
share of the supply-demand imbalance. As a result, the
efficiency of the steady-state resource allocation becomes
intrinsically coupled with the possible dynamic performance
improvement. It is the purpose of this work to eliminate this
coupling.

This paper proposes a novel dynam-i-c droop (iDroop)
control algorithm that is able to maintain all the desired
features of traditional droop control while providing enough
design flexibility to improve the dynamic performance. More
precisely, we present a control scheme –whose input is
frequency and output is power generation– that preserves the
same steady-state characteristics as traditional droop control,
maintains grid stability, and provides supply-demand bal-
ance. Our iDroop controller can be implemented by inverters
providing power from renewable sources or by intelligent
loads. Finally, we numerical demonstrate that one can use the
additional flexibility to improve the H2-norm of the system.

Paper Organization: Section II describes the power net-
work model as well as several inverter operational modes
used to interface with the grid. Section III uses dynamic and
steady state performance metrics to motivate the need for
a novel droop control solution. Section IV introduces the
proposed iDroop control and shows how our solution is able
to preserve the same steady state as droop control while pro-
viding enough flexibility to improve dynamic performance.
Moreover, we provide a decentralized sufficient condition
on the parameter values that guarantee the stability of our
controllers. We numerically illustrate the functionalities of
iDroop in Section V and conclude in Section VI.
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II. NETWORK MODEL

We consider a power system composed by n buses denoted
by either i or j, i.e. i, j ∈ N := {1, . . . , n}. We use ij
to denote the transmission line that connects bus i and j,
and use E to denote the set of lines, i.e. ij ∈ E. Thus
the topology of the power system is described by the graph
G = (N,E). The admittance of the line ij is given by yij =
gij − ibij , where gij and bij denote the conductance and
susceptance of line ij, respectively. The state of the network
is described by the complex voltages (Vi)i∈N = (vie

jθi)i∈N
where vi and θi represent the voltage magnitude and phase
of bus i, respectively.

A. Generators and Loads
We model the dynamics of each conventional generator

using the standard swing equations [13], [14]. We denote the
frequency of each generator by ωi which evolves according
to

θ̇i = ωi, (1a)

Miω̇i = pin + qri − (Di +
1

Rgi
)ωi − P ei , (1b)

where Mi denotes the aggregate generator inertia, Di is the
aggregate damping and frequency dependent load coefficient,
and Rgi is the droop coefficient. pini denotes the net constant
power injection at bus i, qri is the controllable input power
injected by grid-connected inverters, and P ei denotes the net
electric power drawn by the grid.

B. Inverters
In this paper we seek to develop a new control scheme

that can be implemented by inverters to improve the dynamic
performance of the power grid. Since the power electronics
of the inverters are significantly faster than the electrome-
chanical dynamics of the generators, we assume that inverters
can statically update its power, i.e.

qri = ui, (2)

where ui is the command input. We assume that (2) repre-
sents the aggregate power of all the inverters connected at
bus i.

There are different operational modes in which inverters
can be interfaced with the power grid [15]–[18]. Here we
briefly review the most common ones:
Constant Power: This is the default operational mode in
today’s grid and amounts to setting

ui = qr,0i , (3)

where qr,0i is a constant parameter representing power gen-
eration set point.
Droop Control: This mode aims to change the power injec-
tion of the inverter to provide additional droop capabilities
by setting

ui = qr,0i −
1

Rri
ωi, (4)

where Rri is the droop coefficient.
Virtual Inertia: This operational mode has been recently
proposed [19], [20] as an alternative method to compensate
the loss of inertia and is given by

ui = qr,0i −
1

Rri
ωi −Mv

i ω̇i, (5)

where Mv
i represents the virtual inertia.

C. Power Flow Model
We consider a Kron-reduced network model [21], where

constant impedance loads are implicitly included in the line
impedances of the reduced network. Thus every remaining
bus represents a grid generator. We further use the DC
network model which has been widely adopted for purpose
of designing frequency controllers for a long time [22], [23].

Therefore, the total electric power drained by the network
at bus i is

P ei = −
∑
j∈Ni

bij(θi − θj), (6)

where the set Ni denotes the set of neighboring buses
adjacent to bus i.

D. Network Dynamics
Combining (1)-(6) we arrive to the following compact

description of the system dynamics

θ̇ = ω (7a)

Mω̇ = pin + qr − (Rg−1 +D)ω − LBθ (7b)

where M := diag(Mi, i ∈ N), D := diag(Di, i ∈ N),
Rg−1 = diag( 1

Rg
i
, i ∈ N), ω := (ωi, i ∈ N), pin =

(pini , i ∈ N), LB is the bij-weighted Laplacian matrix

(LB)ij =


−bij , if i 6= j, ij ∈ E,∑
k∈Ni

bik, if i = j,
0, otherwise,

(8)

and qr := (qri , i ∈ N) is given by

qri =


qr,0i , if i ∈ CP ,
qr,0i − 1

Rr
i
ωi, if i ∈ DC,

qr,0i − 1
Rr

i
ωi −Mv

i ω̇i, if i ∈ V I .
(9)

The sets CP , DC and V I are the subsets of buses that
have inverters operating in constant power, droop control and
virtual inertia modes, respectively.

In the absence of higher layer controllers, such as au-
tomatic generation control [24], the system can synchronize
with a nontrivial frequency deviation from the nominal (ω∗i 6=
0).1 Thus we refer to the vector (θ∗(t) := θ∗+ω∗t, ω∗, qr∗)
as a steady state solution of the system (7), with (7b) equal
zero and d

dtθ
∗(t) = ω∗. Furthermore, using (7b) it is easy to

see that LBθ∗(t) is constant, which implies that ω∗ = 1nω
∗
0 ,

with 1n ∈ Rn being the vector of all ones, and the scalar
ω∗0 given by

ω∗0 =

∑n
i=1 p

in
i + qr,0i∑n

i=1(Di +Rgi
−1

) +
∑
i∈DC∪V I R

r
i
−1 . (10)

In summary, the steady state solution of (7) and (9) is given
by (θ∗(t), ω∗, qr∗) = (θ∗+1nω

∗
0t, q

r∗), where qr∗i = qr,0i , if
i ∈ CP , or qr∗i = qr,0i −Rri

−1ω∗0 , if i ∈ DC ∪V I . Thus the
smallest invariant set that includes all possible steady states
is given by

E :={(θ+λ1n, ω, q
r)∈R3n:λ ∈ R, (7b) = 0, ωi=ω∗0}.

(11)

1We assume here w.l.o.g. that the nominal frequency is 0



III. STEADY STATE AND DYNAMIC PERFORMANCE

In this section we introduce two metrics, one for steady
state and another for dynamic performance, and illustrate
how the existing solutions for inverter control either cannot
produce any dynamic performance improvement, or the
performance improvement comes at the cost of steady state
deviation from the desired operational point.

A. Steady State Performance

We now define the steady state performance metric used
in this paper. Let δqgi := − 1

Rg
i
ωi and δqri := qri − q

r,0
i be

the power deviation of generators and inverters, respectively.
After a disturbance these quantities need to be modified in
order to compensate a supply-demand imbalance, i.e.

n∑
i=1

δqgi +
∑

i∈DC∪V I
δqri = ∆P, (12)

where ∆P denotes the power imbalance. We assign to both
conventional and inverter-based generators a cost cgi (q

g
i ) :=

αg
i

2 (qgi )2 and cri (q
r
i ) :=

αr
i

2 (qri )
2 respectively. Thus given

a set deviations satisfying (12) the total system cost of
mitigating an imbalance of ∆P is given by

SS-Cost:
n∑
i=1

αgi
2

(δqgi )2 +
∑

i∈DC∪V I

αri
2

(δqri )
2 (13)

One of the main attractive features of droop control is its
ability to share the supply-demand mismatch among different
resources. Recent works have shown that the steady state
allocation of droop control can be represented as the solution
of an optimization problem (see e.g. [6]).

In particular, if we define let δdi =: Diωi denote the
frequency dependent demand deviation, then it can be shown
that the system (7) solves:

minimize
δqg

i
,δqr

i
,δdi

n∑
i=1

Rgi (δq
g
i )2

2
+

(δdi)
2

2Di
+
∑

i∈DC∪V I

Rri (δq
r
i )

2

2

(14a)

subject to
n∑
i=1

pini +qr,0i +δqgi −δdi+
∑

i∈DC∪V I
δqi = 0 (14b)

The proof of this claim is already standard in the community
(see e.g. [6], [7], [25]–[27]), we refer the reader to [6] for
a proof of a similar statement.

As a result of the steady state characteristic of droop
control, it is possible to optimally minimize the steady state
cost as it is summarized in the next theorem.

Theorem 1 (Droop Control Optimality): Let (θ∗(t), ω∗,
qr∗) be the steady state solution of (7) where qri

∗ is given
by (9). If Rri = αri and Rgi = αgi , then (δqgi

∗
:= − 1

Rg
i
ω∗0 ,

δqri
∗ := qri

∗ − qr,0i = − 1
Rg

i
ω∗0) is the unique allocation that

minimizes the steady state cost (13) subject to (12), where
∆P :=

∑n
i=1 p

in
i + qr,0i −Diω

∗
0 .

Proof: We start by characterizing the optimal solution
of minimizing (13) subject to (12). Since the problem has a
strictly convex objective with linear constraints then there is
a unique solution that is characterized by the Karush-Kuhn-
Tucker (KKT) conditions for optimality [28]. Thus, ˆδqg

∗
and

ˆδqr
∗

is an optimal solution if and only if there exists a scalar
λ∗ such that

αgi
ˆδqgi
∗

= λ∗ ∀i, αri
ˆδqri
∗

= λ∗ i ∈ DC ∪ V I, (15)

and
∑n
i=1

ˆδqgi
∗

+ ˆδqri
∗

= ∆P .
To finalize the proof we just need to show that when Rri =

αri and Rgi = αgi , then the steady state deviations of droop
control (δqgi

∗
:= − 1

Rg
i
ω∗0 and δqri

∗ := qri
∗− qr,0i ) satisfy the

KKT conditions.

By (9), δqri
∗ := qri

∗ − qr,0i =

®
− 1
Rr

i
ω∗0 , if i ∈ DC ∪ V I ,

0, otherwise.

Therefore, since by definition δqg∗ = − 1
Rg

i
ω∗0 , then we have

that when Rri = αri and Rgi = αgi , (δqg∗, δqr∗) satisfies (15)
for λ∗ = ω∗0 .

Finally, feasibility follows by definition of ∆P since
n∑
i=1

δqgi
∗

+ δqri
∗ = −(

n∑
i=1

Rgi
−1

+
∑

i∈DC∪V I
Rri
−1)ω∗0

=
n∑
i=1

pini + qri
∗ −Diω

∗
0 =: ∆P

where the second steps follows from (10). Thus (δqgi
∗
, δqri

∗)
is feasible and satisfies the KKT conditions. Therefore,
(δqgi

∗
, δqri

∗) is an optimal allocation. Since the optimal so-
lution is unique, we must have (δqgi

∗
, δqri

∗) = ( ˆδqgi
∗
, ˆδqri

∗
).

Remark 1: Theorem 1 illustrates the versatility of droop
control and how it can be used to optimally accommodate
supply-demand imbalances. However, it also highlights the
need to tune parameters that have a direct effect on the
network dynamics in order to achieve optimal steady state
performance.

Remark 2: The use of quadratic costs is standard in the
power system literature [29]. However, since this paper
focuses mostly on local analysis, the analysis can be ex-
tended to include nonlinear costs by substituting αzi with
∂
∂xc

z
i (x)|x=δqz

i
∗ where δqzi

∗ denotes the equilibrium value
of qzi (z refers to either g or r).

B. Dynamic Performance

We now focus our attention on the dynamic performance
metric. In general, there are several metrics that can be
considered [30], and the change of droop control coefficients
can have direct effect in all of them. Here we focus H2 norm
of the system when the output is the frequency vector ω and
the system is being driven by stochastic white noise.

The main motivation of this particular choice of metric
is the need to characterize the effect of the increasing
generation volatility as well as the effect of the measurement
noise. We argue that while generator-based droop control can
be usually implemented without major measurement noise,
implementing droop control on inverters that are distributed
all over the transmission and distribution network needs to
account for these errors. Thus the use of H2-norm seems
natural as it already accounts for stochastic inputs.

We assume that the net power injection of each bus is
given by P ini + k1iw

1
i (t), where w1(t) = (w1

i (t), i ∈ N) is a



vector of uncorrelated stochastic white noise with unit vari-
ance (E[wT1 (τ)w1(t)] = δ(t− τ)In) that represents demand
fluctuations. Similarly, we assume that for the purposes of
implementing the droop control on the inverter the measured
frequency is given by ωi(t) + k2iw

2
i (t) where again w2(t) =

(w2
i (t), i ∈ N) is such that E[wT2 (τ)w2(t)] = δ(t − τ)In.

Finally, since to estimate ω̇i(t) one needs to obtain first
ωi, we assume that the measurement value of the frequency
derivative is ω̇i+k3iw

3
i , where w3 = (w3

i := d
dtw

2
i , i ∈ N).2

Without loss of generality we make the following change
of variables

δθ(t) = θ(t)− ω∗0t, and δω(t) = ω(t)− ω∗0 . (16)

Thus, defining the system output to be y(t) = δω(t) we can
combine (7) together with (9) to get the following MIMO
systemï
I 0

0 M̂

òï
δ̇θ
˙δω

ò
=

ï
0 I

−L −D̂

òï
δθ
δω

ò
+

ï
0 0 0
K1 −Rr−1K2 −MvK3

ò[w1

w2

w3

]
(17a)

y = [0 I]

ï
δθ
δω

ò
(17b)

where Mv = diag(Mv
i ), Kx = diag(kxi ) and wx = (wxi ),

with x ∈ {1, 2, 3}, M̂ = M + Mv , D̂ = D + R̂−1 and
R̂−1 = Rg−1 +Rr−1.

Notice that for simplicity the system (17) implicitly as-
sumes that all the inverters in the system are operated using
the virtual inertia operation mode. However, it is possible
to model using (17) the droop controlled mode by setting
Mv
i = k3i = 0. Moreover, if one wants to model the constant

power mode one just needs to additionally set 1
Rr

i
= 0. To

simplify the discussion we will only consider two cases: 1)
All the inverters implement droop control (DC = N ); 2) All
the inverters implement the virtual inertia control (V I = N ).

It will also be useful to write (17) in standard formï
δ̇θ
˙δω

ò
=A

ï
δθ
δω

ò
+B

[
w1

w2

w3

]
, y = C

ï
δθ
δω

ò
, (18)

where

A =

ï
0 I

−M̂−1L −M̂−1D̂

ò
, C = [0 I] , and (19)

B =

ï
0 0 0

M̂−1K1 −M̂−1R̂−1K2 −M̂−1MvK3

ò
. (20)

Let H denote the LTI system (17). Then the square of the
H2 norm of (17) can be formally defined using

Dyn-Cost: ||H||2H2
= lim
t→∞

E[yT (t)y(t)] (21)

where y(t) is the output of (17) when the input w(t) =
(w1(t), w2(t), w3(t)) is composed by a white noise process
with unit covariance (i.e., E[wk(τ)wTk (t)] = δ(t − τ)I for
k ∈ {1, 2}) and its derivative (w3 = d

dtw2).
The computation of the H2 norm has been widely studied

in modern control theory. In particular, in the case when w2

2We use here the notation d
dtw

2
i to represent the frequency weighted noise

process with weight function given by wi(i2πf) = i2πf , see Remark 3
for more details.

and w3 are not correlated processes (w3 6= d
dtw2), one very

useful procedure to compute ||H||H2
(see [31]) is based on

using
||H||2H2

= tr(BTXB) (22)

where X is the observability Grammian, i.e. X solves the
Lyapunov equation

ATX +XA = −CTC. (23)

In the context of power systems the use of this method-
ology has been first used in [32], where the authors seek to
compute the power losses incurred by the network in the pro-
cess of resynchronizing generators after a disturbance. Since
then, several works have used similar metrics to evaluate
effect of controllers on the power system performance, see
e.g. [33], [34].

Remark 3: It is important to notice that in our case the
system is driven also by the derivative of the noise process
w2. Thus, (22) can only be applied when K3 = 0. When
K3 6= 0, then (21) corresponds to a frequency weighted H2-
norm. More precisely, then noise process w3 is a frequency
weighted process with weight function given by W (s) = sI ,
i.e. ŵ3(s) = sŵ2(s) where ŵk(s) is the Laplace Transform
of wk(t).

The next theorem shows that droop controlled invert-
ers can indeed affect the performance by changing droop
parameters, and that inverters implementing virtual inertia
can drastically degrade the performance when measurement
noise is considered.

Theorem 2 (H2-norm Computation): Assume
homogeneous parameter values, i.e. Mi = m, Mv

i = mv ,
Di = d, Rgi = rg , Rri = rr, k1i = k1, k2i = k2 and k3i = k3.
Let

r̂−1 = rg−1 + rr−1, d̂ = d+ r̂−1, (24)

and let HDC and HV I denote the MIMO system (17) when
all inverters implement droop control and virtual inertia,
respectively.

Then the squared H2 norm of HDC and HV I is given by

||HDC ||2H2
=
n
(
(k1)2 + (k2r

r−1)2
)

2m(d+ rg−1 + rr−1)
, (25)

and

||HV I ||2H2
=+∞, (26)

respectively.
Proof: The proof of this theorem is analogous to [32,

Lemmas 3.1 and 3.2]. We study the two cases (25) and (26)
separately.
Computing ||HDC ||2H2

: Notice that in this case Mv = 0. In
order to compute ||HDC ||2H2

we first make the same change
of variable used in [32],

δθ = Uθ′ and δω = Uω′,

where U is the orthonormal transformation that diagonalizes
L, i.e. UTLBU = Γ where Γ = diag{λ1 = 0, . . . , λn} and
U is assumed w.l.o.g. to be of the form U = [ 1√

n
1n |Un−1].



Thus, if we further transform y = Uy′, w1 = Uw′1 and
w2 = Uw′2, we can decouple (18) into n subsystems given
by

HDC,i:

ï
θ̇′i
ω̇′i

ò
=

ï
0 1

−λi

m − d̂
m

ò ï
θ′

ω′

ò
+

ï
0 0
k1
m − k2

mrr

ò ñ
w1
i

′

w2
i

′

ô
y′i = [0 1]

ï
θ′i
ω′i

ò ,

(27)

where a simple computation using (22) and (23) shows that

||HDC,i||2H2
=

(
(k1)2 + (k2r

r−1)2
)

2m(d+ rg−1 + rr−1)
.

Therefore, since ||HDC ||2H2
=
∑n
i=1 ||HDC,i||2H2

we obtain
(25).
Computing ||HV I ||2H2

: To show that the norm ||HV I ||2H2
=

+∞ we will show that the transfer function of HV I has
nonzero feedthrough (σmax(H(i∞)) ≥ ε > 0).

To compute the transfer function we first notice that w3 =
ẇ2 which implies that we can model in the Laplace domain
ŵ3(s) = sŵ2(s).

Similar to the DC case, we can use a change of variable
to decouple the system into n different modes given byï

θ̇′i
ω̇′i

ò
=Ai

ï
θ′

ω′

ò
+Bi

w1
i

′

w2
i

′

w3
i

′

 , y′i = Ci

ï
θ′i
ω′i

ò
with Ai =

ï
0 1

−λi

m̂ − d̂
m̂

ò
, Bi =

ï
0 0 0
k1
m̂ − k2

m̂rr −k3m
v

m̂

ò
Ci = [0 1]

where m̂ = m+mv .
We drop the subscript i and define ŵ′(s) =

[ŵ′1(s) ŵ′2(s) ŵ′3(s)]T . Thus we can compute the transfer
function H(s) using

ŷ(s) = H(s)w′(s) = C(sI −A)−1Bŵ′(s)

=
1

∆(s)
C

ñ
s+ d̂

m̂ 1
− λ
m̂ s

ô
Bŵ′(s)

=
1

∆(s)

[
− λ
m̂ s

]
Bŵ′(s)

=
s

∆(s)

[
k1
m̂ − k2

m̂rr −k3m
v

m̂

]
ŵ′(s)

=
s

∆(s)

[
k1
m̂ − k2

m̂rr −k3m
v

m̂

] [ŵ′1(s)
ŵ′2(s)
ŵ′3(s)

]

=
s

s2 + d̂
m̂s+ λ

m̂

î
k1
m̂ −

Ä
sk3m

v

m̂ + k2
m̂rr

äó ïŵ′1(s)
ŵ′2(s)

ò
where ∆(s) = s2 + d̂

m̂s+ λ
m̂ and in the last step we used the

relationship ŵ′3(s) = sŵ′2(s). It follows that when f → +∞,

H(i2πf)→
[
0 −k3m

v

m̂

]
,

which implies that ||HV I ||2H2
= +∞.

Theorem 2 provides an interesting insight on how the
different controllers described in Section II affect the system
performance and illustrates the effect of measurement errors

on it. To understand the performance changes, we provide
the H2 norm of the swing equations (HSW ) without any
additional control (rr = mv = k2 = k3 = 0)

||HSW ||2H2
=

n

2m(d+ rg−1)
(k1)2. (28)

Thus it is easy to see that adding droop control introduces
a larger damping (d+ rg−1 + rr−1) > d+ rg−1. However,
there is an intrinsic tradeoff since if rr is small enough, then
the noise amplification takes over and increases the norm.
But perhaps the most interesting result from this theorem is
(26), which implies that the massive use of virtual inertia in
the network can amplify the stochasticity of the system and
introduce huge volatility in the frequency fluctuations.

C. The Need for a Better Solution
The analysis provided in sections III-A and III-B shows

that none of the existing solutions can simultaneously achieve
efficient steady state operation while improving dynamic
performance.

On the one hand, while Theorem 1 shows indeed that
droop control can be used to optimally allocate resources
by carefully setting the parameters Rri = αri and Rgi = αgi ,
this tie between control parameters and economic efficiency
makes it impossible to further improve the dynamic perfor-
mance without incurring on an additional steady state cost
(13). Therefore, if one wants to operate the system in an
efficient steady state, then Rri cannot be used to improve the
dynamic performance.

On the other hand, while the use of virtual inertia has been
suggested to be a viable solution to improve the dynamic
performance without losing steady state efficiency, Theorem
2 shows that this solution cannot be widely adopted since
it will induce a large noise amplification that can hinder the
secure operation of the power grid.

As a result, all the existing solutions for inverter control
cannot provide a dynamic performance improvement without
sacrificing either steady-state or dynamic performance.

IV. DYNAM-I-C DROOP CONTROL (IDROOP)
We now introduce our iDroop control. The main under-

lying idea on the design of the proposed controller is to
leverage the flexibility that virtual inertia controllers provide
while controlling the noise amplification using a filtering
stage.

Let ID ⊂ N be the set of network buses that implement
iDroop. Then we propose to control the power injected to
the grid by the inverter using

iDroop:
qi = qr,0i + xi
ẋi = δi

Ä
− 1
Rr

i
ωi − xi

ä
− νiω̇i

(29)

A few comments are in order. Firstly, the parameter νi
place a role similar to Mv

i in the virtual inertia controller.
However, since this term is integrated in (29), it is not longer
interpreted as a virtual inertia. Secondly, the parameters δi
and νi can be independently tuned to reduce the noise intro-
duced by the frequency (k2iw

2
i ) or the frequency derivative

(k3iw
3
i = k3i ẇ

2
i ). This can be easily seen when these noise

processes are introduced in (29) giving

ẋi = δi

Å
− 1

Rri
ωi − xi

ã
− νiω̇i −

δik
2
i

Rri
w2
i − νik3i ẇ2

i . (30)



Finally, while the stability (in the absence of noise) of (7)
with (9) is trivially guaranteed, the additional integration
stage requires a more detailed analysis.

We do not provide here an explicit formula for
||HiDroop||H2

in this paper and leave it for future research.
Instead we will numerically illustrate in the next section the
effect of νi and δi on this norm and how the performance of
iDroop compares with the one of droop controlled inverters.
In the rest of this section we show that indeed our controllers
are able preserve the steady state behavior for arbitrary
parameter values δi and νi, and characterize a sufficient
condition for asymptotic stability.

A. Steady State Optimality
We now show that our iDroop controllers provide the same

steady state properties as traditional droop control. We do
this by showing that iDroop achieves the minimum SS-Cost
(13).

Theorem 3 (iDroop Optimality): Let (θ∗(t), ω∗, qr∗) be
the steady state solution of (7) where qri is given by (29).
Then the steady state solution of (7) and (29) is given by

θ(t)∗= θ∗+1nω
∗
0t, ω

∗
i = ω∗0 ∀i and q∗i−q

r,0
i = x∗i = −ω

∗
0

Rri
.

Moreover, if Rri = αri and Rgi = αgi , then δqgi
∗

:= − 1
Rg

i
ω∗0 ,

δqri
∗ := qri

∗ − qr,0i is the unique allocation that minimizes
the steady state cost (13) subject to (12), where ∆P =∑n
i=1 p

in
i + qr,0i −Diω

∗
0 .

Proof: The proof of this theorem relies on Theorem 1.
We will show that iDroop has a steady state behavior that
is identical to the standard droop control when DC ∪ V I =
ID. Thus, we can use then use Theorem 1 to show that
indeed iDroop preserves the optimality characteristics of the
traditional droop control.

We now characterize the steady state behavior of (7) and
(29). Similarly to (7) and (9), we can use (7b) to show that
ω̇ = 0 only if θ(t) = θ∗(t) := θ∗ + 1nω

∗
0t. Using (29)

with ẋ = 0 and ω̇ = 0, we get that Rrix
∗
i = −ω∗i = −ω∗0 .

Therefore, the steady state deviation of the inverter i is given
by

δqri
∗ = q∗i − q

r,0
i = x∗i = − 1

Rri
ω∗0 .

Since the steady state deviation of conventional generators
is by definition δqgi

∗
= − 1

Rg
i
ω∗0 , then we have obtained the

same allocation described in Theorem 1. It follows then that
when αri = Rri and αgi = Rgi , the steady state solution of
(29) is an allocation that minimizes (13) subject to (12).

B. Stability Analysis
We now show that the controllers described in (29) can

preserve the stability of the network.
We use the same change of variable used in (16) together

with δx(t) = x(t)− x∗. Therefore (7) and (29) become

δ̇θ = δω (31a)

M ˙δω = −(D +Rg−1)δω − LBδθ + δx (31b)
˙δx = −Kδ(R

r−1δω + δx)−Kν
˙δω (31c)

where Kν = diag(νi, i ∈ N). 3 It is easy to see

3To simplify notation we assume here that every bus iDroop. However, the
results can be generalized for any combination of iDroop with the controllers
in (9).

that now the steady state solutions of Theorem 3 become
(δθ∗, δω∗, δx∗) = (1nα, 0, 0) for any α ∈ R. Thus the set
of equilibria of (31) is given by

Ê = {(δθ, δω, δx) : δω = δx = 0, δθ = 1nα, α ∈ R}.
(32)

Theorem 4 (Asymptotic Convergence): Whenever the fol-
lowing condition holds,

νi

δi(νi+Rri
−1)

> 0 and (Di+R
g
i
−1

) +
νiR

r
i
−1

νi +Rri
−1 > 0,

(33)
the iDroop control (29) converges asymptotically to the set
of equilibria Ê described in (32).

Proof: We will show that under the conditions of the
theorem, the following Lyapunov function decreases along
trajectories:

V (δθ, δω, δx) =
1

2
δθTLBδθ +

1

2
δωTMδω

+
1

2
(δx+Kνδω)TT (δx+Kνδω).

(34)

where T ∈ Rn×n is a positive definite diagonal matrix to
be defined later (T � 0 and T = diag(v), with v ∈ Rn).
The Lyapunov function V is inspired on [35] where a similar
derivative term is used to damp oscillations.

The change of V along the trajectories of (31) is given by

V̇ = δθTLB δ̇θ+δωTM ˙δω+(δx+Kνδω)TT ( ˙δx+Kν
˙δω)
(35)

= δθTLBδω + δωT (−(D +Rg−1)δω − LBδθ + δx)

+ (δx+Kνδω)TTKδ(−Rr−1δω − δx) (36)

= − δωT (D+Rg−1+KνTKδR
r−1) δω−δxTTKνδx

+ δωT (I −KνTKδ−TKδR
r−1)δx (37)

where (36) follows from (31), and (37) from rearranging the
terms.

We now choose T so that the cross term in (37) is zero.
Since T is assumed to be a diagonal matrix, then we get

0 = I −KνTKδ−TKδR
r−1 ⇐⇒

0 = I − TKδ(Kν +Rr−1) ⇐⇒
T = Kδ

−1(Kν +Rr−1)−1 (38)

Therefore, using (38), it follows that

V̇ =− δωT (D+Rg−1+KνR
r−1(Kν+Rr−1)−1)δω

− δxTKνK
−1
δ (Kν+Rr−1)−1δx (39)

Thus, it follows from (33) that V̇ ≤ 0 and we can
now apply LaSalle’s Invariance Principle [36] to show that
(δθ(t), δω(t), δx(t)) converges to the largest invariant set
M ⊂ {V̇ ≡ 0}. Using (39) we can show that V̇ ≡ 0 implies
that δω(t) ≡ 0 and δx(t) ≡ 0, which implies in turn (through
(31a)) that δ̇θ ≡ 0. Therefore, it must follow that δθ(t) ≡
δθ∗. Finally, using (31b) we get 0 ≡ LBδθ(t) ≡ LBδθ

∗

which, since the graph is connected, implies that θ∗ = 1nα
for some α ∈ R. Therefore, every trajectory converges to
the set of equilibria Ê given in (32), i.e. M ⊂ Ê .
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Fig. 1: IEEE 39 Bus System (New England)

V. NUMERICAL ILLUSTRATIONS

In this section we numerically illustrate some of the
features of our iDroop control using the IEEE 39 bus
system shown in Fig. 1. The network parameters as well as
the stationary starting point were obtained from the Power
System Toolbox (PST) [37] dataset.

Before building the dynamic model, we perform the Kron
reduction for every load bus. Thus the final system has 10
buses that correspond to each generator in the nework. The
inertia parameters of each generators are also obtained from
the PST dataset. Throughout the time domain simulations
we assume that the aggregate generator damping and load
frequency sensitivity parameter is Di = 0.1. We also set the
droop coefficient of each generator to Rgi = 15.

On each bus we add an additional inverter-based generator
and vary their operational mode using either one of the
three modes described in (9) (CP=constant power, DC=droop
control and VI=virtual inertia), or the iDroop mode. The
droop coefficient is set to Rri = 15 in all the cases. For
illustration purposes we select parameters so that the VI
mode and iDroop have a similar frequency transient behavior.
In particular, we choose Mv

i = 0.15, δi = 6, νi = 0.9.
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Fig. 2: Frequency deviations after perturbation

We initialize the system in steady state and at time t = 1

we introduce a step change ∆P30 = −0.5p.u. in the power
injection at bus 30 (where generator 10 is located). Fig. 2
shows the evolution of the frequency deviations for the four
cases: (a) CP, (b) DC, (c) VI and (d) iDroop. It can be seen
that both VI (Fig. 2-c) and iDroop (Fig. 2-d) can reduce the
Nadir (minimum frequency achieved), while achieving the
the same steady state as the DC mode (Fig. 2-b).
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Fig. 3: Power deviation of inverter

However, the way this is achieved is in the case of VI
and iDroop is completely different. This can be seen in Fig.
3 where we show the power deviation experienced by each
individual inverter. In particular, the step change in the power
injection introduces a discontinuity in ω̇30. This is shown
in Fig. 3-c where the inverter at bus 30 has a step change
in power. iDroop on the other hand is able to perform a
similar task using less peak power and with a more desirable
behavior. This drastic change on the power experienced by
the VI also illustrates why it is expected that this solution
will produce noise amplification.
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Fig. 5: Frequency fluctuations when δi = 6 and νi = 0.01

Finally, since the VI mode has unbounded H2-norm,
we show in Fig. 4 the H2-norm of the system when the



inverters are using only the DC mode and iDroop on a high
measurement noise regime (k1i = 0.1, k2i = k3i = 5). We can
see that DC does not vary with δ and ν (as expected) while
iDroop does. However, more importantly, iDroop is able to
achieve better performance than DC despite using frequency
derivative measurements. This is also illustrated in Figure 5
where we simulate the frequency fluctuations for the values
of δi = 6 and νi = 0.01.

VI. CONCLUDING REMARKS

This paper studies the intrinsic trade off between steady
state and dynamic performance of inverter-based droop con-
trol and several of its variants. We show that while the
standard droop control can improve the dynamic perfor-
mance, it can only achieve it by losing steady state efficiency.
Moreover, our analysis also shows that the popular alternative
of adding virtual inertia is very sensitive to measurement
noise and can increase the frequency variance unboundedly.

To solve these issues we propose a new control scheme
(iDroop) that is able to tune dynamic performance without
altering steady state efficiency. We characterize the set of
parameter values that can guarantee the stability of the
steady state solution and illustrate its behavior numerically.
In particular, we show that iDroop is able to reduce the Nadir
and variance when compared with Constant Power (CP) and
Droop Control (DC) modes.

REFERENCES

[1] H. Ziebolz and A. R. Co, “Control means for power generating
systems,” Patent, Dec., 1947.

[2] P. Almeras and N. B. P. Picte, “Regulation of an assembly of electric
generating units,” Jul. 1951.

[3] J. Machowski, J. Bialek, and D. J. Bumby, Power System Dynamics,
ser. Stability and Control. John Wiley & Sons, Aug. 2011.

[4] A. J. Wood, B. F. Wollenberg, and G. B. Sheble, “Power generation,
operation and control,” John Wiley&Sons, 1996.

[5] B. J. Kirby, “Frequency Regulation Basics and Trends,” Oak Ridge
National Laboratory, Tech. Rep., Jan. 2005.

[6] C. Zhao, U. Topcu, N. Li, and S. H. Low, “Design and Stability of
Load-Side Primary Frequency Control in Power Systems,” Automatic
Control, IEEE Transactions on, vol. 59, no. 5, pp. 1177–1189, 2014.

[7] X. Zhang and A. Papachristodoulou, “A real-time control framework
for smart power networks: Design methodology and stability,” Auto-
matica, vol. 58, pp. 43–50, Aug. 2015.

[8] F. Dörfler, J. Simpson-Porco, and F. Bullo, “Breaking the Hierarchy:
Distributed Control & Economic Optimality in Microgrids,” arXiv.org,
Jan. 2014.

[9] N. Li, L. Chen, C. Zhao, and S. H. Low, “Connecting automatic
generation control and economic dispatch from an optimization view,”
in Proceedings of the American Control Conference, Massachusetts
Inst. of Technology, Cambridge, United States. IEEE, Jan. 2014, pp.
735–740.

[10] E. Mallada, C. Zhao, and S. H. Low, “Optimal load-side control for
frequency regulation in smart grids,” arXiv.org, Oct. 2014.

[11] E. Mallada and S. H. Low, “Distributed frequency-preserving optimal
load control,” in IFAC World Congress, 2014, pp. 5411–5418.

[12] A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, “Spon-
taneous synchrony in power-grid networks,” Nature Physics, vol. 9,
no. 3, pp. 191–197, Feb. 2013.

[13] D. W. C. Shen and J. S. Packer, “Analysis of Hunting Phenomena
in Power Systems by Means of Electrical Analogues,” Proceedings of
the IEE - Part II: Power Engineering, vol. 101, no. 79, pp. 21–34,
Feb. 1954.

[14] A. R. Bergen and D. J. Hill, “A Structure Preserving Model for
Power System Stability Analysis,” Power Apparatus and Systems,
IEEE Transactions on, vol. PAS-100, no. 1, pp. 25–35, 1981.

[15] C. T. Lee, R. P. Jiang, and P. T. Cheng, “A grid synchronization
method for droop-controlled distributed energy resource converters,”
Ieee Transactions on Industry Applications, vol. 49, no. 2, pp. 954–
962, 2013.

[16] M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of Parallel
Connected Inverters in Standalone Ac Supply-Systems,” Ieee Trans-
actions on Industry Applications, vol. 29, no. 1, pp. 136–143, 1993.

[17] J. W. Simpson-Porco, F. Dörfler, and F. Bulbo, “Synchronization and
power sharing for droop-controlled inverters in islanded microgrids,”
Automatica, vol. 49, no. 9, pp. 2603–2611, Sep. 2013.

[18] J. Liu, Y. Miura, and T. Ise, “Comparison of Dynamic Character-
istics Between Virtual Synchronous Generator and Droop Control
in Inverter-Based Distributed Generators,” Power Electronics, IEEE
Transactions on, vol. 31, no. 5, pp. 3600–3611, May 2016.

[19] H. P. Beck and R. Hesse, “Virtual synchronous machine,” in 2007 9th
International Conference on Electrical Power Quality and Utilisation,
EPQU. TU Clausthal, Clausthal-Zellerfeld, Germany, Dec. 2007.

[20] J. Driesen and K. Visscher, “Virtual synchronous generators,” in IEEE
Power and Energy Society 2008 General Meeting: Conversion and
Delivery of Electrical Energy in the 21st Century, PES. IEEE, New
York, United States, Sep. 2008.

[21] P. Varaiya, F. F. Wu, and R.-L. Chen, “Direct Methods for Transient
Stability Analysis of Power Systems: Recent Results,” Proceedings of
the Ieee, vol. 73, no. 12, pp. 1703–1715, Jan. 1985.

[22] G. Quazza, “Automatic control in electric power systems,” Automatica,
vol. 6, no. 1, pp. 123–150, Jan. 1970.

[23] ——, Criteria for equitable participation of areas in tie-line power
and frequency control of an interconnected power system. Au-
tomazione e Strumentazione, 1966.

[24] F. deMello, R. Mills, and W. B’Rells, “Automatic Generation Control
Part II-Digital Control Techniques,” Power Apparatus and Systems,
IEEE Transactions on, vol. PAS-92, no. 2, pp. 716–724, 1973.

[25] C. Zhao, E. Mallada, and S. H. Low, “Distributed generator and
load-side secondary frequency control in power networks,” 2015 49th
Annual Conference on Information Sciences and Systems (CISS), pp.
1–6, 2015.

[26] X. Zhang, N. Li, and A. Papachristodoulou, “Achieving real-time
economic dispatch in power networks via a saddle point design
approach,” in Power & Energy Society General Meeting, 2015 IEEE.
IEEE, 2015, pp. 1–5.

[27] A. Kasis, E. Devane, and I. Lestas, “Primary frequency regulation with
load-side participation: stability and optimality,” arXiv.org, 2016.

[28] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, Mar. 2004.

[29] D. S. Kirschen and G. Strbac, Fundamentals of Power System Eco-
nomics, ser. Kirschen/Power System Economics. Chichester, UK:
John Wiley & Sons, Oct. 2004.

[30] N. W. Miller, M. Shao, and S. Venkataraman, “Frequency Response
Study ,” General Electric, Tech. Rep., Nov. 2011.

[31] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-
space solutions to standard H2 and H∞ control problems,” Automatic
Control, IEEE Transactions on, vol. 34, no. 8, pp. 831–847, Aug.
1989.

[32] E. Tegling, B. Bamieh, and D. F. Gayme, “The Price of Synchrony:
Evaluating the Resistive Losses in Synchronizing Power Networks,”
IEEE Transactions on Control of Network Systems, vol. 2, no. 3, pp.
254–266, 2015.

[33] B. K. Poolla, S. Bolognani, and F. Dörfler, “Optimal Placement of
Virtual Inertia in Power Grids,” Oct. 2015.

[34] E. Tegling, M. Andreasson, J. W. Simpson-Porco, and H. Sandberg,
“Improving performance of droop-controlled microgrids through dis-
tributed PI-control,” Jan. 2016.

[35] F. Paganini and E. Mallada, “A Unified Approach to Congestion
Control and Node-Based Multipath Routing,” Networking, IEEE/ACM
Transactions on, vol. 17, no. 5, pp. 1413–1426, 2009.

[36] H. K. Khalil, Nonlinear systems, 3rd ed. Prentice Hall, 2002.
[37] J. H. Chow and K. W. Cheung, “A toolbox for power system dynamics

and control engineering education and research,” Power Systems, IEEE
Transactions on, vol. 7, no. 4, pp. 1559–1564, 1992.


	I Introduction
	II Network Model
	II-A Generators and Loads
	II-B Inverters
	II-C Power Flow Model
	II-D Network Dynamics

	III Steady State and Dynamic Performance 
	III-A Steady State Performance
	III-B Dynamic Performance
	III-C The Need for a Better Solution

	IV Dynam-i-c Droop Control (iDroop)
	IV-A Steady State Optimality
	IV-B Stability Analysis

	V Numerical Illustrations
	VI Concluding Remarks
	References

