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Abstract— This paper is concerned with numerical algo-
rithms for gain function approximation in the feedback particle
filter. The exact gain function is the solution of a Poisson equa-
tion involving a probability-weighted Laplacian. The problem is
to approximate this solution using only particles sampled from
the probability distribution. Two algorithms are presented: a
Galerkin algorithm and a kernel-based algorithm. Both the
algorithms are adapted to the samples and do not require
approximation of the probability distribution as an intermediate
step. The paper contains error analysis for the algorithms as
well as some comparative numerical results for a non-Gaussian
distribution. These algorithms are also applied and illustrated
for a simple nonlinear filtering example.

I. INTRODUCTION

This paper is concerned with algorithms for numerically
approximating the solution of a certain linear partial differ-
ential equation (pde) that arises in the problem of nonlinear
filtering. In continuous time, the filtering problem pertains
to the following stochastic differential equations (sdes):

dXt = a(Xt)dt + dBt , (1a)
dZt = h(Xt)dt + dWt , (1b)

where Xt ∈ Rd is the (hidden) state at time t, Zt ∈ R is the
observation, and {Bt}, {Wt} are two mutually independent
standard Wiener processes taking values in Rd and R,
respectively. The mappings a(⋅) ∶Rd →Rd and h(⋅) ∶Rd →R
are C1 functions. Unless noted otherwise, all probability
distributions are assumed to be absolutely continuous with
respect to the Lebesgue measure, and therefore will be
identified with their densities. The choice of observation
being scalar-valued (Zt ∈R) is made for notational ease.

The objective of the filtering problem is to estimate
the posterior distribution of Xt given the time history of
observations (filtration) Zt ∶= σ(Zs ∶ 0 ≤ s ≤ t). The density
of the posterior distribution is denoted by p∗, so that for any
measurable set A ⊂Rd ,

∫
x∈A

p∗(x,t) dx = P[Xt ∈ A ∣Zt].

The filter is infinite-dimensional since it defines the evolu-
tion, in the space of probability measures, of {p∗( ⋅ ,t) ∶ t ≥ 0}.
If a( ⋅), h( ⋅) are linear functions, the solution is given by
the finite-dimensional Kalman-Bucy filter. The article [3]
surveys numerical methods to approximate the nonlinear
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filter. One approach described in this survey is particle
filtering.

The particle filter is a simulation-based algorithm to
approximate the filtering task [14]. The key step is the
construction of N stochastic processes {X i

t ∶ 1 ≤ i ≤ N}: The
value X i

t ∈Rd is the state for the i-th particle at time t. For
each time t, the empirical distribution formed by the particle
population is used to approximate the posterior distribution.
Recall that this is defined for any measurable set A ⊂Rd by,

p(N)(A,t) = 1
N

N

∑
i=1

1[X i
t ∈ A].

A common approach in particle filtering is called sequential
importance sampling, where particles are generated accord-
ing to their importance weight at every time step [1], [14].

In our earlier papers [17], [16], [18], an alternative feed-
back control-based approach to the construction of a particle
filter was introduced. The resulting particle filter, referred to
as the feedback particle filter (FPF), is a controlled system.
The dynamics of the i-th particle have the following gain
feedback form,

dX i
t = a(X i

t )dt + dBi
t +Kt(X i

t )○(dZt −
h(X i

t )+ ĥt

2
dt), (2)

where {Bi
t} are mutually independent standard Wiener pro-

cesses and ĥt ∶= E[h(X i
t )∣Zt]. The initial condition X i

0 is
drawn from the initial density p∗(x,0) of X0 independent
of {Bi

t}. Both {Bi
t} and {X i

0} are also assumed to be inde-
pendent of Xt ,Zt . The ○ indicates that the sde is expressed
in its Stratonovich form.

The gain function Kt is obtained by solving a weighted
Poisson equation: For each fixed time t, the function φ is the
solution to a Poisson equation,

BVP
∇⋅(p(x,t)∇φ(x,t)) = −(h(x)− ĥ)p(x,t),

∫ φ(x,t)p(x,t)dx = 0 (zero-mean),
(3)

for all x ∈ Rd where ∇ and ∇⋅ denote the gradient and
the divergence operators, respectively, and p denotes the
conditional density of X i

t given Zt .
In terms of the solution φ , the gain function is given by,

Kt(x) =∇φ(x,t) .

Note that the gain function Kt is vector-valued (with dimen-
sion d×1) and it needs to be obtained for each fixed time t.
For the linear Gaussian case, the gain function is the Kalman
gain. For the general nonlinear non-Gaussian problem, the
FPF (2) is exact, given an exact gain function and an exact
initialization p( ⋅ ,0) = p∗( ⋅ ,0). Consequently, if the initial
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conditions {X i
0}N

i=1 are drawn from the initial density p∗( ⋅ ,0)
of X0, then, as N →∞, the empirical distribution of the
particle system approximates the posterior density p∗( ⋅ ,t)
for each t.

A numerical implementation of the FPF (2) requires a nu-
merical approximation of the gain function Kt and the mean
ĥt at each time-step. The mean is approximated empirically,
ĥt ≈ 1

N ∑
N
i=1 h(X i

t ) =∶ ĥ
(N)
t . The gain function approximation -

the focus of this paper - is a challenging problem because
of two reasons: i) Apart from the linear Gaussian case, there
are no known closed-form solutions of (3); ii) The density
p(x,t) is not explicitly known. At each time-step, one only
has samples X i

t . These are assumed to be i.i.d sampled from
p. Apart from the FPF algorithm, solution of the Poisson
equation is also central to a number of other algorithms for
nonlinear filtering [5], [15].

In our prior work, we have obtained results on existence,
uniqueness and regularity of the solution to the Poisson
equation, based on certain weak formulation of the Poisson
equation. The weak formulation led to a Galerkin numerical
algorithm. The main limitation of the Galerkin is that the
algorithm requires a pre-defined set of basis functions -
which scales poorly with the dimension d of the state. The
Galerkin algorithm can also exhibit certain numerical issues
related to the Gibb’s phenomena. This can in turn lead to
numerical instabilities in simulating the FPF.

The contributions of this paper are as follows: We present a
new basis-free kernel-based algorithm for approximating the
solution of the gain function. The key step is to construct
a Markov matrix on a certain graph defined on the space
of particles {X i

t }N
i=1. The value of the function φ for the

particles, φ(X i
t ), is then approximated by solving a fixed-

point problem involving the Markov matrix. The fixed-point
problem is shown to be a contraction and the method of
successive approximation applies to numerically obtain the
solution.

We present results on error analysis for both the Galerkin
and the kernel-based method. These results are illustrated
with the aid of an example involving a multi-modal distri-
bution. Finally, the two methods are compared for a filtering
problem with a non-Gaussian distribution.

In the remainder of this paper, we express the linear
operator in (3) as a weighted Laplacian ∆ρ φ ∶= 1

ρ
∇⋅(ρ∇φ)

where additional assumptions on the density ρ appear in the
main body of the paper. In recent years, this operator and
the associated Markov semigroup have received considerable
attention with several applications including spectral cluster-
ing, dimensionality reduction, supervised learning etc [4],
[10]. For a mathematical treatment, see the monographs [8],
[2]. Related specifically to control theory, there are important
connections with stochastic stability of Markov operators [7],
[13].

The outline of this paper is as follows: The mathematical
preliminaries appear in Sec. II. The Galerkin and the kernel-
based algorithms for the gain function approximation appear
in Sec. III and Sec. IV, respectively. The nonlinear filtering
example appears in Sec. V.

II. MATHEMATICAL PRELIMINARIES

The Poisson equation (3) is expressed as,

BVP
−∆ρ φ = h,

∫ φρ dx = 0 (zero-mean),
(4)

where ρ is a probability density on Rd , ∆ρ φ ∶= 1
ρ
∇⋅(ρ∇φ)

and, without loss of generality, it is assumed ĥ = ∫ hρ dx = 0.

Problem statement: Approximate the solution φ(X i) and
∇φ(X i) given N independent samples X i drawn from ρ . The
density ρ is not explicitly known.

For the problem to be well-posed requires definition of
the function spaces and additional assumptions on ρ and h
enumerated next: Throughout this paper, µ is an absolutely
continuous probability measure on Rn with associated den-
sity ρ . L2(Rd ,µ) is the Hilbert space of square integrable
functions on Rd equipped with the inner-product,

< φ ,ψ >∶= ∫ φ(x)ψ(x)dµ(x).

The associated norm is denoted as ∥φ∥2
2 ∶=< φ ,φ >. The space

H1(Rd ,µ) is the space of square integrable functions whose
derivative (defined in the weak sense) is in L2(Rd ,µ). We use
L2 and H1 to denote L2(Rd ,µ) and H1(Rd ,µ), respectively.
For the zero-mean solution of interest, we additionally define
the co-dimension 1 subspace L2

0 ∶= {φ ∈ L2;∫ φ dµ = 0} and
H1

0 ∶= {φ ∈H1;∫ φ dµ = 0}. L∞ is used to denote the space of
functions that are bounded a.e. (Lebesgue) and the sup-norm
of a function φ ∈ L∞ is denoted as ∥φ∥∞.

The following assumptions are made throughout the pa-
per:

(i) Assumption A1: The probability density function ρ

is of the form ρ(x) = e−(x−µ)
T

Σ
−1
(x−µ)−V(x) where µ ∈

Rd , Σ is a positive-definite matrix and V ∈C2 with V ∈
L∞, and its derivatives DV,D2V ∈ L∞.

(ii) Assumption A2: The function h ∈ L2 and ∫ hdµ = 0.
Under assumption A1, the density ρ admits a spectral gap

(or Poincaré inequality)[2], i.e ∃ λ1 > 0 such that,

∫ φ
2
ρ dx ≤ 1

λ1
∫ ∣∇φ ∣2ρ dx, ∀φ ∈H1

0 . (5)

Furthermore, the spectrum is known to be discrete with
an ordered sequence of eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ⋯
and associated eigenfunctions {en} that form a complete
orthonormal basis of L2 [Corollary 4.10.9 in [2]]. The trivial
eigenvalue λ0 = 1 with associated eigenfunction e0 = 1. On the
subspace of zero-mean functions, the spectral decomposition
yields: For φ ∈ L2

0,

−∆ρ φ =
∞

∑
m=1

λm < em,φ > em. (6)

The spectral gap condition (5) implies that λ1 > 0. Conse-
quently, the semigroup

et∆ρ φ ∶=
∞

∑
m=1

e−tλm < em,φ > em (7)
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Fig. 1. The exact solution to the Poisson equation using the formula (8).
The density ρ is the sum of two Gaussians N(−1,σ2

) and N(+1,σ2
), and

h(x) = x. The density is depicted as the shaded curve in the background.

is a strict contraction on the subspace L2
0. It is also easy to

see that µ is an invariant measure and ∫ et∆ρ φ(x)dµ(x) =
∫ φ(x)dµ(x) = 0 for all φ ∈ L2

0.

Example 1: If the density ρ is Gaussian with mean µ ∈Rd

and a positive-definite covariance matrix Σ, the spectral
gap constant (1/λ1) equals the largest eigenvalue of Σ. The
eigenfunctions are the Hermite functions. Given a linear
function h(x) = H ⋅ x, the unique solution of the BVP (4)
is given by,

φ(x) = (ΣH) ⋅(x−µ),

where ⋅ denotes the vector dot product in Rd . In this case,
K =∇φ = ΣH is the Kalman gain.

Example 2: In the scalar case (where d = 1), the Poisson
equation is:

− 1
ρ(x)

d
dx

(ρ(x) dφ

dx
(x)) = h.

Integrating twice yields the solution explicitly,

dφ

dx
(x) = − 1

ρ(x) ∫
x

−∞
ρ(z)h(z)dz

φ(x) = −∫
x

−∞

dy
ρ(y) ∫

y

−∞
ρ(z)h(z)dz

(8)

For the particular choice of ρ as the sum of two Gaussians
N(−1,σ2) and N(+1,σ2) with σ = 0.4 and h(x) = x, the
solution obtained using (8) is depicted in Fig. 1. Since dh

dx > 0,
the positivity of the gain function dφ

dx (x) follows from the
maximum principle for elliptic pdes [6].

III. GALERKIN FOR GAIN FUNCTION APPROXIMATION

Weak formulation: A function φ ∈H1
0 is said to be a weak

solution of Poisson’s equation (4) if

<∇φ ,∇ψ >=< h,ψ >, ∀ψ ∈H1
0 . (9)

It is shown in [12] that, under Assumptions (A1)-(A2), there
exists a unique weak solution of the Poisson equation.

The Galerkin approximation involves solving (9) in a
finite-dimensional subspace S ⊂ H1

0 (Rd ;ρ). The solution φ

is approximated as,

φ
(M)(x) =

M

∑
m=1

cmψm(x), (10)

where {ψm(x)}M
m=1 are a given set of basis functions.

The finite-dimensional approximation of (9) is to choose
constants {cm}M

m=1 such that

<∇φ
(M),∇ψ >=< h,ψ >, ∀ψ ∈ S, (11)

where S ∶= span{ψ1,⋯,ψM} ⊂H1
0 .

Denoting [A]ml =< ∇ψl ⋅ ∇ψm >, bm =< h,ψm >, and c =
(c1,c2,⋯,cM)T , the finite-dimensional approximation (11) is
expressed as a linear matrix equation:

Ac = b. (12)

In a numerical implementation, the matrix A and vector b
are approximated as,

[A]ml =<∇ψl ⋅∇ψm >≈ 1
N

N

∑
i=1
∇ψl(X i) ⋅∇ψm(X i) =∶ [A](N)ml ,

(13)

bm =< h,ψm >≈ 1
N

N

∑
i=1

h(X i)ψm(X i) =∶ b(N)m . (14)

The resulting solution of the matrix equation (12), with A =
A(N) and b = b(N), is denoted as c(N),

A(N)c(N) = b(N). (15)

Using (10), we obtain the particle-based approximation of
the solution:

φ
(M,N)(x) =

M

∑
m=1

c(N)m ψm(x). (16)

In terms of this solution, the gain function is obtained as,

∇φ
M,N(x) =

M

∑
m=1

c(N)m ∇ψm(x).

Convergence analysis: The following is a summary of the
approximations in the Galerkin algorithm:

Exact ∶ <∇φ ,∇ψ > =< h,ψ >, ∀ψ ∈H1
0

Galerkin approx: <∇φ
(M),∇ψ > =< h,ψ >, ∀ψ ∈ S ⊂H1

0

Empirical approximation:

1
N

N

∑
i=1
∇φ
(M,N)(X i) ⋅∇ψ(X i) = 1

N

N

∑
i=1

h(X i)ψ(X i), ∀ψ ∈ S

We are interested in the error analysis of these approx-
imations as a function of both M and N. Note that the
approximation error φ

(M) − φ
(M,N) is random because X i

are sampled randomly from the probability distribution µ .
The following Proposition provides error bounds for the



case where the basis functions are the eigenfunctions of the
Laplacian. The proof appears in the Appendix A.

Proposition 1: Consider the empirical Galerkin approx-
imation of the Poisson equation (9) on the space S ∶=
span{e1,e2,⋯,eM} of the first M eigenfunctions. Fix M <∞.
Then the solution for the matrix equation (15) exists with
probability approaching 1 as N→∞. And there is a sequence
of random variables {εN} such that

∥φ
(M,N)−φ∥2 ≤

1
λ 2

M
∥h∥2

2+εN , (17)

where εN → 0 as N →∞ a.s.

Remark 1: In practice, the eigenfunctions of the Laplacian
are not known. The basis functions are typically picked from
the polynomial family, e.g., the Hermite functions. In this
case, the bounds will provide qualitative assessment of the
error provided the eigenfunctions associated with the first
M eigenvalues are ‘approximately’ in S. Quantitatively, the
additional error may be bounded in terms of the projection
error between the eigenfunction and the projection onto S.

Example 3: We next revisit the bimodal distribution first
introduced in the Example 2. Fig. 2 depicts the empirical
Galerkin approximation, with N = 200 samples, of the gain
function. The basis functions are from the polynomial family
- {x,x2,⋯,xM} - and the figure depicts the gain functions
with M = 1,3,5 modes. The (M = 1) case is referred to as
the constant-gain approximation where,

dφ

dx
(x) = ∫ h(x)x dµ(x) = (const.)

For the linear Gaussian case, the (const.) is the Kalman gain.
The plots included in the Figure demonstrate the Gibb’s
phenomena as more and more modes are included in the
Galerkin. Particularly concerning is the change in the sign
of the gain which leads to negative values of gain for some
particles contradicting the positivity property of the gain
described in Example 2. As discussed in the filtering example
in Sec. V, the negative values of the gain can cause numerical
issues and lead to erroneous results for the filter.

IV. SEMIGROUP APPROXIMATION OF THE GAIN

Semigroup formulation: The semigroup formula (7) is used
to construct the solution of the Poisson equation by solving
the following fixed-point equation for any fixed positive
value of t:

φ = et∆ρ φ +∫
t

0
es∆ρ hds. (18)

A unique solution exists because et∆ρ is a contraction on L2
0.

The approximation proposed in this section involves ap-
proximating the semigroup as a perturbed integral operator,
for small positive values of t = ε . The following approxima-
tion of the semigroup appears in [4], [10]:

T (ε)φ(x) ∶= ∫ k(ε)(x,y)φ(y)dµ(y)
∫ k(ε)(x,y)dµ(y)

, (19)
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Fig. 2. Comparison of the exact solution and its empirical Galerkin
approximation with M = 1,3,5 modes and N = 200 particles. The density
is depicted as the shaded curve in the background.

where k(ε)(x,y) ∶= g(ε)(x,y)
√

∫ g(ε)(x,y)dµ(y)
√

∫ g(ε)(x,y)dµ(x)
and

g(ε)(x,y) ∶= 1

(4πε)
d
2

exp(− ∣x−y∣2

4ε
) is the Gaussian kernel in Rd .

In terms of the perturbed integral operator, the fixed-point
equation (18) becomes,

φ
(ε) = T (ε)φ (ε)+∫

ε

0
T (s)hds. (20)

The superscript ε is used to distinguish the approximate (ε-
dependent) solution from the exact solution φ . As shown
in the Appendix B, T (ε) has an ergodic invariant measure
µ
(ε) which approximates µ as ε ↓ 0. For any fixed positive

ε , we are interested in solutions that are zero-mean with
respect to this measure. The existence-uniqueness result for
this solution is described next; the proof appears in the
Appendix B.

Proposition 2: Consider the fixed-point problem (20) with
the perturbed operator T (ε) defined according to (19). Fix
ε > 0. Then there exists a unique solution φ

(ε) such that
∫ φ
(ε)dµ

(ε) = 0.

In a numerical implementation, the solution φ
ε is approx-

imated directly for the particles:

Φ
(ε,N) ∶= (φ

(ε)(X1),φ (ε)(X2),⋯,φ (ε)(XN)).

The integral operator T (ε) is approximated as a N × N
Markov matrix whose (i, j) entry is obtained empirically as,

T (ε,N)i, j = k(ε,N)(X i,X j)
∑N

l=1 k(ε,N)(X i,X l)
, (21)

where k(ε,N)(x,y) = gε
(x,y)

√
1
N ∑

N
l=1 gε(x,X l)

√
1
N ∑

N
l=1 gε(y,X l)

.

The resulting finite-dimensional fixed-point equation is
given by,

Φ
(ε,N) = T (ε,N)Φ(ε,N)+∫

ε

0
T (s,N)H(N)ds, (22)



where Φ
(ε,N) = (Φ

(ε,N)
1 ,Φ

(ε,N)
2 ,⋯,Φ

(ε,N)
N ) ∈RN is the vector-

valued solution, H(N) = (h(X1),h(X2),⋯,h(XN)) ∈RN , and
T (ε,N) and T (s,N) are N × N matrices defined according
to (21). The existence-uniqueness result for the zero-mean
solution of the finite-dimensional equation (22) is described
next; its proof is given in the Appendix C. The zero-mean
property is the finite-dimensional counterpart of the zero-
mean condition ∫ φ dµ = 0 for the original problem and
∫ φ dµ

ε = 0 for the perturbed problem.

Proposition 3: Consider the fixed-point problem (22) with
the matrix T (ε,N) defined according to (21). Then, with
probability 1, there exists a unique zero-mean solution
Φ
(ε,N) ∈Rd .

Once Φ
(ε,N) is available, it is straightforward to extend it

to the entire domain. For x ∈Rd ,

φ
(ε,N)(x) ∶= ∑

N
i=1 k(ε,N)(x,X i)Φ

(ε,N)
i

∑N
i=1 k(ε,N)(x,X i)

+∫
ε

0
T (s,N)h(x)ds.

(23)
By construction φ

(ε,N)(X i) = Φ
(ε,N)
i for i = 1,⋯,N. The

extension is not necessary for filtering because one only
needs to solve for ∇φ at X i. The formula for this is,

∂φ

∂xl
(X i) =

N

∑
j=1

[T (ε,N)i j Φ
(ε,N)
j (X j

l −
N

∑
k=1

T (ε,N)ik Xk
l )]

where X i
l ∈R is the l-th component of X i ∈Rd .

The algorithm is summarized in Algorithm 1. For numeri-
cal purposes we use εHN ≈ ∫

ε

0 T (s,N)H(N)ds. Also, the fixed-
point problem (22) is conveniently solved using the method
of successive approximation. In filtering, the initial guess is
readily available from the solution at the previous time-step.

Algorithm 1 Kernel-based gain function approximation

Input: {X i}N
i=1, H ∶= {h(X i)}N

i=1, ε

Output: Φ ∶= {φ(X i)}N
i=1, {∇φ(X i)}N

i=1

Calculate gi j ∶= exp(−∣X i−X j ∣2/4ε) for i, j = 1 to N.

Calculate ki j ∶=
gi j

√
∑l gil

√
∑l g jl

for i, j = 1 to N.

Calculate Ti j ∶=
ki j
∑l kil

for i, j = 1 to N.

Solve Φ = T Φ+εH for Φ (Successive approximation).

Calculate ∂φ

∂xl
(X i) =∑N

j=1 [Ti jΦ j (X j
l −∑

N
k=1 TikXk

l )] for l =
1 to d.

Convergence: The following is a summary of the approxi-
mations with the kernel-based method:

Exact ∶ φ = eε∆ρ φ +∫
ε

0
es∆ρ hds

Kernel approx: φ
(ε) = T (ε)φ (ε)+∫

ε

0
T (s)hds

Empirical approx: φ
(ε,N) = T (ε,N)φ (ε,N)+∫

ε

0
T (s,N)hds

We break the convergence analysis into two steps. The first
step involves convergence of φ

(ε,N) to φ
(ε) as N →∞. The
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Fig. 3. Comparison of the exact solution and its kernel-based approximation
with ε = 0.1,0.2,0.4,0.8 and N = 200 particles. The density is depicted as
the shaded curve in the background.

second step involves convergence of φ
(ε) to φ as ε → 0. The

following theorem states the convergence result for the first
step; a sketch of the proof appears in Appendix D.

Theorem 1: Consider the empirical kernel approximation
of the fixed-point equation (18). Fix ε > 0. Then,

(i) There exists a unique (zero-mean) solution φ
(ε) for

the perturbed fixed-point equation (20).
(ii) For any finite N, a unique (zero-mean) solution

Φ
(ε,N) for (22) exists with probability 1.

For a compact set Ω ⊂Rd ,

lim
N→∞

sup
x∈Ω

∣φ (ε,N)(x)−φ
(ε)(x)∣ = 0, a.s, (24)

where φ
(ε,N) is the extension of the vector-valued solution

Φ
(ε,N) (see (23)).

The convergence analysis for step 2, as ε→0, is the subject
of ongoing work. In this regard, it is shown in [9] that for
compactly supported functions f ∈C3,

f (x)−T (ε) f (x) = ε ∆ρ f (x)+O(ε
2).

Example 4: Consider once more the bimodal distribution
introduced in 2. Figure 3 depicts the kernel-based approxi-
mation of the gain function with N = 200 particles and range
of ε . The kernel-based avoids the Gibbs phenomena observed
with the Galerkin (see Fig. 2). Notably, the gain function is
positive for any choice of ε .

V. NUMERICS

In this section, we consider a filtering problem associated
with the bimodal distribution introduced in Example 2. The
filtering model is given by,

dXt = 0,
dZt = Xt dt +σw dWt ,
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Fig. 4. Comparison of simulation results: Trajectory of particles and posterior distribution with (a) Kernel-based approximation of the gain function, (b)
Galerkin approximation of the gain function.

where Xt ∈ R, Zt ∈ R, Wt is a standard Wiener process, the
initial condition X0 is sampled from the bimodal distribution
comprising of two Gaussians, N(−1,σ2) and N(+1,σ2), and
without loss of generality, Z0 = 0. As in Example 2, the
observation function h(x) = x is linear. The static case is
considered because the posterior is given explicitly:

p∗(x,t) ≐ (const.)exp( 1
2σ2

W
h(x)Zt −

1
4σ2

W
∣h(x)∣2 t) p∗0 (x).

(25)
The following filtering algorithms are implemented for

comparison:
1) Kalman filter;
2) Feedback particle filter with the Galerkin approxima-

tion where S = span{x,x2,x3,x4,x5};
3) Feedback particle filter with the kernel approximation.
The performance metrics are as follows:
1) Filter mean X̂t ;
2) Conditional probability P[∣Xt −X0∣ < 1

2 ∣Zt].

The simulation parameters are as follows: The true initial
state X0 = 1. The measurement noise parameter σW = 0.3. The
simulation is carried out over a finite time-horizon t ∈ [0,T ]
with T = 0.8 and a fixed discretized time-step ∆t = 0.02.
All the particle filters use N = 100 particles and have the
same initialization, where particles are drawn with equal
probability from one of the two Gaussians, N(−1,σ2) or
N(+1,σ2), where σ = 0.1. For the kernel approximation,
we use ε = 0.15. The simulation parameters are tabulated
in Table I. The Kalman filter is initialized with X̂0 = 0 and
Σ0 =Var(X0) = 1+σ

2. The latter corresponds to the variance
of the prior. Figure 4 parts (a) and (b) depict the particle

trajectories and the associated distributions obtained using
the kernel approximation and the Galerkin approximation,
respectively. The kernel-based approximation provides for a
better approximation of the exact posterior. At time t1 during
the initial transients, some of the particles with the Galerkin
approximation show a divergence. This is a numerical issue
due to the Gibb’s phenomena that leads to erroneous negative
value of the gain (see the discussion in Examples 2 and 3).

Figure 5 depicts a comparison of the simulation results for
the two metrics. For the particle filters, these are computed
empirically.

For applications of FPF with kernel-based approximation
of the gain function for attitude estimation problem see the
companion paper [19].
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APPENDIX

A. Proof of Proposition 1

Using the spectral representation (6), because h ∈ L2,

φ = −∆
−1
ρ h =

∞

∑
m=1

1
λm

< em,h > em.

With basis functions as eigenfunctions,

φ
(M) =

M

∑
m=1

1
λm

< em,h > em.

Therefore,

∥φ −φ
(M)∥2

2 =
∞

∑
m=M+1

1
λ 2

m
∣ < em,h > ∣2 ≤ 1

λ 2
M
∥h∥2

2.

Next, by the triangle inequality,

∥φ −φ
(M,N)∥2 ≤ ∥φ −φ

(M)∥2+∥φ
(M)−φ

(M,N)∥2.

We show ∥φ
(M)−φ

(M,N)∥2→ 0 a.s. as N →∞.
Using the formulae (10) and (16) with basis-functions ψm

as eigenfunctions em,

∥φ
(M)−φ

(M,N)∥2 = ∣c−cN ∣,

where ∣ ⋅ ∣ denotes the Euclidean norm in RM . The vectors c
and c(N) solve the matrix equations (see (12) and (15)),

Ac = b,

A(N)c(N) = b(N),

where A(N)
a.s.Ð→ A, b(N)

a.s.Ð→ b by the strong law of large
numbers. Consequently, because A = diag(λ1, . . . ,λN) is in-
vertible, c(N)→ c a.s. as N →∞.

B. Proof of Proposition 2

Denote n(ε)(x) ∶= ∫ k(ε)(x,y)dµ(y), and re-write the op-
erator T (ε) as,

T (ε) f (x) = ∫
k(ε)(x,y)

n(ε)(x)n(ε)(y)
f (y) dµ

(ε)(y),

where dµ
(ε)(x) ∶= n(ε)(x)dµ(x).

Denote L2(µ
(ε)) as the space of square integrable func-

tions with respect to µ
(ε) and as before L2

0(µ
(ε)) ∶= {φ ∈

L2(µ
(ε))∣∫ φ dµ

(ε) = 0} is the co-dimension 1 subspace
of mean-zero functions in L2(µ

(ε)). The technical part of
proving the Proposition is to show that the operator T (ε) is
a strict contraction on the subspace.

Lemma 1: Suppose ρ , the density of the probability mea-
sure µ , satisfies Assumption A1. Then,

(i) µ
(ε) is a finite measure.

(ii) For sufficiently small values of ε , the operator T (ε) ∶
L2(µ

(ε)) → L2(µ
(ε)) is a compact Markov operator

with an invariant measure µ
(ε).



(iii) T (ε) ∶ L2
0(µ

(ε))→ L2
0(µ

(ε)) is a strict contraction.
Proof:

(i) WLOG assume µ = 0 in the Assumption A1. For nota-
tional ease, denote

ρ
(ε)(x) ∶= ∫ g(ε)(x,y)ρ(y)dy,

where recall that ρ
(ε)(x) is used to define the denominator

of the kernel. Then

c1 exp(− 1
2 xT Q−1

1 x ≤ ρ
(ε)(x) ≤ c2 exp(− 1

2 xT Q−1
1 x),

where Q−1
1 ∶= (Σ+2εI)−1 and c1 = (2π)− d

2 ∣Q1∣−
1
2 e−∥V∥∞ and

c2 = (2π)− d
2 ∣Q1∣−

1
2 e∥V∥∞ are positive constants that depend

on ∥V∥∞. Therefore,

µ
(ε)(Rd) = ∫ ∫ k(ε)(x,y)dµ(x)dµ(y)

= ∫ ∫
g(ε)(x,y)√

ρ(ε)(x)
√

ρ(ε)(y)
ρ(x)ρ(y)dxdy

≤ 1
c1
∫ ∫ g(ε)(x,y)e−

1
2 xT Q−1

2 x e−
1
2 yT Q−1

2 y dxdy,

which is bounded because Q−1
2 ∶=Σ

−1− 1
2 Q−1

1 ≻ 0. This proves
that µ

(ε) is a finite measure.
(ii) The integral operator T ε is a Markov operator because
the kernel k(ε)(x,y) > 0 and

T (ε)1=∫
k(ε)(x,y)

n(ε)(x)n(ε)(y)
dµ
(ε)(y)=∫

k(ε)(x,y)
n(ε)(x)

dµ(y)=1.

T ε is compact because [Theorem 7.2.7 in [11]],

∫ ∫ ∣ k(ε)(x,y)
n(ε)(x)n(ε)(y)

∣
2

dµ
(ε)(x)dµ

(ε)(y) <∞.

The inequality holds because the integrand can be bounded
by a Gaussian:

exp(− ∣x−y∣2
2ε

− 1
2 xT Q−1

3 xT − 1
2 yT Q3y)

where Q−1
3 ∶= Σ

−1− 1
2 Q−1

1 −(Q2+2εI)−1 is of order O(ε).
Finally, the measure µ

ε is an invariant measure because
for all functions f ,

∫ T (ε) f (x) dµ
(ε)(x) = ∫ f (y) dµ

(ε)(y).

(iii) Since µ
(ε) is an invariant measure, T (ε) ∶ L2

0(µ
(ε))→

L2
0(µ

(ε)). Next, for all f , g ∈ L2
0(µ

(ε)),

1
2 ∫ f (x)2 dµ

(ε)(x)+ 1
2 ∫ g(y)2 dµ

(ε)(y)

−∫ ∫
k(ε)(x,y)

n(ε)(x)n(ε)(y)
f (x)g(y)dµ

(ε)(x)dµ
(ε)(y)

= ∫ ∫
k(ε)(x,y)

n(ε)(x)n(ε)(y)
( f (x)−g(y))2 dµ

(ε)(x)dµ
(ε)(y)

≥ 0,

where, because the kernel is everywhere positive, the equality
holds iff

f (x) = g(y) = (const.) µ
ε −a.e.

Therefore, substituting g = T (ε) f in the inequality above,

∥T (ε) f ∥2 ≤ 1
2
∥ f ∥2+ 1

2
∥T (ε) f ∥2⇒ ∥T (ε) f ∥ ≤ ∥ f ∥,

where the L2 norms here are with respect to the invariant
measure µ

ε . Now, for f ∈ L2
0(µ

(ε)), ∫ f dµ
(ε) = 0, and thus

the equality holds iff

f (x) = (const.) = 0.

Therefore, T (ε) is strictly contractive on L2
0(µ

(ε)).

The proof of the Prop. 2 now follows because T (ε) is a
contraction on L2

0(µ
(ε)). Note also that µ

(ε)(A)→ µ(A) for
any measurable set, as ε ↓ 0.

C. Proof of Proposition 3

By construction, T (ε,N) is a N×N stochastic matrix whose
entries are all positive with probability 1. The result follows.

D. Proof sketch for Theorem 1

Parts (i) and (ii) have already been proved as part of the
Prop. 2 and Prop. 3, respectively. The convergence result (24)
leans on approximation theory for integral operators. In
[Theorem 7.6.6 in [11]], it is shown that if

(i) T (ε) is compact and T (ε,N) is collectively compact;
(ii) ∥T (ε)∥ < 1;
(iii) T (ε,N) converges to T (ε) pointwise, i.e

lim
N→∞

∥T (ε,N) f −T (ε) f ∥∞ = 0 a.s, ∀ f

Then for N large enough, (I−T (ε,N))−1 is bounded and

lim
N→∞

∥(I−T (ε,N))−1h−(I−T (ε))−1h∥∞ = 0, a.s ∀h.

In order to prove the convergence result, we consider the
Banach space C0(Ω) ∶= { f ∈C(Ω); ∫ f dµ(x) = 0} equipped
with the ∥ ⋅∥∞ norm. We consider T (ε) and T (ε,N) as linear
operators on C0(Ω). Note that T (ε,N) here corresponds to
the extension of the vector-valued solution to Rd using (23).

The proof involves verification of each of the three re-
quirements stated above:

(i) Collective compactness follows because k(ε) is con-
tinuous [Theorem 7.2.6 [11]].

(ii) The norm condition holds because

∣T (ε) f (x)∣ ≤ ∫ k(ε)(x,y)∣ f (y)∣dµ(y)
∫ k(ε)(x,y)dµ(y)

≤ ∫ k(ε)(x,y)dµ(y)
∫ k(ε)(x,y)dµ(y)

∥ f ∥∞ ≤ ∥ f ∥∞

where the equality holds only when f is constant. For
f ∈C0(Ω), this constant can only be 0.

(iii) Pointwise convergence follows from using the LLN.
For a fixed continuous function f , LLN implies conver-
gence for every fixed x ∈Rd . On a compact set Ω, point-
wise convergence also implies uniform convergence.


