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Abstract— This paper presents theory, application, and com-
parisons of the feedback particle filter (FPF) algorithm for
the problem of attitude estimation. The paper builds upon our
recent work on the exact FPF solution of the continuous-time
nonlinear filtering problem on compact Lie groups. In this
paper, the details of the FPF algorithm are presented for the
problem of attitude estimation – a nonlinear filtering problem
on SO(3). The quaternions are employed for computational
purposes. The algorithm requires a numerical solution of the
filter gain function, and two methods are applied for this
purpose. Comparisons are also provided between the FPF and
some popular algorithms for attitude estimation on SO(3),
including the invariant EKF, the multiplicative EKF, and the
unscented Kalman filter. Simulation results are presented that
help illustrate the comparisons.

I. INTRODUCTION

Attitude estimation is important to numerous fields in-
cluding localization of mobile robots [7], [4], [24], visual
tracking of objects [18], [28], and navigation of spacecrafts
[22], [14]. The mathematical problem of attitude estimation
is a nonlinear filtering problem on a matrix Lie group, in
particular the special orthogonal group SO(3). The design of
attitude filters thus requires consideration of the geometry of
the manifold.

A number of attitude filters have been proposed and
applied for the aerospace applications. A majority of these
filters are based on the extended Kalman filter (EKF), e.g.
the additive EKF [2], [19] and the multiplicative EKF [30],
[32]. The EKF-based filters require a linearized model of the
estimation error. Such a model is typically derived using one
of the many three-dimensional attitude representations, e.g.
the Euler angle [1], the rotation vector [35], and the modified
Rodrigues parameter [21]. These representations have also
been employed in the construction of unscented Kalman
filters [22], [16]. More recently, group-theoretic methods
for attitude estimation have been explored. Deterministic
nonlinear observers that respect the intrinsic geometry of
the Lie groups have appeared in [31], [27], [41], [8], [10].
A class of symmetry-preserving observers have been pro-
posed to exploit certain invariance properties [11], [12],
leading to the invariant EKF algorithm [13], [6], [3], the
invariant ensemble EKF [6], and the invariant particle filter
[5] within the stochastic filtering framework. Filters based
on certain variational formulations on Lie groups have also
been investigated [44], [9], [26]. Particle filters for attitude
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estimation include the bootstrap particle filter [15], [34], the
marginalized particle filter [40], and the Rao-Blackwellized
particle filter [38]. For more comprehensive review and
performance comparison of the various attitude filters, c.f.,
[23], [43], [25]. Some of these filters are also described in
Sec. V for the purpose of comparisons with the proposed
FPF algorithm.

The feedback particle filter (FPF) is an exact algorithm
for the solution of the continuous-time nonlinear filtering
problem. The FPF algorithm was originally proposed in
the Euclidean setting of Rn [42]. In a recent paper from
our group, the FPF was extended to filtering on compact
matrix Lie groups [45]. The FPF is an intrinsic algorithm:
The particle dynamics, expressed in their Stratonovich form,
respect the geometric constraints of the manifold. The update
step in FPF has a gain-feedback structure where the gain
needs to be obtained numerically as a solution to a certain
linear Poisson equation. When the gain function can be
exactly computed, the FPF is an exact algorithm. In this
case, in the limit of large number of particles, the empirical
distribution of the particles exactly matches the posterior
distribution of the hidden state.

The contributions of this paper are as follows:

• FPF algorithm for attitude estimation. The FPF algo-
rithm is presented for the problem of attitude estimation. The
explicit form of the filter is described with respect to both
the rotation matrix and the quaternion coordinate, with the
latter being demonstrated for computational purposes.

• Numerical solution of the gain function. The FPF algo-
rithm requires numerical approximation of the gain function
as a solution to a linear Poisson equation on the Lie group.
For this purpose, two numerical methods are proposed: In
a Galerkin scheme, the gain function is approximated with
a set of pre-defined basis functions. The second scheme
involves solving a fixed-point equation associated with the
weighted Laplacian operator on the manifold.

• Comparison of attitude filters. For the purpose of
comparison, the invariant EKF, the multiplicative EKF, and
the UKF algorithms are briefly reviewed. Simulation studies
are presented to compare performance between these filters
and the proposed FPF algorithm.

The remainder of this paper is organized as follows: After
a brief review in Sec. II of the relevant Lie group prelim-
inaries, the problem of attitude estimation is formulated in
Sec. III. The FPF algorithm on SO(3) is described in IV,
and some other attitude filters are briefly reviewed in Sec.
V. Numerical simulations are contained in Sec. VI.
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II. MATHEMATICAL PRELIMINARIES

Geometry of SO(3): The special orthogonal group SO(3)
is the group of 3× 3 matrices R such that RRT = I and
det(R) = 1. The Lie algebra so(3) is the 3-dimensional
inner product space of skew-symmetric matrices. The inner
product is denoted as 〈·, ·〉so(3). Given an orthonormal basis
{E1,E2,E3}, a vector ω = (ω1,ω2,ω3) ∈ R3 is uniquely
mapped to an element in so(3), denoted as [ω ]× := ω1E1 +
ω2E2 +ω3E3. The exponential map of Ω ∈ so(3) is denoted
as exp(Ω), and the space of smooth real-valued functions
f : SO(3) → R is denoted as C∞(G), where we write G
interchangeably as SO(3).

Vector field: The Lie algebra is identified with the tangent
space at the identity matrix I ∈ SO(3), and used to construct
a basis {ER

1 ,E
R
2 ,E

R
3 } for the tangent space at R ∈ SO(3),

where ER
n := REn for n = 1,2,3. Therefore, a smooth vector

field, denoted as V , is expressed as,

V (R) = v1(R)ER
1 + v2(R)ER

2 + v3(R)ER
3 ,

with vn(R) ∈ C∞(G). We write V = RV , where V (R) :=
v1(R)E1 + v2(R)E2 + v3(R)E3 is an element of so(3). The
functions

(
v1(R),v2(R),v3(R)

)
are called coordinates of V .

The inner product of two vector fields is

〈V ,W 〉(R) := 〈V,W 〉so(3)(R) =
3

∑
n=1

vn(R)wn(R).

With a slight abuse of notation, the action of the vector
field V on f ∈C∞(G) is denoted as,

V · f (R) :=
d
dt

∣∣∣
t=0

f
(
Rexp(tV (R))

)
.

A smooth function, denoted as divV , is then defined as,

divV (R) =
3

∑
n=1

En · vn(R).

We also define the vector field grad(φ) for φ ∈C∞(G) as,

grad(φ)(R) = RK(R),

where K(R)∈ so(3), with coordinates
(
k1(R), k2(R), k3(R)

)
:=
(
E1 ·φ(R), E2 ·φ(R), E3 ·φ(R)

)
.

Apart from C∞(G), we also consider the following func-
tion spaces: For a probability measure π on G, L2(G;π)
denotes the Hilbert space of functions on G that satisfy
π(| f |2) < ∞ ( here π(| f |2) :=

∫
G | f |2 dπ ); H1(G;π) denotes

the Hilbert space of functions f such that f and En · f
(defined in the weak sense) are all in L2(G;π).

Quaternions: Quaternions provide a computationally effi-
cient coordinate representation for SO(3). A unit quaternion
has the general form

q = (q0, q1, q2, q3)

=
(

cos(
θ

2
), sin(

θ

2
)ω1, sin(

θ

2
)ω2, sin(

θ

2
)ω3

)
,

and represents rotation of angle θ about the axis defined
by the unit vector (ω1,ω2,ω3). As with SO(3), the space

of quaternions admits a Lie group structure: The identity
quaternion is qI = (1,0,0,0), the inverse of q is q−1 =
(q0,−q1,−q2,−q3), and the multiplication is defined as,

p⊗q =

[
p0q0− pV ·qV

p0qV +q0 pV + pV ×qV

]
,

where pV =(p1, p2, p3), qV =(q1,q2,q3), and · and × denote
the dot product and the cross product of two vectors.

Given a unit quaternion q, the corresponding rotation
matrix R = R(q) ∈ SO(3) is calculated by,

R =

 2q2
0 +2q2

1−1 2(q1q2−q0q3) 2(q1q3 +q0q2)
2(q1q2 +q0q3) 2q2

0 +2q2
2−1 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3 +q0q1) 2q2
0 +2q2

3−1

 .
(1)

For more comprehensive introduction of Lie groups and
quaternions, we refer the reader to [17], [37].

III. ATTITUDE ESTIMATION PROBLEM STATEMENT

A. Process model

A kinematic model of rigid body is given by,

dRt = RtΩt dt +Rt ◦ [ dBt ]×, (2)

where Rt ∈ SO(3) is the orientation of the rigid body at time
t, expressed with respect to an inertial frame, Ωt = [ωt ]×
represents the angular velocity expressed in the body frame,
and Bt is a standard Wiener process in R3. Both Ωt and
[ dBt ]× are elements of so(3). The ◦ before dBt indicates
that the stochastic differential equation (sde) (2) is expressed
in its Stratonovich form.

Using the quaternion coordinate, (2) is written as,

dqt =
1
2

qt ⊗ (ωt dt + dBt), (3)

where, by a slight abuse of notation, ωt ∈ R3 is interpreted
as a quaternion (0,ωt), and dBt is interpreted similarly. The
sde (3) is also interpreted in the Stratonovich sense.

B. Measurement model

Accelerometer: In the absence of translational motion, the
accelerometer is modeled as,

dZg
t = RT

t rg dt + dW g
t , (4)

where rg ∈R3 is the unit vector in the inertial frame aligned
with the gravity, and W g

t is a standard Wiener process in R3.
Magnetometer: The model of the magnetometer is of a
similar form,

dZb
t = RT

t rb dt + dW b
t , (5)

where rb ∈R3 is the unit vector in the inertial frame aligned
with the local magnetic field, and W b

t is a standard Wiener
process in R3.



C. Nonlinear filtering problem on SO(3)

In terms of the process and measurement models, the non-
linear filtering problem for attitude estimation is succinctly
expressed as,

dRt = RtΩt dt +Rt ◦ [ dBt ]×, (6a)
dZt = h(Rt)dt + dWt , (6b)

where Ωt = [ωt ]× is the angular velocity, h : SO(3)→Rm is
a given nonlinear function whose j-th coordinate is denoted
as h j (i.e. h = (h1,h2, ...,hm)), and Wt is a standard Wiener
process in Rm. Note that (6b) encapsulates the sensor models
given in (4) and (5) with a single equation. For the purpose of
this paper, it is not necessary to assume that the models are
linear. It is assumed that Bt and Wt are mutually independent,
and independent of the initial condition R0 which is drawn
from a known initial distribution, denoted as π∗0 .

The objective of the attitude estimation problem, described
by (6a) and (6b), is to compute the conditional distribution of
Rt given the history of measurements (filtration) Zt = σ(Zs :
s≤ t). The conditional distribution, denoted as π∗t , acts on a
function f ∈C∞(G) according to,

π
∗
t ( f ) := E[ f (Rt)|Zt ].

Remark 1: There are a number of simplifying assump-
tions implicit in the model defined in (6a) and (6b). In
practice, ωt needs to be estimated from noisy gyroscope
measurements and there is translational motion as well.
This will require additional models which can be easily
incorporated within the proposed filtering framework.

The purpose of this paper is to elucidate the geometric
aspects of the FPF in the simplest possible setting of SO(3).
More practical FPF-based filters that also incorporate models
for translational motion, measurements of ωt from gyro-
scope, effects of translational motion on accelerometer, and
effects of sensor bias are subject of separate publication.

IV. FEEDBACK PARTICLE FILTER ON SO(3)

A. FPF on SO(3)

The feedback particle filter is a controlled system with
N stochastic processes {Ri

t}N
i=1 where Ri

t ∈ SO(3) 1. The
conditional distribution of the particle Ri

t given Zt is denoted
by πt , which acts on f ∈C∞(G) according to,

πt( f ) := E[ f (Ri
t)|Zt ].

The dynamics of the i-th particle is defined by,

dRi
t = Ri

t Ωt dt +Ri
t ◦ [ dBi

t ]×︸ ︷︷ ︸
propagation

+Ri
t [K(R

i
t , t)◦ dIi

t ]×︸ ︷︷ ︸
measurement update

, (7)

where {Bi
t}N

i=1 are mutually independent standard Wiener
processes in R3, and Ri

0 is drawn from the initial distribution
π∗0 . The i-th particle implements the Bayesian update step –
to account for the conditioning due to the measurements – as

1Although the rotation matrix parameterization of SO(3) is used, the filter
is intrinsic. The FPF using the quaternion appears in Sec. IV-B.

gain K(Ri
t) times an error dIi

t . The resulting control input to
the i-th particle is an element of the Lie algebra so(3).

The error dIi
t is a modified form of the innovation process:

dIi
t = dZt −

1
2
(
h(Ri

t)+ ĥ
)

dt, (8)

where ĥ := πt(h). In a numerical implementation, we approx-
imate ĥ≈ 1

N ∑
N
i=1 h(Ri

t) =: ĥ(N).
The gain function K is a 3×m matrix whose entries are

obtained as follows: For j = 1,2, ...,m, the j-th column of
K is the coordinate of the vector field grad(φ j), where the
function φ j ∈H1(G;π) is a solution to the Poisson equation,

πt
(
〈grad(φ j),grad(ψ)〉

)
= πt

(
(h j− ĥ j)ψ

)
,

πt(φ j) = 0 (normalization),
(9)

for all ψ ∈H1(G;π). This linear partial differential equation
(pde) has to be solved for each j = 1,2, ...,m, and for each
time t ≥ 0. The existence-uniqueness of the solution of (9)
requires additional assumptions on πt ; c.f., [29].

Assumption 1: The distribution πt is absolutely contin-
uous with respect to the uniform (Lebesgue) measure on
SO(3) with a positive density function ρ .

Two numerical schemes for approximating the solution of
(9) appear in Sec. IV-C and Sec. IV-D, respectively.

For the FPF (7)-(9), the following result is proved in [45]
that relates πt to π∗t :

Theorem 1: Consider the particle system that evolves ac-
cording to (7), where the gain function is obtained as solution
to the Poisson equation (9), and the error is defined as in (8).
Suppose that Assumption 1 holds. Then assuming π0 = π∗0 ,
we have

πt( f ) = π
∗
t ( f ),

for all t > 0 and all function f ∈C∞(G).

B. Quaternion representation

For numerical purposes, it is convenient to express the FPF
with respect to the quaternion coordinate. In this coordinate,
the dynamics of the i-th particle evolves according to,

dqi
t =

1
2

qi
t ⊗ dν

i
t , (10)

where qi
t is the quaternion state of the i-th particle, and ν i

t ∈
R3 evolves according to,

dν
i
t = ωt dt + dBi

t +K(qi
t)◦
(

dZt −
h(qi

t)+ ĥ
2

dt
)
, (11)

where K(q, t) = K(R(q), t) and h(q) = h(R(q)), with R =
R(q) given by the formula (1).

C. Galerkin gain function approximation

In this section, a Galerkin scheme is presented to approx-
imate the solution of the Poisson equation (9). Since the
equations for each j = 1,2, ...,m are uncoupled, without loss
of generality, a scalar-valued measurement is assumed (i.e.,
m = 1, and φ j, h j are denoted as φ , h). As the time t is fixed,



the explicit dependence on t is suppressed (i.e., we denote
πt as π , Ri

t as Ri). This notation is also used in Sec. IV-D.
In a Galerkin scheme, the solution φ is approximated as,

φ =
L

∑
l=1

κl ψl ,

where {ψl}L
l=1 is a given (assumed) set of basis functions

on SO(3). The gain function K= (k1,k2,k3), defined as the
coordinates of grad(φ), is then given by,

kn =
L

∑
l=1

κl En ·ψl , n = 1,2,3.

The finite-dimensional approximation of the Poisson equa-
tion (9) is to choose coefficients {κl}L

l=1 such that,

L

∑
l=1

κl π
(
〈grad(ψl),grad(ψ)〉

)
= π

(
(h− ĥ)ψ

)
, (12)

for all ψ ∈ span{ψ1, ...,ψL} ⊂ H1(G;π). On taking ψ =
ψ1, ...,ψL, (12) is compactly written as a linear matrix
equation,

Aκ = b, (13)

where κ := (κ1, . . . ,κL). The L×L matrix A and the L× 1
vector b are defined and approximated as,

[A]kl = π
(
〈grad(ψl),grad(ψk)〉

)
≈ 1

N

N

∑
i=1
〈grad(ψl)(Ri),grad(ψk)(Ri)〉

=
1
N

N

∑
i=1

3

∑
n=1

(En ·ψl)(Ri)(En ·ψk)(Ri), (14)

bk = π
(
(h− ĥ)ψk

)
≈ 1

N

N

∑
i=1

(h(Ri)− ĥ)ψk(Ri), (15)

where recall ĥ≈ 1
N ∑

N
i=1 h(Ri) =: ĥ(N).

Note that both the Poisson equation (9) as well as
its Galerkin finite-dimensional approximation (13) are
coordinate-free representations. Particle-based approxima-
tion of (13), viz. (14) and (15), may be obtained using R
or q, or any other coordinate representation.

The choice of basis function is crucial in the Galerkin
scheme, and one choice appears in Appendix A.

D. Kernel-based gain function approximation

In a kernel-based scheme, the solution to the Poisson
equation (9) is the solution of the following fixed-point
equation for fixed positive τ ,

φ = eτ ∆ρ φ +
∫

τ

0
es∆ρ (h− ĥ)ds, (16)

where eτ ∆ρ is the semigroup associated with the weighted
Laplacian on SO(3), defined as ∆ρ := (1/ρ)div

(
ρ grad(φ)

)
,

where ρ is the density of π . For small time τ = ε , the
operator eτ ∆ρ is approximated using the particles as,

eε ∆ρ φ(R)≈
1
N ∑

N
i=1 k(ε,N)(R,Ri)φ(Ri)

1
N ∑

N
i=1 k(ε,N)(R,Ri)

, (17)

where the kernel k(ε,N) : SO(3)×SO(3)→ R is given by,

k(ε,N)(R1,R2) =
g(ε)(R1,R2)√

1
N ∑

N
i=1 g(ε)(R1,Ri)

√
1
N ∑

N
i=1 g(ε)(R2,Ri)

,

(18)
and the Gaussian kernel g(ε) is defined as,

g(ε)(R1,R2) :=
1

(4πε)3/2 exp
(
− |R1−R2|2F

4ε

)
, (19)

where ε is a small positive parameter, and | · |F denotes
the Frobenius norm of a matrix. The justification for the
approximation (17) appears in [20].

The approximation (17) yields a finite-dimensional ap-
proximation of the fixed-point equation (16):

Φ = T (N)
Φ + εH(N), (20)

where Φ ∈ RN is the approximate solution that needs to
be computed, H(N) =

(
h(R1)− ĥ(N),h(R2)− ĥ(N), ...,h(RN)−

ĥ(N)
)
, and T (N) ∈ RN×N whose entries are given by,

T (N)
i j =

k(ε,N)(Ri,R j)

∑
N
l=1 k(ε,N)(Ri,Rl)

. (21)

Note that T (N) is a stochastic matrix with positive entries,
and as a result, the fixed-point equation (20) is a contraction
on the space of normalized vectors The solution can be
obtained by successive approximations. The solution φ of
(16), evaluated at the particles, is then approximated as
φ(Ri)≈Φi, the i-th entry of Φ .

The gain function is given by K = (k1,k2,k3), where
kn = En · φ for n = 1,2,3, and is evaluated at the particles
according to,

En ·φ(Ri) =−ε En ·h(Ri)+
1

2ε

[(
SnΦ

)
i−
(
Sn1
)

i

(
T (N)

Φ
)

i

]
,

(22)
where 1 = (1,1, ...,1) ∈ RN , and the entries of the N ×N
matrix Sn are given by,

(Sn)i j = T (N)
i j Tr(RiEnR j),

where Tr(·) denotes the trace of a matrix.

Remark 2: The theory for the kernel-based gain function
approximation, together with its convergence analysis and
numerical illustration, appears in a companion paper [36].

E. FPF algorithm

The FPF algorithm is numerically implemented using the
quaternion coordinate, and is described in Algorithm 1.
The algorithm simulates N particles, {qi

t}N
i=1, according to

the sde’s (10) and (11), with the initial conditions {qi
0}N

i=1
sampled i.i.d. from a given prior distribution π∗0 . The gain
function is approximated using either the Galerkin scheme
(see Sec. IV-C and Algorithm 2), or the kernel-based scheme
(see Sec. IV-D and Algorithm 3).

Given a particle set {qi
t}N

i=1, its empirical mean is obtained
as the eigenvector (with norm 1) of the 4× 4 matrix Q =
1
N ∑

N
i=1 qi

tq
i T
t , corresponding to its largest eigenvalue [33].



Algorithm 1 Feedback Particle Filter on SO(3)

1: initialization: sample {qi
0}N

i=1 from π∗0
2: Assign t = 0
3: iteration: from t to t +∆t
4: Calculate ĥ(N) = (1/N)∑

N
i=1 h(qi

t)
5: for i = 1 to N do
6: Generate a sample, ∆Bi

t , from N(0, I)
7: Calculate the error

∆Ii
t := ∆Zt − (1/2)(h(qi

t)+ ĥ(N))∆t

8: Calculate gain function K(qi
t , t)

9: Calculate ∆ν i
t = ωt ∆t +

√
∆t ∆Bi

t +K(qi
t , t)∆Ii

t
10: Propagate the particle qi

t according to

qi
t+∆t = qi

t ⊗

[
cos
(
|∆ν i

t |/2
)

∆ν i
t

|∆ν i
t |

sin
(
|∆ν i

t |/2
)]

(| · | denotes the Euclidean norm in R3)
11: end for
12: Define matrix Q = 1

N ∑
N
i=1 qi

t+∆tq
i T
t+∆t

13: return: empirical mean of {qi
t+∆t}N

i=1, i.e., the eigenvec-
tor of Q associated with its largest eigenvalue

14: Assign t = t +∆t

Algorithm 2 Galerkin gain function approximation
1: input: Particles {qi}N

i=1
2: Calculate ĥ(N) = (1/N)∑

N
i=1 h(qi)

3: for k = 1 to L do
4: Calculate bk =

1
N ∑

N
i=1
(
h(qi)− ĥ(N)

)
ψk(qi)

5: for l = 1 to L do
6: Calc. Akl =

1
N ∑

N
i=1 ∑

3
n=1(En ·ψl)(qi)(En ·ψk)(qi)

7: end for
8: end for
9: Solve the matrix equation Aκ = b, with A= [Akl ], b= [bk]

10: Calculate kn(qi) = ∑
L
l=1 κl En ·ψl(qi), for n = 1,2,3

11: return:
{
K(qi) =

(
k1(qi), k2(qi), k3(qi)

)}N
i=1

V. REVIEW OF SOME ATTITUDE FILTERS

In this section, we restrict our attention to the attitude
estimation problem with linear observations of the form
h(Rt) = RT

t r where r is a known reference vector in the
inertial frame (see the models of accelerometer and mag-
netometer in (4), (5)). A majority of the literature deals with
such linear models. For discrete-time filters, it is convenient
to define Yt := dZt

dt , whose model is formally expressed as,

Yt = RT
t r+Ẇt ,

where Ẇt is a white noise process in R3. In this section, we
assume without loss of generality that the covariance matrix
associated with Ẇt is the identity matrix.

The sequence of sampling instants is denoted as {tn},
n = 0,1,2, ..., with uniform time step ∆t = tn+1 − tn. The

Algorithm 3 Kernel-based gain function approximation
1: input: Particles {qi}N

i=1, parameters ε , K
2: Calculate ĥ(N) = (1/N)∑

N
i=1 h(qi)

3: for i = 1 to N do
4: Calculate H(N)

i = h(qi)− ĥ(N)

5: for j = 1 to N do
6: Calculate g(ε)(qi,q j), k(ε,N)(qi,q j) by (19), (18)
7: Calculate T (N)

i j according to (21)
8: for n = 1,2,3 do
9: Calculate (Sn)i j = T (N)

i j Tr
(
R(qi)En R(q j)

)
10: end for
11: end for
12: end for
13: Assign Φ0 as solution of (20) in previous time step
14: for k = 0 to K−1 do
15: Calculate Φk+1 = T (N)Φk+εH(N), with T (N) = [T (N)

i j ]
16: end for
17: for i = 1 to N do
18: for n = 1,2,3 do
19: Calc. kn(qi) by (22) with Sn = [(Sn)i j] and Φ = ΦK

20: end for
21: end for
22: return:

{
K(qi) =

(
k1(qi), k2(qi), k3(qi)

)}N
i=1

discrete-time sampled measurements are denoted as {Yn}.
Similarly, {Rn} and {ωn} denote the discrete-time samples
of Rt and ωt . Furthermore, R̂n denotes the posterior filter
estimate at time tn, R̂n|n−1 denotes the filter estimate after
the propagation step but before the measurement update, and
Σn|n−1, Σn denote the associated covariance matrices.

A. Invariant extended Kalman filter

The invariant EKF (IEKF) models the attitude at time tn
as the product

Rn = δRn R̂n, (23)

where the estimation error, δRn ∈ SO(3), is represented as
δRn = exp([ηn ]×) where ηn ∈ R3. At each time step, the
estimate of ηn, denoted as η̂n, is obtained as follows:
(i) Propagation step:

R̂n|n−1 = R̂n−1exp([ωn−1∆t ]×),

Σn|n−1 = Σn−1 +(∆t)I.

(ii) Update step: The innovation error is defined in the
inertial frame,

In = R̂n|n−1Yn− r,

and the gain matrix Kn is calculated according to,

Kn = Σn|n−1HT (HΣn|n−1HT + I
)−1

,

where H = [r ]×.
(iii) Posterior update:

η̂n = KnIn,

R̂n = exp([ η̂n ]×) R̂n|n−1,

Σn = (I−KnH)Σn|n−1.



For more details of the IEKF algorithm, we refer the reader
to [6].

B. Multiplicative extended Kalman filter

The multiplicative EKF (MEKF) models the attitude at
time tn as the product

Rn = R̂n δRn, (24)

where the estimation error, δRn ∈ SO(3), is parameterized
by some coordinate, e.g., the modified Rodrigues parameter
[21]. The coordinate is denoted as an ∈ R3, and δRn =
δR(an). At each time step, the estimate of an, denoted as
ân, is obtained as follows:
(i) Propagation step:

R̂n|n−1 = R̂n−1exp([ωn−1∆t ]×),

Σn|n−1 = ΛΣn−1Λ
T +(∆t)I,

where Λ = I− [ωn−1∆t ]×.
(ii) Update step:

In = Yn− R̂T
n|n−1r,

Kn = Σn|n−1HT (HΣn|n−1HT + I
)−1

,

where H = [ R̂T
n|n−1r ]×. In contrast to the IEKF, the innova-

tion error in the MEKF is defined in the body frame.
(iii) Posterior estimate:

ân = KnIn,

R̂n = R̂n|n−1 δR(ân),

Σn = (I−KnH)Σn|n−1.

For more details of the MEKF algorithm, we refer the
reader to [32], [37].

C. Unscented Kalman filter

The unscented Kalman filter (UKF) for attitude estimation,
presented in [22], also uses the parameterization of the
MEKF, i.e.,

Rn = R̂nδR(an),

where an ∈ R3 is the chosen coordinate. The estimate of an
is obtained by using a standard UKF in R3. For equations
of the algorithm, we refer the reader to [22].

D. Other filters

Apart from the above, other types of attitude filters include
the continuous-time IEKF [13], the geometric approximate
minimum-energy (GAME) filter [44], and the bootstrap parti-
cle filter [15]. These filters are not included in the simulation-
based comparisons that are presented next.

VI. SIMULATIONS

For numerical simulations of the filters, we consider the
following attitude estimation problem,

dqt =
1
2

qt ⊗
(
ωt dt +ΣB dBt

)
,

dZt =

[
R(qt)

T 0
0 R(qt)

T

][
rg

rb

]
dt +

[
ΣW 0
0 ΣW

]
dWt ,

where the angular velocity is given by [43],

ωt =
(

sin(
2π

15
t), − sin(

2π

18
t +

π

20
), cos(

2π

17
t)
)
,

rg = (0,0,−1) and rb = (1/
√

2,0,1/
√

2) represent the direc-
tion of the gravity and the local magnetic field, and ΣB and
ΣW are 3×3 diagonal matrices associated with the process
noise and the sensor noise, respectively.

The following filters are implemented for the comparison:
1) IEKF: the algorithm is described in Sec. V-A.
2) MEKF: the algorithm is described in Sec. V-B, using

the modified Rodrigues parameter.
3) UKF: the algorithm is described in Sec. V-C and [22],

using the modified Rodrigues parameter.
4) FPF-G: the FPF using the Galerkin gain functions, as

described in Sec. IV-C and Algorithm 2, with fixed
basis functions defined in Appendix A.

5) FPF-K: the FPF using the kernel-based gain functions,
as described in Sec. IV-D and Algorithm 3, with ε = 1
and K = 10.

The performance metric is the root-mean-squared error
(RMSE) [43], [25]:

RMSEt =

√
(1/M)∑

M
j=1

(
δφ

j
t
)2
,

where δφ
j

t is the rotation angle error at time t for the j-th
Monte Carlo run, j = 1,2, ...,M. The rotation angle error
is defined as follows: Let qt and q̂t denote the true and
estimated attitude at time t, and let δqt := q̂−1

t ⊗qt represent
the estimation error, then δφt = 2arccos(|δq0|), where δq0
is the first component of δqt .

The filters are initialized with a “concentrated Gaussian
distribution” [39], denoted as N(qI ,Σ0), whose mean qI is the
identity quaternion, and Σ0 is a diagonal matrix representing
the variance in each axis of the Lie algebra. The particles
in the FPF algorithms are sampled from this distribution
as follows: First, one generates samples {vi}N

i=1 from the
Gaussian distribution N(0,Σ0) in R3. Then, the particles
{Ri

0}N
i=1 are obtained by Ri

0 = exp([vi ]×), and converted to
the quaternions {qi

0}N
i=1.

The simulations are conducted over a finite time-horizon
t ∈ [0,T ] with fixed time step ∆t. The process noise ΣB has
standard deviation (std. dev.) of 5(◦/s). To avoid numerical
instability due to large gain values, each of the first three
measurement updates in all filters is implemented sequen-
tially on a partition of the time step ∆t with N f uniform sub-
intervals. For FPF-G, N f = 100; For other filters, N f = 20
when ΣW is large, and N f = 30 when ΣW is small. The
relevant parameters are listed in Table 1.



(a) Initial distribution: 30◦, sensor noise: 10◦ (b) Initial distribution: 60◦, sensor noise: 30◦

Fig. 1: Comparison of filter performance with different initial distribution error and sensor noise.

TABLE 1: SIMULATION PARAMETERS

ΣB T ∆t N M
0.0087272I 2 0.01 200 100

Fig. 1 illustrates the filter performance with different initial
distribution and sensor noise. In Fig. 1 (a), Σ0 = 0.52362I,
corresponding to the std. dev. of 30◦, and the target is
initialized from the same distribution. The sensor noise ΣW =
0.017452I, i.e., the std. dev. is 10◦. In this case, all the filters
have nearly identical performance.

In Fig. 1(b), Σ0 = 1.04722I, corresponding to the std.
dev. of 60◦, and the target is initialized with fixed attitude –
rotation of 180◦ about the axis (3,1,4). The sensor noise
ΣW = 0.052362I, i.e., the std. dev. is 30◦. These parameters
indicate larger initial estimation error and uncertainty of
the filters, and larger sensor noise. In this case, the FPF-K
converges significantly faster than the other filters.

When the initial estimation error is large, the Galerkin
scheme yields significant error in computing the gain func-
tions, and thus FPF-G is not included in Fig. 1(b). It is
expected that one would require additional basis functions
in this case. The computational complexity of the Galerkin
scheme for one measurement update is approximately linear
in the number of particles, whereas it is approximately
quadratic for computing the kernel-based gain functions.

VII. CONCLUSION

In this paper, the feedback particle filter was presented for
the problem of attitude estimation. The FPF is an intrinsic
algorithm, possesses a gain-feedback structure and automat-
ically respects the geometric constraint of the manifold.
The algorithm was described using both the rotation matrix
and the quaternion coordinate. The performance of FPF and
its comparison with other attitude filters was illustrated by
numerical simulations.

The continuing research includes improving the com-
putational efficiency of the gain function approximation,
and application of FPF for attitude estimation with more
complicated models with e.g., translation and sensor bias.

APPENDIX

A. Basis functions in Galerkin scheme

For the Galerkin scheme presented in Sec. IV-C, the
following basis functions on SO(3) are considered, expressed
using the quaternion:

ψ1(q) = 2q1q0, ψ2(q) = 2q1q0,

ψ3(q) = 2q1q0, ψ4(q) = 2q2
0−1.

In order to compute the matrix A and the vector b in the
Galerkin scheme, the formulae for the action of E1, E2, E3
on these basis functions are provided in Table 2.

TABLE 2: ACTION OF En ON BASIS FUNCTIONS

E1· E2· E3·
ψ1 q2

0−q2
1 −q1q2−q3q0 −q1q3 +q2q0

ψ2 −q1q2 +q3q0 q2
0−q2

2 −q2q3−q1q0
ψ3 −q1q3−q2q0 −q2q3 +q1q0 q2

0−q2
3

ψ4 −2q1q0 −2q2q0 −2q3q0
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