
Incremental Sampling-based Motion Planners
Using Policy Iteration Methods

Oktay Arslan∗

Mobility and Robotic Systems Section
Jet Propulsion Laboratory, Pasadena, CA 91109-8099, USA

Email: oktay.arslan@jpl.nasa.gov

Panagiotis Tsiotras
Daniel Guggenheim School of Aerospace Engineering

Institute for Robotics and Intelligent Machines
Georgia Institute of Technology, Atlanta, GA 30332-0150, USA

Email: tsiotras@gatech.edu

September 14, 2015

Revised June 20, 2016

Abstract

Recent progress in randomized motion planners has led to the development of a new class of sampling-
based algorithms that provide asymptotic optimality guarantees, notably the RRT∗ and the PRM∗ algo-
rithms. Careful analysis reveals that the so-called “rewiring” step in these algorithms can be interpreted
as a local policy iteration (PI) step (i.e., a local policy evaluation step followed by a local policy improve-
ment step) so that asymptotically, as the number of samples tend to infinity, both algorithms converge
to the optimal path almost surely (with probability 1). Policy iteration, along with value iteration (VI)
are common methods for solving dynamic programming (DP) problems. Based on this observation, re-

cently, the RRT# algorithm has been proposed, which performs, during each iteration, Bellman updates
(aka“backups”) on those vertices of the graph that have the potential of being part of the optimal path

(i.e., the “promising” vertices). The RRT# algorithm thus utilizes dynamic programming ideas and
implements them incrementally on randomly generated graphs to obtain high quality solutions. In this
work, and based on this key insight, we explore a different class of dynamic programming algorithms for
solving shortest-path problems on random graphs generated by iterative sampling methods. These class
of algorithms utilize policy iteration instead of value iteration, and thus are better suited for massive
parallelization. Contrary to the RRT∗ algorithm, the policy improvement during the rewiring step is
not performed only locally but rather on a set of vertices that are classified as “promising” during the
current iteration. This tends to speed-up the whole process. The resulting algorithm, aptly named
Policy Iteration-RRT# (PI-RRT#) is the first of a new class of DP-inspired algorithms for randomized
motion planning that utilize PI methods.

1 Introduction

Robot motion planning is one of the fundamental problems in robotics. It poses several challenges due
to the high-dimensionality of the (continuous) search space, the complex geometry of unknown infeasible
regions, the possibility of a continuous action space, and the presence of differential constraints [21]. A
commonly used approach to solve this problem is to form a graph by uniform or non-uniform discretiza-
tion of the underlying continuous search space and employ one of the popular graph-based search-based
methods (e.g., A∗, Dijkstra) to find a low-cost discrete path between the initial and the final points. These

∗Oktay Arslan performed this research during his doctoral studies as a Robotics, PhD student while at Georgia Institute
of Technology, Atlanta, GA 30332-0150, USA.

1

ar
X

iv
:1

60
9.

05
96

0v
1

 [
cs

.R
O

]
 1

9
Se

p
20

16

approaches essentially work as abstractions of the underlying problem and hence the quality of the solu-
tion depends on the level and fidelity of the underlying abstraction. Despite this drawback, representing
the robot motion planning problem as a graph search problem has several merits, especially since heuris-
tic graph search-based methods provide strong theoretical guarantees such as completeness, optimality, or
bounded suboptimality [7, 9, 19]. Unfortunately, graph search methods are not scalable to high-dimensional
problems since the resulting graphs typically have an exponentially large number of vertices as the dimen-
sion of the problem increases. This major shortcoming of grid-based graph search planners has resulted
in the development of randomized (i.e., probabilistic, sampling-based) planners that do not construct the
underlying search graph a priori. Such planners, notably, PRM [13] and RRT [15, 16, 14], have been proven
to be successful in solving many high-dimensional real-world planning problems. These planners are simple
to implement, require less memory, work efficiently for high-dimensional problems, but come with a relaxed
notion of completeness, namely, probabilistic completeness. That is, the probability that the planner fails
to return a solution, if one exists, decays to zero as the number of samples approaches infinity. However,
the resulting paths could be arbitrarily suboptimal [12].

Recently, asymptotically optimal variants of these algorithms, such as PRM∗ and RRT∗ have been
proposed [12], in order to remedy the undesirable behavior of the original RRT-like algorithms. The
seminal work of [12] has sparked a renewed interest to asymptotically optimal probabilistic, sampling-
based motion planners. Several variants have been proposed that utilize the original ideas of [12]; a partial
list includes [2, 3, 1, 10, 17].

Careful analysis on the prototypical asymptotically optimal motion planning algorithm, that is, the
RRT∗ algorithm, reveals that its optimality guarantees are the result of (at first glance) hidden ideas based
on dynamic programming principles. In hindsight, this is hardly surprising. It should be noted however,
that the explicit connection between asymptotically optimal, sampling-based algorithms operating on in-
crementally constructed random graphs and dynamic programming is not immediately obvious; indeed, in
RRT∗ there is no mention of value functions or Bellman updates, although the local “rewiring” step in the
RRT∗ algorithm can be interpreted as a local policy improvement step on the underlying random graph
(more details about this observation are given in Section 4).

Based on this key insight, one can therefore draw from the rich literature of dynamic programming and
reinforcement learning in order to design suitable algorithms that compute optimal paths on incrementally
constructed random graphs. The recently proposed RRT# algorithm, for instance, utilizes a Gauss-Seidel
version of asynchronous value iteration [2, 3] to speed up the convergence of RRT∗. Extensions based on
similar ideas as the RRT# algorithm include the FMT* algorithm [10], the RRTx algorithm [17], and the
BIT* algorithm [8]. All the previous algorithms use Bellman updates (equivalently, value iterations) to
propagate the cost-to-come or cost-to-go for each vertex in the graph. Vertices are ranked according to
these values (along with, perhaps, an additional heuristic) and are put into a queue. The order of vertices
to be relaxed (i.e., participate in the Bellman update) are chosen from the queue. Different orderings of
the vertices in the queue result in different variations of the same theme, but all of these algorithms – one
way of another – perform a form of asynchronous value iteration.

In this work, we depart from the previous VI-based algorithms and we propose, instead, a novel class of
algorithms based on policy-iteration (PI). Some preliminary results were presented in [4]. Policy iteration
is an alternative to value iteration for solving dynamic programming problems and fits naturally into our
framework, in the sense that a policy in a graph search amounts to nothing more but an assignment of
a (unique) parent to each vertex. Use of policy iteration has the following benefits: first, no queue is
needed to keep track of the cost of each vertex. A subset of vertices is selected for Bellman updates, and
policy improvement on these vertices can be done in parallel at each iteration. Second, for a given graph,
determination of the optimal policy is obtained after a finite number of iterations since the policy space is
finite [6]. The determination of the optimal value for each vertex, on the other hand, requires an infinite
number of iterations. More crucially, and in order to find the optimal policy, only the correct ordering of
the vertices is needed, not their exact value. This can be utilized to develop approximation algorithms
that speed up convergence. Third, although policy iteration methods are often slower than value iteration
methods, they tend to be better amenable for parallelization and are faster if the structure of the problem
is taken into consideration during implementation.

2

2 Problem Formulation and Notation

Let X denote the configuration (search) space, which is assumed to be an open subset of Rd, where d ∈ N
with d ≥ 2. The obstacle region and the goal region are denoted by Xobs and Xgoal, respectively, both
assumed to be closed sets. The obstacle-free space is defined by Xfree = X \ Xobs. Elements of X are
the states (or configurations) of the system. Let the initial configuration of the robot be denoted by
xinit ∈ Xfree. The (open) neighborhood of a state x ∈ X is the open ball of radius r > 0 centered at x, that
is, Br(x) = {x′ ∈ X : ‖x− x′‖ < r}. Given a subset S ⊆ V the notation |S| is its cardinality, that is, the
number of elements of S.

We will approximate Xfree with an increasingly dense sequence of discrete subsets of Xfree. That is,
Xfree will be approximated by a finite set of configuration points selected randomly from Xfree. Each such
discrete approximation of Xfree will be encoded in a graph G = (V,E) with V being the set of vertices
(the elements of the discrete approximation of Xfree) and with edge set E ⊆ V × V encoding allowable
transitions between elements of V . Hence, G is a directed graph. Transitions between two vertices x and
x′ in V are enabled by a control action u ∈ U(x) such that x′ is the successor vertex of x in G under the
action u so that (x, x′) ∈ E. Let U = ∪x∈V U(x). We use the mapping f : V × U → V given by

x′ = f(x, u), u ∈ U(x), (1)

to formalize the transition from x to x′ under the control action u. In this case, we say that x′ is the successor
of x and that x is the predecessor of x′. The set of predecessors of x ∈ V will be denoted by pred(G, x),
and the set of successors of x will be denoted by succ(G, x). Also, we let pred(G, x) = pred(G, x) ∪ {x}.
Note that, using the previous definitions, the set of admissible control actions at x may be equivalently
defined as

U(x) = {u : x′ = f(x, u), x′ ∈ succ(G, x)}. (2)

Thus, the control set U(x) defines unambiguously the set succ(G, x) of the successors of x, in the sense
that there is one-to-one correspondence between control actions u ∈ U(x) and elements of succ(G, x) via
(1). Equivalently, once the directed graph G is given, for each edge (x, x′) ∈ E corresponds a control
u ∈ U(x) enabling this transition. It should be remarked that the latter statement, when dealing with
dynamical systems (such as robots, etc) amounts to a controllability condition. Controllability is always
satisfied for fully actuated systems, but may not be satisfied for underactuated systems (such as for many
case of kinodynamic planning with differential constraints). For sampling-based methods such as RRT∗

this controllability condition is equivalent to the existence of a steering function that drives the system
between any two given states.

Once we have abstracted Xfree using the graph G, the motion planning problem becomes one of a
shortest path problem on the graph G. To this end, we define the path σ in G to be a sequence of vertices
σ = (x0, x1, . . . , xN) such that xk+1 ∈ succ(G, xk) for all k = 0, 1, . . . , N − 1. The length of the path is
N , denoted by len(σ) = N . When we want to specify explicitly the first node of the path we will use the
first node as an argument, i.e., we will write σ(x0). The kth element of σ will be denoted by σk. That is,
if σ(x0) = (x0, x1, . . . , xN) then σk(x0) = xk for all k = 0, 1, . . . , N . A path is rooted at xinit if x0 = xinit.
A path rooted at xinit terminates at a given goal region Xgoal ⊂ Xfree if xN ∈ Xgoal.

To each edge (x, x′) encoding an allowable transition from x ∈ Xfree to x′ ∈ succ(G, x), we associate a
finite cost c(x, x′). Given a path σ(x0), the cumulative cost along this path is then

N−1∑

k=0

c(xk, xk+1). (3)

Given a point x ∈ X , a mapping µ : x 7→ u ∈ U(x) that assigns a control action to be executed
at each point x is called a policy. Let M denote the space of all policies. Under some assumptions on
the connectivity of the graph G and the cost of the directed edges, one can use DP algorithms and the
corresponding Bellman equation in order to compute optimal policies. Note that a policy µ ∈ M for this
problem defines a graph whose edges are (x, f(x, µ(x))) ∈ E for all x ∈ V . The policy µ is proper if and
only if this graph is acyclic, i.e., the graph has no cycles. Thus, there exists a proper policy µ if and only if

3

each node is connected to the Xgoal with a directed path. Furthermore, an improper policy has finite cost,
starting from every initial state, if and only if all the cycles of the corresponding graph have non-negative
cost [6]. Convergence of the DP algorithms is proven if the graph is connected and the costs of all its cycles
are positive [5].

3 Overview of Dynamic Programming

Dynamic programming solves sequential decision-making problems having a finite number of stages. In
terms of DP notation, our system has the following equation

x′ = f(x, u) (4)

where the cost function is defined as

g(x, u) = c(x, f(x, u)). (5)

Given a sequential decision problem of the form (4)-(5), it is well known that the optimal cost function
satisfying the following Bellman equation:

J∗(x) = inf
u∈U(x)

{
g(x, u) + J∗(f(x, u))

}
, ∀x ∈ X . (6)

The result of the previous optimization results in an optimal policy µ∗ ∈M, that is,

µ∗(x) ∈ arg min
u∈U(x)

{
g(x, u) + J∗(f(x, u))

}
, ∀x ∈ X . (7)

Note that if we are given a policy µ ∈M (not necessarily optimal) we can compute its cost from

Jµ(x) = g(x, µ(x)) + Jµ(f(x, µ(x))), ∀x ∈ X . (8)

It follows that J∗(x) = infµ∈M Jµ(x), x ∈ X . By introducing the expression

H(x, u, J) = g(x, u) + J(f(x, u)), x ∈ X , u ∈ U(x). (9)

and letting the operator Tµ for a given policy µ ∈M,

(TµJ)(x) = H(x, µ(x), J), x ∈ X , (10)

we can define the Bellman operator T

(TJ)(x) = inf
u∈U(x)

H(x, u, J) = inf
µ∈M

(TµJ)(x), x ∈ X , (11)

which allows us to write the Bellman equation (6) succinctly as follows

J∗ = TJ∗, (12)

and the optimality condition (7) as
Tµ∗J

∗ = TJ∗. (13)

This interpretation of the Bellman equation states that J∗ is the fixed point of the Bellman operator T ,
viewed as a mapping from the set of real-valued functions on X into itself. Also, in a similar way, Jµ, the
cost function of the policy µ, is a fixed point of Tµ (see (8)).

There are three different classes of DP algorithms to compute the optimal policy µ∗ and the optimal
cost function J∗.

4

Value Iteration (VI). This algorithm computes J∗ by relaxing Eq. (6), starting with some J0, and
generating a sequence

{
T kJ

}∞
k=0

using the iteration

Jk+1 = TJk (14)

The generated sequence converges to the optimal cost function due to contraction property of the Bellman
operator T [5]. This method is an indirect way of computing the optimal policy µ∗, using the information
of the optimal cost function J∗.

Policy Iteration (PI). This algorithm starts with an initial policy µ0 and generates a sequence of
policies µk by performing Bellman updates. Given the current policy µk, the typical iteration is performed
in two steps:

i) Policy evaluation: compute Jµk as the unique solution of the equation

Jµk = TµkJµk . (15)

ii) Policy improvement: compute a policy µk+1 that satisfies

Tµk+1Jµk = TJµk . (16)

Optimistic Policy Iteration (O-PI). This algorithm works the same as PI, but differs in the policy
evaluation step. Instead of solving the system of linear equations exactly in the policy evaluation step (15),
it performs an approximate evaluation of the current policy and uses this information in the subsequent
policy improvement step.

4 Random Geometric Graphs

The main difference between standard shortest path problems on graphs and sampling-based methods for
solving motion planning problems is the fact that in the former case the graph is given a priori, whereas
in the latter case the path is constructed on-the-fly by sampling randomly allowable configuration points
from Xfree and by constructing the graph G incrementally, adding one, or more, vertices at each iteration
step. Of course, such an iterative construction raises several questions, such as: is the resulting graph
connected? under what conditions one can expect that G is an accurate representation of Xfree? how does
discretizing the actions/control inputs affects the movement between sampled successor vertices, etc. All
these questions have been addressed in a series of recent papers [11, 12] so we will not elaborate further on
the graph construction. Suffice it to say, such random geometric graphs (RGGs) can be constructed easily
and such graphs have been the cornerstone of the recent emergence of asymptotically optimal sampling
based motion planners.

For completeness, and in order to establish the necessary connections between DP algorithms and
RRGs, we provide a brief overview of random graphs as they are used in this work. For more details, the
interested reader can peruse [6] or [20].

In graph theory, a random geometric graph (RGG) is a mathematical object that is usually used to
represent spatial networks. RGGs are constructed by placing a collection of vertices drawn randomly
according to a specified probability distribution. These random points constitute the node set of the graph
in some topological space. Its edge set is formed via pairwise connections between these nodes if certain
conditions (e.g., if their distance according to some metric is in a given range) are satisfied. Different
probability distributions and connection criteria yield random graphs of different properties.

An important class of random geometric graphs is the random r-disc graphs. Given the number of
points n and a nonnegative radius value r, a random r-disc graph in Rd is constructed as follows: first, n
points are independently drawn from a uniform distribution. These points are pairwise connected if and
only if the distance between them is less than r. Depending on the radius, this simple model of random
geometric graphs possesses different properties as the number of nodes n increases. A natural question

5

to ask is how the connectivity of the graph changes for different values of the connection radius as the
number of samples goes to infinity. In the literature, it is shown that the connectivity of the random graph
exhibits a phase transition, and a connected random geometric graph is constructed almost surely when

the connection radius r is strictly greater than a critical value r∗ =
{

log(n)/(nζd)
}d

, where ζd is volume

of the unit ball in Rd. If the connection radius is chosen less than the critical value r∗, then, multiple
disconnected clusters occur almost surely as n goes to infinity [20].

Recently, novel connections have been made between motion planning algorithms and the theory of
random geometric graphs [12]. These key insights have led to the development of a new class of algorithms
which are asymptotically optimal (e.g., RRG, RRT∗, PRM∗). For example, in the RRG algorithm, a
random geometric r-disc graph is first constructed incrementally for a fixed number of iterations. Then, a
post-search is performed on this graph to extract the encoded solution. The key step is that the connection
radius is shrunk as a function of vertices, while still being strictly greater than the critical radius value. By
doing so, it is guaranteed to obtain a connected and sparse graph, yet the graph is rich enough to provide
asymptotic optimality guarantees, almost surely. The authors in [12] showed that the RRG algorithm
yields a consisted discretization of the underlying continuous configuration space, i.e., as the number of
points goes to infinity, the lowest-cost solution encoded in the random geometric graph converges to the
optimal solution embedded in the continuous configuration space with probability one. In this work, we
leverage this nice feature of random geometric graphs to get a consistent discretization of the continuous
domain of the robot motion planning problem. With the help of random geometric graphs, the robot
motion planning problem boils down to a shortest path problem on a discrete graph.

5 Proposed Approach

5.1 From RRGs to DP

Let G = (V,E) denote the graph constructed by the RRG algorithm at some iteration, where V and
E ⊆ V × V are finite sets of vertices and edges, respectively. Based on the previous discussion, G is
connected and all edge costs are positive, which implies that the cost of all the cycles in G are positive.
Using the notation introduced in Section 2 , we can define on this graph the sequential decision system (4)
where x′ ∈ succ(G, x) and with transition cost as in (5). Once a policy µ is given (optimal or not), there
is a unique x′ ∈ succ(G, x) such that x′ = f(x, µ(x)), called the parent of x. Accordingly, x is the child of
x′ under the policy µ. Conversely, a parent assignment for each node in G defines a policy. Note that each
node has a single parent under a given policy, but may have multiple children.

In our case, the graph computed by the RRG algorithm is a connected graph by construction, and
all edge cost values are positive, which implies that the costs of all its cycles are positive. Therefore,
convergence is guaranteed and the resulting optimal policy is proper.

5.2 DP Algorithms for Sampling-based Planners

The sampling-based motion planner which utilizes VI, i.e., RRT#, was presented in [2]. The RRT# algo-
rithm implements the Gauss-Seidel version of the VI algorithm and provides a sequential implementation.
In this work, we follow up on the same idea and propose a sampling-based algorithm which utilizes PI
algorithm as shown in Figure 1.

The body of PI-RRT# algorithm is given in Algorithm 1. The algorithm initializes the graph with xgoal

in Line 2 and incrementally builds the graph from xgoal toward xinit. The algorithm includes a new vertex
and a couple new edges into the existing graph at each iteration. If this new information has a potential
to improve the existing policy, then, a slightly modified PI algorithm is called subsequently in the Replan

procedure. Specifically, and for the sake of numerical efficiency, unlike the standard PI algorithm, policy
improvement is performed only for a subset vertices B which have the potential to be part of the optimal
solution. As shown in Figure 1, Bk,i is the set of these vertices during the kth iteration and ith policy
improvement step. The fact that this modification of the PI still ensures the asymptotic optimality, almost
surely, of the proposed PI-RRT# algorithm requires extra analysis, which is presented in Section 6.

6

Policy Evaluation

Policy Improvement

)
goalx,initx

(

]
i,k

i,kµJ
i,kµkG

[

]
,0k

,0kµJ
,0kµkG

[

]
1,0−k

1,0−kµJ
1,0−kµ1−kG

[
randx

1−i,k∈x∀)x(1−i,kµ=
?

)x(i,kµ

]
1−i,k

1−i,kµJ
1−i,kµkG

[

]
1−i,k

1−i,kµJ
i,kµkG

[

)
goalx,initx

(

Yes

No

CCSampling

Extension CC

← ∅E}goalx← {V

← ∅)goalx(0,0µ)E,V(←0G
0←)goalx(0,0µJ}goalx← {0,0

)
X,goalx,initx

(

B

B

B

B

B

B

B

Figure 1: Overview of the PI-RRT# Algorithm

Algorithm 1: Body of the RRT# Algorithm (PI)

1 PI-RRT#(xinit, xgoal, X)
2 V ← {xgoal}; B ← V ; E ← ∅;
3 G ← (V ,E);
4 for k = 1 to N do
5 xrand = Sample(k);

6 (G, B′)← Extend(G, B, xinit, xrand);

7 if |B′| > |B| then
8 B ← Replan(G, B′, xinit, xgoal);

9 (V ,E)← G; E′ ← ∅;
10 foreach x ∈ V do
11 E′ ← E′ ∪ {(x, parent(x))};
12 return T = (V ,E′);

The Extend procedure is given in Algorithm 2. If a new vertex is decided for inclusion, its control
is initialized by performing policy improvement in Lines 6-14. Then, it is checked in Line 15 if the new
vertex has a potential to improve the existing policy where h denotes an admissible heuristic function that
computes an estimate of the cost between two given points. If so, it is included to the set of vertices which
are selected to perform policy improvement. Such heuristics, have been previously used to focus the search
of sampling-based planner, see for example [18, 2].

The Replan procedure which implements the PI algorithm is shown in Algorithm 3. The policy im-
provement step is performed in Lines 2-9 until the cost of the existing policy becomes almost stationary.
Note that the for-loop in the Replan procedure can run in parallel.

The policy evaluation step is implemented in Algorithm 4. Algorithm 4 solves a system of linear

7

Algorithm 2: Extend Procedure for RRT# (PI)

1 Extend(G, B, xinit, xrand)
2 (V ,E)← G; E′ ← ∅;
3 xnearest = Nearest(G, xrand);
4 xnew = Steer(xrand, xnearest);
5 if ObstacleFree(xnew, xnearest) then
6 J(xnew) = c(xnew, xnearest) + J(xnearest);
7 parent(xnew) = xnearest;
8 Xnear ← Near(G, xnew, |V |);
9 foreach xnear ∈ Xnear do

10 if ObstacleFree(xnew, xnear) then
11 if J(xnew) > c(xnew, xnear) + J(xnear) then
12 J(xnew) = c(xnew, xnear) + J(xnear);
13 parent(xnew) = xnear;

14 E′ ← E′ ∪ {(xnew, xnear), (xnear, xnew)};

15 if h(xinit, parent(xnew)) + J(parent(xnew)) < J(xinit) then
16 B ← B ∪ {xnew};
17 V ← V ∪ {xnew};
18 E ← E ∪ E′;

19 G ← (V ,E);
20 return (G, B);

Algorithm 3: Replan Procedure (PI) #

1 Replan(G, B, xinit, xgoal)
2 Loop
3 foreach x ∈ B do
4 J ′ = J(x);
5 foreach v ∈ succ(G, x) do
6 if J ′ > c(x, v) + J(v) then
7 J ′ = c(x, v) + J(v);
8 parent(x) = v;

9 ∆J(x) = J(x)− J ′;
10 if maxx∈B ∆J(x) ≤ ε then
11 return B;

12 B ← Evaluate(G, xinit, xgoal);

equations by exploiting the underlying structure. Simply, the existing policy forms a tree in the current
graph and the solution of the system of linear equations corresponds to the cost of each path connecting
vertices to the goal region via edges of the tree. If xinit is already in the graph, the algorithm computes
the cost of the path between xinit and xgoal by using queue q. Subsequently, the set of vertices that are
promising, i.e., those in the set B and their cost-to-go values are computed by using the cost-to-go value
of xinit.

8

Algorithm 4: Evaluate Procedure (PI) #

1 Evaluate(G, xinit, xgoal)
2 (V ,E)← G;
3 if xinit ∈ V then
4 x = xinit;
5 while x 6= xgoal do
6 q.push front(x);
7 x = parent(x);

8 J(xgoal) = 0;
9 while q.empty() do

10 x = q.pop front();
11 J(x) = c(x, parent(x)) + J(parent(x));

12 else
13 J(xinit) =∞;

14 B ← {xgoal};
15 q.push back(xgoal);
16 while q.nonempty() do
17 x = q.pop front();
18 if h(xinit, x) + J(x) < J(xinit) then
19 foreach v ∈ pred(G, x) do
20 if parent(v) = x then
21 J(v) = c(v, x) + J(x);

22 B ← B ∪ {v};
23 q.push back(v);

24 return B;

6 Theoretical Analysis

The main purpose of this section is to show that the proposed PI-RRT# algorithm inherits the nice
properties of the RRG and RRT∗ algorithms and thus it is asymptotically optimal, almost surely. The
result follows trivially if policy iteration is performed on all the vertices of the current graph Gk at the kth
iteration of the PI-RRT# algorithm. However, this will involve performing policy iteration also on vertices
that may not have the potential to be part of the optimal solution. Ideally, and for the sake of numerical
efficiency, we wish to preform policy improvement only on those vertices that have the potential of being
part of the optimal solution, and only those. This will require a more detailed analysis, since we only
have an estimate of this set of (so-called promising) vertices. The basic idea of the proof is based on the
fact that each policy improvement progresses sequentially and computes best paths of length one, then of
length two, then of length three, and so on. This allows us to keep track of all promising vertices that can
be part of the optimal path of increasing lengths (e.g., increasing number of path edges) as we start from
the goal vertex and move back towards the start vertex. The proof is rather long and thus is is split in a
sequence of several lemmas.

To this end, let Gk = (V k, Ek) denote the graph at the end of the kth iteration of the PI-RRT#

algorithm. Given a vertex x ∈ V k, let the control set Uk(x) be divided into two disjoint sets Uk,∗(x) and
Uk,′(x) and and let the successor set succ(Gk, x) also be divided accordingly into two disjoint sets Sk,∗(x)
and Sk,′(x), as follows:

• Uk(x) = Uk,∗(x) ∪ Uk,′(x) where Uk,∗(x) = arg min
u∈Uk(x)

H(x, u, Jk,∗) and Uk,′(x) = Uk(x) \ Uk,∗(x)

• succ(Gk, x) = Sk,∗(x) ∪ Sk,′(x) where Sk,∗(x) = {x∗ ∈ V k : ∃u∗ ∈ Uk,∗(x) s.t. x∗ = f(x, u∗)} and
Sk,′(x) = succ(Gk, x) \ Sk,∗(x)

Let Mk denote the set of all policies at the end of the kth iteration of the PI-RRT# algorithm, that

9

is, let Mk = {µ : µ(x) ∈ Uk(x), ∀x ∈ V k}. Given a policy µ ∈ Mk and an initial state x, let σµ(x)
denote the path resulting from executing the policy µ starting at x. That is, σµ(x) = (x0, x1, . . . , xN) such
that σµ0 (x) = x and σµN (x) ∈ Xgoal for N > 0, where σµj (x) is the jth element of σµ(x). By definition,

xj+1 = f(xj , µ(xj)) for j = 0, 1, . . . , N − 1. Let now Σk(x) be the set of all paths rooted at x and let
Σk,∗(x) denote the set of all lowest-cost paths rooted at x that reach the goal region at the kth iteration
of the algorithm, that is,

Σk,∗(x) = {σ ∈ Σk(x) : σ = σµ(x) such that ∃µ ∈Mk, Jµ(x) = Jk,∗(x)}.

Note that the set Σk,∗(x) may contain more than a single path. Finally, let Nk(x) denote the shortest
path length in Σk,∗(x), that is,

Nk(x) = min
σµ(x)∈Σk,∗(x)

len(σµ(x))

Let us define the following sets for a given policy µk,i ∈Mk and its corresponding value function Jµk,i

at the end of the ith policy improvement step and at the kth iteration of the PI-RRT# algorithm:

a) The set of vertices in Gk whose optimal cost value is less than that of xinit,

V k
prom = {x ∈ V k : Jk,∗(x) < Jk,∗(xinit)}

This is the set of promising vertices.

b) The set of promising vertices in Gk, whose optimal cost value is achieved by executing the policy µk,i

at the ith policy iteration step

Ok,i = {x ∈ V k : Jµk,i(x) = Jk,∗(x) < Jk,∗(xinit)}

c) The set of vertices in Gk that can be connected to the goal region at iteration k with an optimal path
of length less than or equal to `

Lk,` = {x ∈ V k : ∃σµ(x) ∈ Σk,∗(x) s.t. Nk(x) ≤ `}

d) The set of promising vertices in Gk that are connected to the goal region via optimal paths whose length
is less than or equal to `

P k,` = Lk,` ∩ V k
prom

e) The set of vertices that are selected for a Bellman update during the beginning of the ith policy
improvement

Bk,i = {pred(Gk, x) : x ∈ V k, Jµk,i(x) < Jµk,i(xinit)}

Note from d) that the set of promising vertices that can be connected to the goal region via optimal
paths whose length is exactly `+ 1 is given by

∂P k,` = P k,`+1 \ P k,`

It should also be clear from these definitions that Ok,i ⊆ Bk,i for all k = 1, 2, . . . and i = 0, 1, 2,

Lemma 1 The sequence Ok,i generated by the policy iteration step of the PI-RRT# algorithm is non-
decreasing, that is, Ok,i ⊆ Ok,i+1 for all i = 0, 1,

Proof First, note that Ok,0 = V k ∩Xgoal 6= ∅. Let now i > 0 and assume that x ∈ Ok,i. By definition, we
have that Jµk,i = Tµk,iJµk,i where µk,i is the policy computed at the end of ith policy improvement step at

the kth iteration of the PI-RRT# algorithm. The previous expression implies that (Tµk,iJµk,i)(x) = Jk,∗(x),

and hence µk,i(x) ⊆ Uk,∗(x). Similarly, the cost function Jµk,i satisfies Jµk,i(x) = Jk,∗(x) < Jk,∗(xinit) ≤

10

Jµk,i(xinit) which yields Jµk,i(x) < Jµk,i(xinit). It follows that the vertex x and its predecessors will be

selected for Bellman update during the next policy improvement, that is, pred(Gk, x) ∈ Bk,i.
After policy improvement, the updated policy and the corresponding cost function are given by

(Tµk,i+1Jµk,i)(x) = (TJµk,i)(x) = Jk,∗(x),

which implies that (Tµk,i+1Jµk,i)(x) = Jk,∗(x) and hence µk,i+1(x) ⊆ Uk,∗(x). Similarly, Jk,∗(x) ≤
Jµk,i+1(x) ≤ Jµk,i(x) = Jk,∗(x), and hence Jµk,i+1(x) = Jk,∗(x) < Jk,∗(xinit). It follows that x ∈ Ok,i+1. �

Lemma 2 The sequence Lk,` is non-decreasing, that is, Lk,` ⊆ Lk,`+1 for ` = 0, 1, Furthermore, for
all x ∈ ∂Lk,` = Lk,`+1 \ Lk,`, there exists x∗ ∈ Lk,` ∩ Sk,∗(x).

Proof For ` = 0 we have that Lk,0 = V k ∩ Xfree 6= ∅. Let now ` > 0, and assume that x ∈ Lk,`. Then,
by definition, there exists a policy µ ∈Mk such that the vertex x achieves its optimal cost function value,
Jµ(x) = Jk,∗(x), and the optimal path connecting x to the goal region has length less than or equal to `,
that is, len(σµ(x)) ≤ ` < `+ 1, which implies, trivially, that x ∈ Lk,`+1.

To show the second part of the statement, first notice that, by definition, the vertices in the set ∂Lk,`

are the ones that can be connected to the goal region via an optimal path of length exactly `+ 1. Let us
now assume that x ∈ ∂Lk,` and let σµ(x) ∈ Σk,∗(x) be the optimal path of length ` + 1 between x and
the goal region. Let σµ1 (x) = x∗ and σµ(x∗) be the sub-arc rooted at x∗ resulting from applying µ. By
construction of the path σµ(x), we have that x ∈ pred(Gk, x∗). Also, since σµ(x) is the optimal path rooted
at x, the control action applied at vertex x needs to be optimal , that is, µ(x) ∈ Uk,∗(x) and σµ(x∗) is the
optimal path connecting x∗ to the goal region due to the principle of optimality, where σµ(x∗) ∈ Σk,∗(x∗),
which implies that x∗ ∈ Sk,∗(x). Furthermore, x∗ ∈ Lk,` since len(σµ(x∗)) = `. �

Corollary 1 The sequence P k,` is non-decreasing, that is, P k,` ⊆ P k,`+1 for ` = 0, 1, Furthermore,
for all x ∈ ∂P k,` = P k,`+1 \ P k,`, there exists x∗ ∈ P k,` ∩ Sk,∗(x).

Proof The first part of the result follows immediately from Lemma 2. To show the second part, notice
that, from the definition of the boundary set, we can rewrite ∂P k,` as follows:

∂P k,` = P k,`+1 \ P k,` = (Lk,`+1 ∩ V k
prom) \ (Lk,` ∩ V k

prom) = ∂Lk,` ∩ V k
prom

Let now x ∈ ∂P k,`, which implies that x ∈ ∂Lk,` and x ∈ V k
prom. From Lemma 2 there exists x∗ ∈

Lk,`∩Sk,∗(x) such that x ∈ pred(Gk, x∗). We need to show that x∗ ∈ P k,`. Since x∗ ∈ Lk,` we only need to
show that x∗ ∈ V k

prom. Since x is a promising vertex, its optimal cost value satisfies Jk,∗(x) < Jk,∗(xinit). We

know that the optimal cost function value of x∗ satisfies Jk,∗(x) = g(x, u∗) + Jk,∗(x∗) where x∗ = f(x, u∗)
and u∗ ∈ Uk,∗(x). Since g(x, u∗) is nonnegative, we have that Jk,∗(x∗) ≤ Jk,∗(x) < Jk,∗(xinit) which implies
x∗ ∈ V k

prom and hence x∗ ∈ P k,`. �

Lemma 3 Let x ∈ Bk,i and assume that Jµk,i(x
∗) = Jk,∗(x∗) where x∗ ∈ Sk,∗(x). Then µk,i+1(x) ⊆

Uk,∗(x) and Jµk,i+1(x) = Jk,∗(x) at the end of (i+ 1)th policy improvement step at the kth iteration of the

PI-RRT# algorithm.

Proof We will first show that the function H(x, ·, Jµk,i) in (9) obeys a strict inequality when evaluated at

elements of the sets Uk,∗(x) and Uk,′(x). At the beginning of the (i + 1)th policy improvement step, the
new policy µk,i+1 is computed as follows. For all x ∈ Bk,i

µk,i+1(x) ∈ arg min
u∈Uk(x)

H(x, u, Jµk,i)

= arg min
u∈Uk(x)

{
g(x, u) + Jµk,i(f(x, u))

}
.

11

Let u∗ ∈ Uk,∗(x) and u′ ∈ Uk,′(x). We then have the following:

H(x, u∗, Jµk,i) = g(x, u∗) + Jµk,i(f(x, u∗))

= g(x, u∗) + Jµk,i(x
∗) = g(x, u∗) + Jk,∗(x∗)

< g(x, u′) + Jk,∗(x′)

= g(x, u′) + Jk,∗(f(x, u′))

≤ g(x, u′) + Jµk,i(f(x, u′))

= H(x, u′, Jµk,i).

This implies that
H(x, u∗, Jµk,i) < H(x, u′, Jµk,i) ∀u∗ ∈ U∗(x), u′ ∈ U ′(x).

Hence, it follows that

µk,i+1(x) ∈ arg min
u∈Uk(x)

H(x, u, Jµk,i) = arg min
u∈Uk,∗(x)

H(x, u, Jµk,i)

and thus µk,i+1(x) ⊆ Uk,∗(x) for all x ∈ Bk,i. Let x ∈ Bk,i. The cost function Jµk,i+1 for x∗ ∈ Sk,∗(x) is

computed during the policy evaluation step for the new policy µk,i+1, as follows

Jk,∗(x∗) ≤ Jµk,i+1(x∗) ≤ Jµk,i(x∗) = Jk,∗(x∗) ⇒ Jµk,i+1(x∗) = Jk,∗(x∗) ∀x∗ ∈ Sk,∗(x)

allowing us to write Jµk,i+1(x) as follows:

Jµk,i+1(x) = g(x, u∗) + Jµk,i+1(f(x, u∗)) = g(x, u∗) + Jµk,i+1(x∗) = g(x, u∗) + Jk,∗(x∗) = Jk,∗(x),

which implies that Jµk,i+1(x) = Jk,∗(x). �

Lemma 4 Let the policy µk,i and its corresponding cost function Jµk,i, and assume that P k,` ⊆ Ok,i. Then

∂P k,` ⊆ Bk,i, which implies that P k,`+1 ⊆ Bk,i before the beginning of the (i + 1)th policy improvement
step. Furthermore, P k,`+1 ⊆ Ok,i+1 after the (i+ 1)th policy improvement step.

Proof As shown in Corollary 1, for all x ∈ ∂P k,`, there exists x′ ∈ P k,` such that x′ ∈ Sk,∗(x). The last
inclusion which, in particular, that x′ ∈ succ(Gk, x), equivalently, x ∈ pred(Gk, x′). Since, by assumption,
P k,` ⊆ Ok,i, we have that x′ ∈ Ok,i and thus the following holds:

Jµk,i(x
′) = Jk,∗(x′) < Jk,∗(xinit) ≤ Jµk,i(xinit) ⇒ Jµk,i(x

′) < Jµk,i(xinit).

Therefore, pred(Gk, x′) ∈ Bk,i, which implies that all vertices of ∂P k,` are selected for a Bellman update
before the (i+ 1)th policy improvement step, and hence ∂P k,` ⊆ Bk,i and P k,`+1 ⊆ Bk,i.

From Corollary 1 we have that P k,` ⊆ P k,`+1. Since the sequence Ok,i is non-decreasing (Lemma 1),
it follows that P k,` ⊆ Ok,i ⊆ Ok,i+1. Therefore, in order to prove that P k,`+1 ⊆ Ok,i+1 we only need to
show that ∂P k,` ⊆ Ok,i+1 by the end of the (i + 1)th policy improvement. From Lemma 3, and since
Jµk,i(x

′) = Jk,∗(x′), x′ ∈ Sk,∗(x), all vertices of ∂P k,` achieve their optimal policy and cost function value

after the end of the policy improvement step, and thus µk,i+1(x) ⊆ Uk,∗(x) and Jµk,i+1(x) = Jk,∗(x). This

implies that ∂P k,` ⊆ Ok,i+1, thus completing the proof. �

Lemma 5 All vertices whose optimal cost value is less than that of xinit, and which are part of an optimal
path from xinit to Xgoal whose length is less than or equal to i, achieve their optimal cost value at the end
of the ith policy improvement step, that is, P k,i ⊆ Ok,i for i = 0, 1, . . . when using policy µk,i.

Proof The claim P k,i ⊆ Ok,i will be shown using induction.

12

Basis i = 0: First, note that V k
goal 6= ∅. Let us now assume that x ∈ V k

goal. Then Nk(x) = 0 for all

k = 1, 2, . . ., and Jk,∗(x) = 0 < Jk,∗(xinit). Therefore, P k,0 = V k
goal. Also, for all x ∈ P k,0, we have

that Jµk,0(x) = Jk,∗(x) = 0 < Jk,∗(xinit), which implies P k,0 ⊆ Ok,0.

Basis i = 1: The set of vertices along optimal paths whose length is less than or equal to 1 is a subset
of goal vertices and their predecessors, that is, P k,1 = P k,0 ∪ {x ∈ V k : ∃x′ ∈ V k ∩ Xgoal s.t. x ∈
pred(Gk, x′), c(x, x′) < Jk,∗(xinit)}. For all x′ ∈ V k

goal, we have that Jµk,0(x′) = 0 < Jµk,0(xinit).
Therefore, all goal vertices and their predecessors are selected for Bellman update at the beginning
of the first policy improvement step, hence Bk,0 = {pred(Gk, x′) : x′ ∈ V k

goal}, which implies that

P k,1 ⊆ Bk,0. All vertices in P k,1 will achieve their optimal cost values at the end of the first policy
improvement step, that is, Jµk,1(x) = Jk,∗(x) = c(x, x′), where x ∈ P k,1, x′ ∈ Sk,∗(x) and x′ ∈ Vgoal,

which implies that P k,1 ⊆ Ok,1.

Inductive step: Let us now assume that P k,i ⊆ Ok,i holds. We need to show that this assumption implies
that P k,i+1 ⊆ Ok,i+1 at the end of (i + 1)th policy improvement step. The proof of this statement
follows directly from Lemma 4 by taking ` = i. �

Theorem 1 (Optimality of Each Iteration) The optimal action and the optimal cost value for the
initial vertex is achieved when the Replan procedure of the PI-RRT# algorithm terminates after a finite
number of policy improvement steps.

Proof We will investigate the case in which the algorithm terminates before performing Nk(xinit) policy
improvement steps, where k in the number of iterations the PI-RRT# algorithm has performed up to that
point. Otherwise, optimality follows directly from Lemma 5.

To this end, assume, on the contrary, that the Replan procedure terminates at the end of the ith
policy improvement step at the kth iteration of the PI-RRT# algorithm with a suboptimal cost function
value for the initial vertex, that is, assume that Jµk,i−1(xinit) > Jk,∗(xinit). Since the termination condition

holds, there will be no policy update for all vertices in Bk,i−1. That is, for all x ∈ Bk,i−1, we have that
µk,i(x) = µk,i−1(x). From Lemma 5 it follows that P k,i−1 ⊆ Ok,i−1 for all i = 1, 2, This implies that
P k,i ⊆ Bk,i−1 at the beginning of the ith policy improvement step and P k,i ⊆ Ok,i at the end of ith policy
improvement step because of Lemma 4. As a result, all vertices in P k,i achieve their optimal action and
their optimal cost value at the end of the ith policy improvement step. Consequently, for all x ∈ P k,i, we
have that µk,i(x) = µk,∗(x) and Jµk,i(x) = Jk,∗(x).

Since for all vertices in Bk,i−1 there is no update observed between policies µk,i and µk,i−1, we have
that µk,i(x) = µk,i−1(x) = µk,∗(x) for all x ∈ P k,i ⊆ Bk,i−1. Next, we investigate the cost function value of
the vertices in P k,i at the beginning of ith policy improvement step and reach a contradiction.

We already know that vertices in P k,i−1 have achieved their optimal cost function values. Since P k,i =
P k,i−1∪∂P k,i−1, we thus only need to check the cost values for all the vertices in the boundary set ∂P k,i−1.
For all vertices in ∂P k,i−1, their cost function values can be expressed as Jµk,i−1(x) = g(x, µk,i−1(x)) +

Jµk,i−1(f(x, µk,i−1(x))). We already know that µk,i−1(x) = µk,∗(x) holds for all vertices in ∂P k,i−1 ⊆ Bk,i−1.

Let us define µk,∗(x) = u∗ ∈ Uk,∗(x) and x∗ ∈ Sk,∗(x) such that x∗ = f(x, u∗). Since x∗ ∈ P k,i−1, the
optimal successor achieves its optimal cost value, that is, Jµk,i−1(x∗) = Jk,∗(x∗). Then, for all vertices in

∂P k,i−1, we can express their cost function value as Jµk,i−1(x) = g(x, u∗) +Jk,∗(x′) = Jk,∗(x). This implies

that all vertices in P k,i already have achieved their optimal action and the cost values at the beginning of
the ith policy improvement step, that is, P k,i ⊆ Ok,i−1. We have thus shown that P k,i−1 ⊆ Ok,i−1 implies
P k,i ⊆ Ok,i−1 for all i = 1, 2, It follows that P k,` ⊆ Ok,i−1 for ` = 0, 1,

Next, consider the case when ` = Nk(xinit) − 1. From the previous analysis this implies that P k,` ⊆
Ok,i−1, which, in turn, implies that all vertices which may be intermediate vertices along optimal paths
between xinit and the goal region achieve their optimal action and cost value at the beginning of the ith
policy improvement step. Note that xinit is selected for a Bellman update at the beginning of the ith policy
improvement step, since its cost function value can be written as Jµk,i−1(xinit) = g(xinit, u) + Jµk,i−1(x′),
where u ∈ Uk(xinit) and x′ ∈ Sk(xinit) such that u = µk,i−1(xinit) and x′ = f(xinit, u). This implies

13

that xinit ∈ pred(Gk, x′) and Jµk,i−1(x′) < Jµk,i−1(xinit) and therefore, xinit ∈ Bk,i−1. However, since the
termination condition holds, a Bellman update for xinit does not yield any update in its action during the ith
policy improvement step, and thus µk,i(xinit) = µk,i−1(xinit). We also know that, Since Sk,∗(xinit) ⊆ P k,`

and P k,N−1 ⊆ Ok,i−1, it follows that all vertices in Sk,∗(xinit) have achieved their optimal action and
their optimal cost value at the beginning of the ith policy iteration. That is, µk,i−1(x′) = µk,∗(x′) and
Jk,i−1(x′) = Jk,∗(x′) for all x′ ∈ Sk,∗(xinit). It follows from Lemma 3 that µk,i(xinit) ⊆ Uk,∗(xinit) and
Jµk,i(xinit) = Jk,∗(xinit) at the end of ith policy improvement step. This implies that µk,i−1(xinit) =

µk,i(xinit) = µk,∗(xinit). The cost value of xinit at the beginning of ith policy improvement step is given
by Jµk,i−1(xinit) = g(x, µk,i−1(xinit)) + Jµk,i−1(f(x, µk,i−1(xinit))). We know that µk,i−1(xinit) = µk,∗(x).

Let µk,∗(xinit) = u∗ ∈ Uk,∗(xinit) and x′ ∈ Sk,∗(xinit) such that x′ = f(x, u∗). Since x′ ∈ P k,`, and
` = Nk(xinit) − 1, x′ achieves the optimal cost function value, and hence Jµk,i−1(x′) = Jk,∗(x′). We thus

have Jµk,i−1(xinit) = g(x, u∗) + Jk,∗(x′) = Jk,∗(xinit).

We have thus shown that Jµk,i−1(xinit) = Jk,∗(xinit) which leads to the contradiction we seek, given the
initial assumption that the algorithm terminates with a suboptimal cost value for the initial vertex. �

The previous theorem states that when the Replan procedure terminates at the beginning of the
Nk(xinit)th policy improvement step, it has already computed the optimal action and cost function value
for xinit. If the algorithm terminates after more than or equal to Nk(xinit) policy improvement steps, then
optimality follows directly from Lemma 5, since the Replan procedure is thus guaranteed to terminate
after a finite number of policy improvement steps, owing to the properties of policy iteration and the fact
that the policy space is finite [6].

Theorem 2 (Termination of Replan Procedure after a Finite Number of Steps) Let Gk = (V k, Ek)
be the graph built at the end of kth iteration of the PI-RRT# algorithm. Then, the Replan proce-

dure of the PI-RRT# algorithm terminates after at most (N
k

+ 2) policy improvement steps, where

N
k

= maxx∈V kprom N
k(x) and V

k
prom = {pred(Gk, x) : x ∈ V k

prom}.

Proof Let us assume, on the contrary, that the Replan procedure does not terminate at the end of the

(N
k

+ 2)th policy improvement step at the kth iteration of the PI-RRT# algorithm. This implies that

there exists a point x ∈ Bk,N
k
+1 such that its cost function value is reduced, and its policy is updated

at the end of the (N
k

+ 2)th policy improvement step. Equivalently, there exists u ∈ Uk(x) that yields

J
µk,N

k
+1

(x) > g(x, u) + J
µk,N

k
+1

(x′) where x′ ∈ Sk(x), µk,N
k
+1 6= µk,N

k
+2(x) = u and x′ = f(x, u). By

definition, we have P k,N
k

= V k
prom, which implies that V k

prom ⊆ Ok,N
k

⊆ Ok,N
k
+1 due to Lemma 5 and

Lemma 1. For all x ∈ V k
prom, we have J

µk,N
k
+1

(x) = Jk,∗(x) < Jk,∗(xinit) ≤ J
µk,N

k
+1

(xinit), which implies

that pred(G, x) ∈ Bk,N
k
+1. Therefore, V

k
prom ⊆ Bk,N

k
+1. Since V k

prom ⊆ Ok,N
k

and V
k
prom ⊆ Bk,N

k
+1,

it can also be shown, similarly to Lemma 4, that all vertices of V
k
prom achieve their optimal cost values

and their optimal policies after the (N
k

+ 1)th policy improvement step. As a result, J
µk,N

k
+1

(x) =

Jk,∗(x), µk,N
k
+1(x) ⊆ Uk,∗(x) for all x ∈ V k

prom.
Next, note that for the successor vertex of xinit along the optimal path between xinit and the goal region

we have that Nk(x′) = Nk(xinit) − 1 ≤ N
k

since x′ ∈ V k
prom. This implies that Nk(xinit) ≤ N

k
+ 1, and

therefore, from Lemma 5, we have that J
µk,N

k
+1

(xinit) = Jk,∗(xinit). Recall now that, for all x ∈ V k with

pred(Gk, x) ∈ Bk,N
k
+1, we have that J

µk,N
k
+1

(x) < J
µk,N

k
+1

(xinit). Since J
µk,N

k
+1

(xinit) = Jk,∗(xinit), the

following expression holds:

Jk,∗(x) ≤ J
µk,N

k
+1

(x) < J
µk,N

k
+1

(xinit) = Jk,∗(xinit) ⇒ Jk,∗(x) < Jk,∗(xinit)

Therefore, x ∈ V k
prom and pred(Gk, x) ∈ V

k
prom which implies that Bk,N

k
+1 ⊆ V

k
prom. From the two

preceding results, it follows that Bk,N
k
+1 = V

k
prom.

14

Let x ∈ BN
k
+1 = V

k
prom, whose policy is updated during the (N

k
+ 2)th policy improvement step.

We therefore have that Jk,∗(x) = J
µk,N

k
+1

(x) > g(x, u) + J
µk,N

k
+1

(x′) = g(x, u) + Jk,∗(x′). This yields

Jk,∗(x) > g(x, u) + Jk,∗(x′), which contradicts (6), thus completing the proof. �

Theorem 3 (Asymptotic Optimality of PI-RRT#) Let Gk = (V k, Ek) be the graph built at the end
of the kth iteration of the PI-RRT# algorithm and let Nk is maximum number of policy improvement

steps performed at the k iteration. As k → ∞, the policy µk,N
k
(xinit) and its corresponding cost function

J
µk,Nk

(xinit), converge to the optimal policy µ∗(xinit) and corresponding optimal cost function Jµ∗(xinit)

with probability one.

Proof The graph Gk = (V k, Ek) is constructed by the RRG algorithm at the beginning of kth iteration.
In the PI-RRT# algorithm, the optimal cost function value of xinit with respect to Gk is computed during

the Replan procedure at the end of kth iteration, that is, J
µk,Nk

(xinit) = Jk,∗(xinit) and µk,N
k
(xinit) =

µk,∗(xinit). Since the RRG algorithm is asymptotically optimal with probability one, Gk will encode,
almost surely, the optimal path between xinit and goal region as k →∞. This implies that J

µk,Nk
(xinit) =

Jk,∗(xinit)→ J∗(xinit) and µk,N
k
(xinit) = µk,∗(xinit)→ µ∗(xinit) with probability one. �

15

7 Numerical Simulations

We implemented both the baseline RRT# and PI-RRT# algorithms in MATLAB and performed Monte
Carlo simulations on shortest path planning problems in two different 2D environments, namely, sparse
and highly cluttered environments. The goal was to find the shortest path that minimizes the Euclidean
distance from an initial point to a goal point. The initial and goal points are shown in yellow and dark
blue squares in the figures below, respectively. The obstacles are shown in red and the best path computed
during each iteration is shown in yellow.

The results were averaged over 100 trials and each trial was run for 10,000 iterations. No vertex
rejection rule is applied during the extension procedure. We then computed the total time required to
complete a trial and measured the time spent on the non-planning (sampling, extension, etc.) and the
planning-related procedures of the algorithms, separately. The growth of the tree in each case is shown in
Figure 2. At each iteration, a subset of promising vertices is determined during the policy evaluation step
and policy improvement is performed only for these vertices. The promising vertices are shown in magenta
in Figure 2.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(b)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(c)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(d)

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

(e)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(f)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(g)
−10 −8 −6 −4 −2 0 2 4 6 8 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

(h)

Figure 2: The evolution of the tree computed by PI-RRT# algorithm is shown in (a)-(d) for the problem
with less cluttered environment, and (e)-(h) for the problem with cluttered environment. The configuration
of the trees (a), (e) is at 200 iterations, (b), (f) is at 600 iterations, (c), (g) is at 1,000 iterations, and (d),
(h) is at 10,000 iterations.

For the first problem, the average time spent for non-planning related procedures in the RRT# and
PI-RRT# algorithms are shown in blue and red colors, respectively, in Figure 3. As seen from these figures,
PI-RRT# is slightly faster than the RRT# algorithm, especially when adding a new vertex to the graph.
Since there is no priority queue in the PI-RRT# algorithm, it is much cheaper to include a new vertex and
there is no need for vertex ordering.

For the first problem, the average time spent for planning related procedures for the RRT# and the
PI-RRT# algorithms are shown in blue and red colors, respectively, in Figure 4. As seen ion those figures,
the relation between time and iteration is linear when the number of iterations becomes large in the log-log
scale plot, which implies a polynomial relationship, i.e., t(n) = cnα. One can find these parameters by
using a least-square minimization based on the measured data for iterations between 100 to 10,000. These
parameters can be computed as c0 = 6.4322× 10−5, α0 = 1.2925 for RRT# and cpi = 1.0672× 10−6, αpi =

2.214 for the PI-RRT#. The fitted time-iteration lines (dashed) for the RRT# and the PI-RRT# are shown
in magenta and green colors, respectively. In our implementation, we uses one processor to perform policy

16

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration [n]

T
im

e
[s

]

Figure 3: The time required for non-planning procedures to complete a certain number of iterations for
the first problem set. The time curve for RRT# and PI-RRT# are shown in blue and red, respectively.
Vertical bars denote standard deviation averaged over 100 trials.

improvement due to simplicity. However, as mentioned earlier, the policy improvement step can be done
in parallel. One can divide the set of promising vertices into disjoint sets and assign each of them to a
different processor.

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration [n]

T
im

e
[s

]

Figure 4: The time required for planning procedures to complete a certain number of iterations for the first
problem set. The time curve for RRT# and PI-RRT# are shown in blue and red, respectively. Vertical
bars denote standard deviation averaged over 100 trials.

Let np denote the number of processors, and let N denote the computational load per processor, i.e,
N = n/np, where n is the iteration number which can be considered as an upper bound on the number
of promising vertices. Simple calculation shows that the load per processor needs to satisfy the following
relationship for the PI-RRT# algorithm in order to outperform the baseline RRT# algorithm for faster
planning.

N =
n

np
>
c0

cpi
n1+α0−αpi .

For the first problem, based on these empirical data, the load per processor versus iteration limit is
N > 60.27n0.078562. This line is plotted in Figure 5. For example, the load per processor needs to be
smaller than 124.27, so that each processor should not be assigned more than 124.27 vertices for policy
improvement. This implies that the number of processors needs to be greater than 80.47 during the
10,000th iteration.

17

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Iteration [n]

Lo
ad

 p
er

 p
ro

ce
ss

or
 [

n/
n p]

Figure 5: The number of vertices assigned per processors needs to be smaller than the load per processor
line in order to outperform RRT# algorithm.

From the previous simple analysis it follows that the PI-RRT# algorithm can be a better choice than
RRT# algorithm for planning problems in high-dimensional search spaces. In high-dimensional search
spaces, one needs to run planning algorithms for a large number of iterations in order to explore the search
space densely and see a significant improvement in the computed solutions. This requirement induces a
bottleneck on the RRT# algorithm and all similar VI-based algorithms since the re-planning procedure is
performed sequentially and requires ordering of vertices. Therefore, this operation may take a long time, as
the number of vertices increases significantly. On the other hand, the PI-RRT# algorithm does not require
any ordering of the vertices, and one can keep re-planning tractable by employing more processors (e.g.,
spawning more threads) as needed, in order to meet the desired load per processor requirement. Given
the current advancement in parallel computing technologies, such as GPUs, a well-designed parallel imple-
mentation of the PI-RRT# may yield significant real-time execution performance improvement for some
problems that are known to be very challenging to handle with existing VI-based probabilistic algorithms.

The same analysis was carried out for the second problem and the results are shown in Figure 6, 7 and
8.

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Iteration [n]

T
im

e
[s

]

Figure 6: The time required for non-planning procedures to complete a certain number of iterations for
the second problem set. The time curve for RRT# and PI-RRT# are shown in blue and red, respectively.
Vertical bars denote standard deviation averaged over 100 trials.

18

10
0

10
1

10
2

10
3

10
4

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration [n]

T
im

e
[s

]

Figure 7: The time required for planning procedures to complete a certain number of iterations for the
second problem set. The time curve for RRT# and PI-RRT# are shown in blue and red, respectively.
Vertical bars denote standard deviation averaged over 100 trials.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Iteration [n]

Lo
ad

 p
er

 p
ro

ce
ss

or
 [

n/
n p]

Figure 8: The time required for non-planning procedures to complete a certain number of iterations for
the second problem set. The time curve for RRT# and PI-RRT# are shown in blue and red, respectively.
Vertical bars denote standard deviation averaged over 100 trials.

8 Conclusion

We show that a connection between DP and RRGs may yield different types of sampling-based motion
planning algorithms that utilize ideas from dynamic programming. These algorithms ensure asymptotic
optimality (with probability one) as the number of samples tends to infinity. Use of policy iteration,
instead of value iteration during the exploitation step, may offer several advantages, such as completely
parallel implementation, avoidance of sorting and maintaining a queue of all sampled vertices in the graph,
etc. We have implemented these ideas in the replanning step of the RRT# algorithm. The proposed PI-
RRT# algorithm can be massively parallelized, which can be exploited by taking advantage of the recent
computational and technological advances of GPUs. This is part of ongoing work.

19

References

[1] O. Arslan. Machine Learning and Dynamic Programming Algorithms for Motion Planning and Con-
trol. PhD Thesis, Georgia Institute of Technology, 2015.

[2] O. Arslan and P. Tsiotras. Use of relaxation methods in sampling-based algorithms for optimal
motion planning. In IEEE International Conference on Robotics and Automation, pages 2413–2420,
Karlsrühe, Germany, May 6–10 2013.

[3] O. Arslan and P. Tsiotras. Dynamic programming guided exploration for sampling-based motion
planning algorithms. In IEEE International Conference on Robotics and Automation, pages 4819–
4826, Seattle, WA, May 26–29 2015.

[4] O. Arslan and P. Tsiotras. Dynamic programming principles for sampling-based motion planners. In
Optimal Robot Motion Planning Workshop, IEEE International Conference on Robotics and Automa-
tion, Seattle, WA, May 30 2015.

[5] D. Bertsekas. Abstract Dynamic Programming. Athena Scientific, Belmont, Massachusetts, 2013.

[6] D. P. Bertsekas. Dynamic Programming and Optimal Control, volume 1. Athena Scientific, 2000.

[7] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):269–
271, 1959.

[8] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Batch informed trees (BIT*): Sampling-based
optimal planning via the heuristically guided search of implicit random geometric graphs. In IEEE
International Conference on Robotics and Automation, pages 867–875, Seattle, WA, May 26–29 2015.

[9] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

[10] L. Janson, E. Schmerling, A. Clark, and M. Pavone. Fast marching tree: A fast marching sampling-
based method for optimal motion planning in many dimensions. The International Journal of Robotics
Research, pages 883–921, 2015.

[11] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using incremental sampling-based
methods. In IEEE Conference on Decision and Control, pages 7681–7687, 2010.

[12] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The Interna-
tional Journal of Robotics Research, 30(7):846–894, 2011.

[13] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation,
12(4):566–580, 1996.

[14] S. M. LaValle. Planning Algorithms. Cambridge University Press, New York, 2006.

[15] S. M. Lavalle and Kuffner J. J. Rapidly-exploring random trees: Progress and prospects. In Algorithmic
and Computational Robotics: New Directions, pages 293–308, 2001.

[16] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. The International Journal of
Robotics Research (IJRR), 20(5):378–400, 2001.

[17] M. Otte and E. Frazzoli. RRTx: Real-time motion planning/replanning for environments with unpre-
dictable obstacles. In Algorithmic Foundations of Robotics XI, pages 461–478. Springer, 2015.

[18] Michael Otte and Nikolaus Correll. C-FOREST: Parallel shortest-path planning with super linear
speedup. IEEE Transactions on Robotics, 29:798–806, June 2013.

20

[19] J. Pearl. Heuristics : Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley
Pub. Co, Reading, Massachusetts, 1984.

[20] M. D. Penrose. Random Geometric Graphs. Oxford University Press, 2003.

[21] J. H. Reif. Complexity of the movers problem and generalizations extended abstract. In IEEE
Symposium on Foundations of Computer Science (FOCS), pages 421–427, 1979.

21

	1 Introduction
	2 Problem Formulation and Notation
	3 Overview of Dynamic Programming
	4 Random Geometric Graphs
	5 Proposed Approach
	5.1 From RRGs to DP
	5.2 DP Algorithms for Sampling-based Planners

	6 Theoretical Analysis
	7 Numerical Simulations
	8 Conclusion

