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Synthesizing least-limiting guidelines for safety of
semi-autonomous systems

Jana Tumova and Dimos V. Dimarogonas

Abstract— We consider the problem of synthesizing safe-by-
design control strategies for semi-autonomous systems. Our
aim is to address situations when safety cannot be guaranteed
solely by the autonomous, controllable part of the system and a
certain level of collaboration is needed from the uncontrollable
part, such as the human operator. In this paper, we propose a
systematic solution to generating least-limiting guidelines, i.e.
the guidelines that restrict the human operator as little as
possible in the worst-case long-term system executions. The
algorithm leverages ideas from 2-player turn-based games.

I. I NTRODUCTION

Recent technological developments have enhanced the ap-
plication areas of autonomous and semi-autonomous cyber-
physical systems to a variety of everyday scenarios from
industrial automation to transportation and to housekeeping
services. These examples have a common factor; they in-
volve operation in an uncertain environment in the presence
of highly unpredictable and uncontrollable agents, such as
humans. In robot-aided manufacturing, there is a natural
combination of autonomy and human contribution. In semi-
autonomous driving, the vehicle is partially controlled au-
tomatically and partially by a human driver. Even in fully
autonomous driving, passengers and pedestrians interact with
the vehicle and actively influence the overall system safety
and performance. The need for obtaining guarantees on
behaviors of these systems is then even more crucial as the
stakes are high. Formal verification and formal methods-
based synthesis techniques were designed to provide such
guarantees and recently, they have gained a considerable
amount of popularity in applications to correct-by-design
robot control. For instance, in [12], [18] temporal logic
control of robots in uncertain, reactive environments was
addressed. In [11] control synthesis for nondeterministic
systems from temporal logic specifications was developed.
Loosely speaking, these works achieve the provable guaran-
tees by accounting for theworst-casescenarios in the control
synthesis procedure. The uncertainty is therein treated as
an adversary, which however, often prevents the synthesis
procedure to find a correct-by-design autonomous controller.

In this paper, we take a fresh perspective on correct-by-
design control synthesis. We specifically focus on situations
when the desired controller does not exist. In contrast
to the above mentioned approach, we view the uncertain,
uncontrollable elements in the system ascollaborative in
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the sense that they have as much interest in keeping the
overall system behavior safe, effective, and efficient as the
autonomous controller does. At the same time, we still view
them as to a large extentuncontrollablein the sense that they
still have their own intentions and we cannot force them to
follow literal step-by-step instructions. In contrast, weaim
to advisethem on what not to do if completely necessary,
while keeping their options as rich as possible.

For example, consider a collaborative human-robot man-
ufacturing task with the goal of assembling productsABC

through connecting pieces of typesA andC to a piece of
type B. The human operator can put togetherA with B or
with BC, whereas the autonomous robot can put together
B or AB with C. Our goal is to guarantee system safety,
meaning that the human and the robot do not work with the
same piece of typeB at the same time. While we can design
a controller for the robot that does not reach for a piece being
held by a human, we cannot guarantee that the human will
not reach for a piece being held by the robot. To that end,
we aim to synthesizeguidelinesfor the human, i.e. advise
that reaching for a piece that the robot holds will lead to
the safety violation. Under the assumption that the human
follows this advise, the safety is guaranteed. Yet, this advise
is still much less restrictive for the human operator than ifthe
human-robot system was considered controllable as a whole.
Namely, in such a case, a correct-by-design controller could
dictate the human to always touch only soloB pieces while
the robot would be supposed to work only withAB pieces
pre-produced by the human. Clearly, the former mentioned
guidelines allow for much more freedom of the human’s
decisions as the human may choose to work with an instance
of B piece orBC piece. A similar situation occurs in an
autonomous driving scenario with a pedestrian crossing the
street. If the pedestrian jumps right in front of the car, the
collision is unavoidable. A possible guideline for the human
enabling the system safety would be not to ever cross the
street. This is however a very limiting constraint. Instead,
advising the human not to cross the street if the car is close
seems quite reasonable.

This paper introduces asystematic way to synthesize
least-limiting guidelinesfor the uncontrollable elements in
(semi-)autonomous systems, such as humans in human-robot
systems, that allow the autonomous part of the system to
maintain safety. Similarly as in some related work on correct-
by-design control synthesis (e.g., [11]), we model the overall
system state space as a two-player game on a graph with
a safety winning condition. The autonomous, controllable
entity takes the role of the game protagonist, whereas the un-
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controllable entity is the adversary. We specifically work with
situations, where the protagonist does not have a winning
strategy in the game. We formalize the notion ofadviseras a
function that “forbids” the application of certain adversary’s
inputs in certain system states. Furthermore, we classify the
advisers based on the level of limitation they impose on the
adversary. Finally, we provide an algorithm to find a least-
limiting adviser that allows the protagonist to win the game,
i.e. to keep the system safe. We also discuss the use of the
synthesized advisers for on-the-fly guidance of the system
execution. In this work, we do not focus on how the interface
between the adviser and the uncontrollable element, such as
human, should look like. Rather than that, the contribution
of this paper can be summarized as the development of a
theoretical framework for automated synthesis of reactive,
least-limiting guidelines and control strategies that guarantee
the system safety.

Related work includes literature on synthesis of envi-
ronment assumptions that enable a winning game [6] and
on using counter-strategies for synthesizing assumptionsin
generalized reactivity (1) (GR(1)) fragment of LTL [13], [1].
These works however synthesize the assumptions in the form
of logic formulas, whereas we focus on guiding the adversary
through explicitly enumerating the inputs that should not
be applied. Synthesis of maximally permissive strategies is
considered in [4] and also in discrete-event systems literature
in [17], where however, only controllable inputs are being
restricted. Our approach is different to the above works, since
we aim for systematic construction of reactive guidelines in
the sense that if the least-limiting adviser is not followed, a
suitable substitute adviser is supplied if such exists. We also
use a different criterion to measure the level of limitation
that is the worst-case long-term average of restrictions as
opposed to the cumulative number of restrictions considered
in [6] or the size of the set of behaviors considered in [4].
Other related literature studies problems of minimal model
repair [3], [7], synthesis of least-violating strategies [9], [16],
or design of reward structures for decision-making processes
in context of human-machine interaction [14]. This work
can be also viewed in the context of literature aimed at
collaborative human-robot control, e.g., [15], [10].

The paper is structured as follows. In Sec. II we introduce
necessary notation and preliminaries. In Sec. III, we stateour
problem. In Sec. IV, we introduce the synthesis algorithm in
details and discuss the use of the synthesized solution for on-
the-fly guidance. Sec. V concludes the paper and discusses
future research. Throughout the paper, we provide several
illustrative examples demonstrating the developed theory.

II. PRELIMINARIES

Given a setS, we use2S, |S|, S∗, Sω to denote the powerset
of S, the cardinality ofS, and the set of all finite and infinite
sequences of elements fromS, respectively. Given a finite
sequencew and a finite or an infinite sequencew′, we use
w·w′ to denote their concatenation. Letw(i) andw j denote
the i-th element of wordw and the prefix ofw that ends

in w(j), respectively. Furthermore, assuming thatS is a set
of finite sequences andS′ is a set of finite and/or infinite
sequences,S · S′ = {w · w′ | w ∈ S ∧ w′ ∈ S′}. Z denotes
the set of integers.

Definition 1 (Arena) A 2-player turn-based game arena
is a transition systemT = (S, 〈Sp, Sa〉, sinit , Up, Ua, T ),
where S is a nonempty, finite set of states;〈Sp, Sa〉 is a
partition of S into the set of protagonist (playerp) states
Sp and the set of adversary (playera) statesSa, such that
Sp∩Sa = ∅, Sp∪Sa = S; sinit ∈ Sp is the initial protagonist
state;Up is the set of inputs of the protagonist;Ua is the
set of inputs of the adversary;T = Tp ∪ Ta, is a partial
injective transition function, whereTp : Sp × Up → Sa and
Ta : Sa × Ua → Sp.

Note that in a protagonist state, only an input of the protag-
onist can be applied, and analogously, in an adversary state,
only an input of the adversary can be applied. We assume
that from a protagonist state, the system can only transition
to an adversary state and vice versa. This assumption is
not restrictive, since it can be easily shown that any game
arena withTp : Sp × Up → S and Ta : Sa × Ua → S

can be transformed to satisfy it. Loosely speaking, each
transition from a protagonist state to a protagonist state is
split into two transitions, to and from a new adversary state.
Analogous transformation can be applied to the transitions
from adversary states to adversary states.

Let Usi
i = {ui ∈ Ui | Ti(si, ui) is defined} denote the set

of inputs of playeri ∈ {p, a} that areenabledin the state
si ∈ Si. ArenaT is non-blockingif |Usi

i | ≥ 1, for all i ∈
{p, a} and allsi ∈ Si andblockingotherwise. Aplay in T is
an infinite alternating sequence of protagonist and adversary
statesπ = sp,1sa,1sp,2sa,2 . . ., such thatsp,1 = sinit and
for all j ≥ 1 there existup,j ∈ Up, ua,j ∈ Ua, such that
Tp(sp,j , up,j) = sa,j , andTa(sa,j , ua,j) = sp,j+1. Note that
for each playπ, π(2k) ∈ Sa, while π(2k − 1) ∈ Sp, for all
1 ≤ k. A play prefixπ j = π(1) . . . π(j) is a finite prefix
of a playπ = π(1)π(2) . . .. Let PlaysT denote the set of all
plays inT . If a set of playsPlays Ṫ of a blocking arenȧT is
nonempty, theṅT can be transformed into an equivalent non-
blocking arenaT via a systematic removal ofblocking states
and their adjacent transitions that are defined inductivelyas
follows: (i) eachsi ∈ Si, i ∈ {p, a}, such thatUsi

i = ∅ is
a blocking state and (ii) ifTi(si, ui) is a blocking state for
eachui ∈ Usi

i , thensi, i ∈ {i, p} is a blocking state, too.
ThenPlays Ṫ = PlaysT .

A deterministic control strategy(or strategy, for short)
of player i ∈ {p, a} is a partial functionσT

i : S∗ ·
Si → Ui that assigns a playeri’s enabled inputui ∈
Usi
i to each play prefix inT that ends in a playeri’s

statesi ∈ Si. StrategiesσT
p , σT

a induce a playπσT
p ,σT

a =
sp,1sa,1sp,2sa,2 . . . ∈ (Sp · Sa)

ω, such thatsp,1 = sinit ,
and for all j ≥ 1, Tp(sp,j , σp(sp,1sa,1 . . . sp,j)) = sa,j,
and Ta(sa,j , σa(sp,1sa,1 . . . sp,jsa,j)) = sp,j+1. A strategy
σT
i is called memorylessif it satisfies the property that

σT
i (s1 . . . sn) = σT

i (s′1 . . . s
′
m) wheneversn = s′m. Hence,



with a slight abuse of notation, memoryless control strategies
are viewed as functionsςTi : Si → Ui. The set of all
strategies of playeri in T is denoted byΣT

i . The set of
all plays induced by all strategies inΣT

p ,Σ
T
a , i.e. the set of

all plays inT is PlaysΣ
T
p ,ΣT

a = {πσT
p ,σT

a | σT
p ∈ ΣT

p , σ
T
a ∈

ΣT
a }. Analogously, we usePlaysσ

T
p ,ΣT

a = {πσT
p ,σT

a | σT
a ∈

ΣT
a } to denote the set of plays induced by a given strategy

σT
p and by all strategiesσT

a ∈ ΣT
a .

A gameG = (T ,W ) consists of a game arenaT and
a winning conditionW ⊆ PlaysΣ

T
p ,ΣT

a that is in general a
subset of plays inT . A safety winning conditionis WSafe =

{π ∈ PlaysΣ
T
p ,ΣT

a | for all j ≥ 1. π(j) ∈ Safe}, where
S = 〈Safe,Unsafe〉 is a partition of the set of states into
the safe and unsafe state subsets. A protagonist’s strategyσT

p

is winning if Playsσ
T
p ,ΣT

a ⊆ W . Let ΩT
p ⊆ ΣT

p denote the
set of all protagonist’s winning strategies.

Let T = (S, 〈Sp, Sa〉, sinit , Up, Ua, T ) be an arena andw :
S×S → Z be a weight function that assigns a weight to each
(s, s′), such that there existsu ∈ Up∪Ua, where(s, u, s′) ∈
T . Then(T , w) can be viewed as an arena of amean-payoff
game. The value secured by protagonist’s strategyσT

p is

ν(σT
p ) = inf

σT
a ∈ΣT

a

lim inf
n→∞

1

n

n∑

j=1

w(πσT
p ,σT

a (j), πσT
p ,σT

a (j+1)).

An optimal protagonist’s strategyσT ∗
p secures the optimal

valueν(σT ∗
p ) = supσT

p ∈ΣT
p
ν(σT

p ). Several algorithms exist
to find the optimal protagonist’s strategy, see, e.g., [5]. For
more details on games on graphs in general, we refer the
interested reader e.g., to [2].

III. PROBLEM FORMULATION

The systemthat we consider consists of two entities: the
first one is the autonomous part of the system that we aim to
control (e.g., a robotic arm), and the second one is the agent
that is uncontrollable, and to a large extent unpredictable
(e.g., a human operator in a human-robot manufacturing
scenario). The overall state of such system is determined
by the system states of these entities (e.g., the positions
of the robotic and the human arms and objects in their
common workspace and the status of the manufacturing).
In this paper, we consider systems with a finite number of
statesQ (obtained, e.g., by partitioning the workspace into
cells). The system state can change if one of the entities
takes a decision and applies an input (e.g., the robot can
move the arm from on cell to another, or the human can
pick up an object). For simplicity, we assume that the entities
take regular turns in applying their inputs. This assumption
is however not too restrictive as we may allow the entities to
apply a special pass inputǫ that does not induce any change
to the current system state.

To model the system formally, we call the former, control-
lable entity the protagonist, the latter, uncontrollable entity
the adversary, and we capture the impacts of their inputs to
the system states through a game arena (see Def. 1)

T = (S, 〈Sp, Sa〉, sinit , Up, Ua, T ). (1)

The set of the arena states isS = Q×{p, a} and each arena
states = (q, i) ∈ S is defined by the system stateq ∈ Q

and the entityi ∈ {p, a} whose turn it is to apply its input,
i.e. (q, p) ∈ Sp, and(q, a) ∈ Sa, for all q ∈ Q. Behaviors of
the system are thus captured through plays in the arena.

The goal of the former, controllable entity is to keep
the system safe, i.e. to avoid the subset of unsafe system
states, while the latter entity has its own goals, such as to
reach a certain system state, etc. Formally, the protagonist
is given a partition of statesS = 〈Safe,Unsafe〉 and the
corresponding safety winning conditionWSafe . The arenaT
together with the safety winning conditionWSafe establish
a game(T,WSafe).
Example 1 Consider the simplified manufacturing scenario
outlined in the introduction. A system state is determined
by the current pieces in the workspace and their status;
each of them is either on the desk, held by the human, or
by the robot:Q ⊆ 2{A,B,C,AB,BC,ABC}×{desk ,human,robot}.
The robot acts as the protagonist and the human as the
adversary.sinit =

(
{(A, desk), (B , desk), (C , desk)}, a

)
is

an example of a system initial state. The inputs of the robot
are Up =

{
{grabp , dropp} × {A,B,C,AB,BC,ABC} ∪

{connectp} × {(B,C), (AB,C)}
}

and similarly, Ua ={
graba , dropa}×{A,B,C,AB,BC,ABC}∪{connecta}×

{(A,B), (A,BC)}}. The transition function reflects the ef-
fect of inputs on the system state. For instance,
T
((

{(A, desk), (B, desk), (C, desk)}, a
)

, (graba, A)
)

=

=
(

{(A, human), (B, desk), (C, desk)}, p
)

, or

T
((

{(A, desk), (B , robot), (C , robot)}, p
)

,
(

connectp , (B ,C )
))

=
(

{(A, human), (AB, robot)}, a
))

.

Note that the transition function does not have to
be manually enumerated. Rather than that, it can
be generated from conditions, such asT

((
{(x, y)} ∪

Z, a
)
, (graba, x)

)
=

(
{(x, human)} ∪ Z, p

)
, applied to all

x ∈ {A,B,C,AB,AC,ABC}, y ∈ {desk, robot}, Z ⊆
({A,B,C,AB,AC,ABC}\{x})×{desk, human, robot}.

The problem of finding a protagonist’s winning control
strategyσT

p guaranteeing system safety has been studied
before and even more complex winning conditions have been
considered [2]. In this work, we focus on a situation when
the protagonistdoes nothave a winning control strategy. For
such cases, we aim to generate a least-limiting subset of ad-
versary’s control strategies that would permit the protagonist
to win. Loosely speaking, this subset can be viewed as the
minimal guidelines for the adversary’s collaboration.

Note that this problem differs from the supervisory control
of discrete event systems as we do not limit only the
application of controllable, but also the uncontrollable inputs.
However, it also differs from the synthesis of controllers for
fully controllable systems as we aim to limit the adversary’s
application of uncontrollable inputs as little as possible. We
formalize the guidelines for the adversary’s collaboration
through the notion of adviser and adviser restricted arena.

Definition 2 (Adviser) An adviser is a mappingα : Sa →
2Ua , whereα(sa) ⊆ Usa

a represents the subset of adversary’s
inputs that are forbidden in statesa.



Given an arenaT = (S, 〈Sp, Sa〉, sinit , Up, Ua, Tp ∪ Ta),
and an adviserα, the adviser restricted arena iṡT α =
(S, 〈Sp, Sa〉, sinit , Up, Ua, Ṫ

α
p ∪ Ṫα

a ), where Ṫα
p = Tp and

Ṫα
a = Ta \ {(sa, ua, sp) | ua ∈ α(sa)}. The set of all plays

in Ṫ α is denoted byPlays α̇.

If α(sa) = Usa
a for somesa ∈ Sa, the adviser restricted

arena becomes blocking, and hence, not every sequence
sp,1sa,1sp,2sa,2 . . . sa,k, satisfyingsp,1 = sinit , and for all
1 ≤ j ≤ k, 1 ≤ ℓ < k, Ṫα

p (sp,j , σp(sp,1sa,1 . . . sp,j)) =

sa,j , andṪα
a (sa,ℓ, σa(sp,1sa,1 . . . sp,ℓsa,ℓ)) = sp,ℓ+1, can be

extended to a play. However, ifPlays α̇ is nonempty, we can
transformṪ α into a non-blocking adviser restricted arena

T α = (Sα, 〈Sα
p , S

α
a 〉, sinit , Up, Ua, T

α
p ∪ Tα

a ) (2)

that has the exact same set of playsPlaysα = Plays α̇ as
Ṫ α as outlined in Sec. II. Let us denote the sets of all
protagonist’s and adversary’s strategies inT α byΣα

p andΣα
a ,

respectively.Playsσ
α
p ,Σα

a refers to the set of plays induced
by σα

p ∈ Σα
p andΣα

a in T α. If howeverṖ laysα is empty, a
non-blocking adviser restricted arenaT α does not exist.

Given the winning conditionWSafe , we define a good
adviserα as one that permits the protagonist to achieve safety
in the non-blocking adviser restricted arenaT α.

Definition 3 (Good adviser) An adviser α is good for
(T ,WSafe) if there exists a non-blocking adviser restricted
arenaT α and a protagonist’s strategyσα

p ∈ Σα
p , such that

Playsσ
α
p ,Σα

a ⊆ WSafe . Given a good adviserα, the set of
protagonist’s winning strategies is denoted byΩα

p ⊆ Σα
p .

Since there might be more good advisers, we need to
distinguish which of them limit the adversary less and which
of them more. To that end, we associate each adviser with a
cost, called adviser level of limitation.

Definition 4 (Adviser level of limitation) Given an arena
T and a good adviserα, we define theadviser level of
limitation

λ(α) = inf
σα
p ∈Ωα

p

γ(σα
p ), where (3)

γ(σα
p ) = sup

σα
a ∈Σα

a

lim sup
n→∞

1

n

n∑

j=1

∣∣α(πσα
p ,σα

a (2j))
∣∣. (4)

In other words,λ(α) is theworst-case long-term average
of the number of forbidden inputs along the plays induced
by the best-caseprotagonist’s strategyσα

p . The choice of
the worst-case long-term average is motivated by the fact
that although the adversary can be advised, it cannot be
controlled. On the other hand, the consideration of the best-
caseσα

p is due to the protagonist being fully controllable.
We provide some intuitive explanations on the introduced
terminology through the following illustrative example.

Example 2 (Safety game and adviser)An example of a
game arena with a safety winning conditionWSafe is given
in Fig. 1. (A). The squares illustrate the protagonist’s states
and the circles illustrate the adversary’s ones. Transitions

(A)

s1

s2 s3 s4

s5 s6 s7

up1
up2

ua1

ua2

ua3

up3 up4

ua4

ua5

up5 up6

up7

ua6
ua7

(B) (C) (D)

Fig. 1: (A) An example of a game arena with a safety winning
condition. The protagonist’s and adversary’s states are illustrated
as squares and circles, respectively. The safe setSafe is in green,
the unsafe setUnsafe in blue. Transitions are depicted as arrows
between them and they are labeled with the respective inputsthat
trigger them. (B) – (D) show three different advisersαB , αC and
αD , respectively, via marking the forbidden transitions in red.

are depicted as arrows between them and they are labeled
with the respective inputs that trigger them. The safe states
in Safe are shown in green and the unsafe ones inUnsafe

are in blue. Fig. 1.(B)-(D) show three advisersαB, αC and
αD, respectively, via marking the forbidden transitions in
red. In Fig. 1.(B),αB(s2) = {ua3

}, αB(s4) = {ua4
, ua5

},
and αB(s6) = {ua6

, ua7
}. In Fig. 1.(C),αC(s2) = {ua3

}
andαC(s4) = αC(s6) = ∅. Finally, in Fig. 1.(D),αD(s2) =
{ua2

, ua3
} andαD(s4) = αD(s6) = ∅.

For αB, the non-blocking adviser restricted arena con-
tains statesSαB = {s1, s2, s3}. The set of protago-
nist’s strategies inT αB is ΣαB

p = {σαB
p }, such that

σαB
p (π(1) . . . π(2j)s1) = up1

and σαB
p (π(1) . . . π(2j)s3) =

up3
, for all play prefixesπ(1) . . . π(2j), j ≥ 0 of all plays

π ∈ PlaysΣ
αB
p ,Σ

αB
a . SinceσαB

p is winning,αB is good. It
is easy to see that the set of protagonist’s winning strategies
and the set of all adversary’s strategies inT αB induce a set
of playsPlaysΩ

αB
p ,Σ

αB
a = {s1s2π(3)s2π(5)s2π(7)s2 . . . |

π(2j + 1) ∈ {s1, s3}, for all j ≥ 1}. The strategyσαB
p ∈

ΩαB
p is therefore associated with the valueγ(σαB

p ) =

supσαB
a ∈Σ

αB
a

lim supn→∞
1

n

∑n

j=1

∣∣αB(π
σ
αB
p ,σ

αB
a (2j))

∣∣ =

lim supn→∞
1

n

∑n

j=1

∣∣αB(s2)
∣∣ = 1, and the level of limi-

tation of αB is λ(αB) = 1. Although it might seem that
adviser αB is more limiting thanαC , it is not the case.
The non-blocking adviser restricted arenaT αC in this case
contains all states fromT , SαC = S. However, the set
of winning protagonist’s strategiesΩαC

p in T αC is analo-
gous as in case (B). Namely, ifσαC

p (π(1) . . . π(2j)s1) =
up2

or σαC
p (π(1)π(2) . . . π(2j)s3) = up4

, the resulting
play would not be winning for the protagonist as all ad-



versary’s choices ins4 lead to an unsafe state. Hence,
PlaysΩ

αC
p ,Σ

αC
a = PlaysΩ

αB
p ,Σ

αB
a and the level of limitation

of αC is λ(αC) = 1. Finally, αD is more limiting than
αB andαC . Following similar reasoning as above, we can
see thatPlaysΩ

αD
p ,Σ

αD
a = {s1s2s1s2s1s2s1s2 . . .}, but since

|αD(s2)| = 2, we haveλ(αD) = infσαD
p ∈Ω

αD
p

γ(σαD
p ) =

lim supn→∞
1

n

∑n

j=1

∣∣αD(s2)
∣∣ = 2.

Problem 1 Consider T = (S, 〈Sp, Sa〉, sinit , Up, Ua, T ),
and a safety winning conditionWSafe given via a partition
S = 〈Safe,Unsafe〉. Synthesize an adviserα⋆, and a
protagonist’s winning strategyσα⋆⋆

p , such that:

(i) α⋆ is good andσα⋆⋆
p ∈ Ωα⋆

p ,
(ii) λ(α⋆) = infα∈A λ(α), whereA is the set of all good

advisers for(T ,WSafe), i.e.λ(α⋆) is least-limiting and
(iii) γ(σα⋆⋆

p ) = infσα⋆
p ∈Ωα⋆

p
γ(σα⋆

p ), i.e. σα⋆⋆
p is optimal.

IV. SOLUTION

Our solution builds on several steps: first, we generate a
so-callednominal adviser, which assigns to each adversary
state the set of forbidden inputs. We prove that the nominal
adviser is by construction good, but does not have to be
least-limiting. Second, building on the nominal adviser, we
efficiently generate a finite set of candidate advisers. Third,
the structural properties of the candidate advisers inherited
from the properties of the nominal adviser allow us to prove
that the problem of findingα⋆ andσα⋆⋆

p can be transformed
to a mean-payoff game. By that, we prove that at least one
σα⋆⋆
p is memoryless and hence we establish decidability of

Problem 1. Finally, we discuss how the set of the candidate
advisers and their associated optimal protagonist’s winning
strategies can be used to guide an adversary who disobeys a
subset of advises provided by a least-limiting adviser.

A. Nominal adviser

The algorithm to find the nominal adviserα0 is sum-
marized in Alg. 1. It systematically finds a set of states
Losing , from which reaching of the unsafe setUnsafe
cannot be avoided under any possible protagonist’s and any
adversary’s choice of inputs. The setLosing is obtained via
the computation of the finite converging sequenceUnsafe =
Losing0 ⊂ Losing1 ⊂ . . . ⊂ Losingn−1 = Losingn =
Losing , n ≥ 0, where for all0 ≤ j < n, Losingj+1 is the set
of states each of which either already belongs toLosingj or
has all outgoing transitions leading toLosingj (line 15). The
nominal adviserα0 is set to forbid all transitions that lead to
Losing (line 12). By construction, the algorithm terminates
in at most|S| iteration of the while loop (lines 9–16).

The following three lemmas summarize the key features of
α0 computed according to Alg. 1. The first two state that, if
there exists a good adviser for(T ,WSafe), then the nominal
adviser is good. The third states that, if the nominal adviser
forbids the adversary to apply an inputua ∈ α0(sa) in a state
sa, then there does not exist a less limiting good adviserα′,
such thatua 6∈ α′(sa).

Algorithm 1: The nominal adviserα0

Data: T = (S, 〈Sp, Sa〉, sinit , Up, Ua, T ), and unsafe set
Unsafe ⊆ S

Result: α0 : Sa → 2Ua

1 forall the sa ∈ Sa do
2 α0(sa) := ∅
3 end
4 forall the sa ∈ Unsafe do
5 α0(sa) := Usa

a

6 end
7 Losing0 := Unsafe
8 j := 0
9 while j = 0 or Losingj 6= Losingj−1 do

10 forall the sp ∈ Losingj do
11 forall the sa, ua, such thatT (sa, ua) = sp do
12 α0(sa) := α0(sa) ∪ {ua}
13 end
14 end
15 Losingj+1 := Losing j ∪ {si ∈ Si |

⋃

ui∈U
si
i
{Ti(si, ui)} ⊆ Losingj , i ∈ {a, p}}

16 j := j + 1
17 end
18 Losing := Losingj

Lemma 1 If sinit ∈ Losing then there does not exist a good
adviser for(T ,WSafe).

Proof: Suppose thatsinit ∈ Losing and there exist a
good adviserα for (T ,WSafe ). Then there exists a non-
blocking adviser restricted arenaT α and a protagonist’s
strategyσα

p ∈ Σα
p , such thatPlaysσ

α
p ,Σα

a ⊆ WSafe in T α.
Consider a playπ = sp,1sa,1sp,2sa,2 . . . ∈ Playsσ

α
p ,Σα

a in
T α and note thatπ does not intersectUnsafe. Suppose
that sp,1 = sinit ∈ Losing \ Unsafe. Then there exists
j ≥ 1, such thatsinit ∈ Losingj , but sinit 6∈ Losingj−1

and
⋃

up∈U
sinit
p

{Tα
p (sinit , up)} ⊆ Losingj−1 (line 15). Thus,

sa,1 ∈ Losingj−1. Furthermore, ifsa,1 6∈ Unsafe then⋃
ua∈U

sa,1
a

{Tα
a (sa,1, ua)} ⊆ Losingj−2 (line 15). Via induc-

tive application of analogous arguments, we obtain that there
existsk ≥ 1, such that eithersp,k ∈ Losing0 = Unsafe or
sa,k ∈ Losing0 = Unsafe. This contradicts the assumption
thatπ is winning, i.e. the assumption thatα is a good adviser.

Lemma 2 If sinit 6∈ Losing , thenα0 computed by Alg. 1 is
a good adviser.

Proof: Let sinit 6∈ Losing . From the construction of
Losing andα0, it follows that for allsp ∈ Sp \Losing there
exists an inputup and a statesa ∈ Sa \ Losing , such that
Ta(sp, up) = sa (line 15). Furthermore, for allsa ∈ Sa \
Losing and allua ∈ Usa

a \ α0(sa) it holds thatT (sa, ua) ∈

Sp\Losing (line 12). Hence, there exists a playπ ∈ Plays α̇
0

in Ṫ α0

, and thus there also exists a non-blocking adviser
restricted arenaT α0

and σα0

p ∈ Σα0

p , such that any play

π ∈ Playsσ
α0

p ,Σα0

a in T α0

does not intersectLosing . Because

Unsafe ⊆ Losing , it holds thatPlaysσ
α0

p ,Σα0

a ⊆ WSafe and
adviserα0 is good.



Intuitively, Lemmas 1 and 2 state that the restrictions
imposed by the nominal adviserα0 were sufficient. As a
corollary, it also holds that the non-blocking nominal adviser
restricted arenaT α0

does not contain any state inLosing and
therefore that all plays inT α0

are winning. Note however,
that the nominal adviser does not have to be least-limiting.
As we illustrate through the following example, imposing
additional restrictions on the adversary’s choices might,
perhaps surprisingly, lead to the avoidance of adversary’s
states, where a high number of inputs are forbidden.

Example 3 An example of a safety game is shown in
Fig. 2.(A). The result of the nominal adviser computation
according to Alg. 1 is illustrated in Fig. 2.(B). Namely,
Losing = {s4}, and α0(s2) = {ua2

}, α0(s6) = {ua5
},

and α0(s7) = ∅. There is only one protagonist’s strategy
{σα0

p } = Σα0

p , and it is winning σα0

p ∈ Ωα0

p since

Playsσ
α0

p ,Σα0

a = {s1s2s3s6s3s6 . . . , s1s2s5s7s5s7 . . .}.
The level of limitation of α0 is thus λ(α0) =
supσα

a ∈Σα
a
lim supn→∞

1

n

∑n

j=1

∣∣α(πσα
p ,σα

a (2j))
∣∣ =

lim supn→∞
1

n

(∣∣α(s2)
∣∣ +

∑n
j=2

∣∣α(s3)
∣∣
)

= 1. Loosely
speaking, the worst-case adversary’s strategyσa that
respects the nominal adviserα0 takes the play to the
left-hand branch of the system.

Fig. 2.(C) shows an alternative adviserα′ that guides
each play to the right-hand branch of the system. It is
good since there is a non-blocking adviser limited arena
T α′

and the only protagonist’s strategyσα′

p ∈ Σα′

p on T α′

is winning, sincePlaysσ
α′

p ,Σα′

a = {s1s2s5s7s5s7 . . .}. The

level of limitation ofα′ is λ(α′) = lim supn→∞
1

n

(∣∣α(s1)
∣∣+

∑n
j=2

∣∣α(s5)
∣∣
)
= lim supn→∞

1

n

(∣∣α(s1)
∣∣
)
≪ 1. Hence,α′

is less limiting than the nominal adviserα0.

Lemma 3 Consider an adviserα′ for (T ,WSafe) and sup-
pose that there exists a statesa ∈ Sa and ua ∈ Ua, such
that ua ∈ α0(sa) and ua 6∈ α′(sa). Thenα′ is either not
good or at least as limiting as the nominal adviserα0, i.e.
λ(α0) ≤ λ(α′).

Proof: The proof is lead by contradiction. Consider
an adviserα′ for (T ,WSafe). Suppose that there exists a
state sa ∈ Sa and ua ∈ Ua, such thatua ∈ α0(sa)
and ua 6∈ α′(sa) and α′ is good. Furthermore, letΩα′

p

be the set of protagonist’s winning strategies on the non-
blocking adviser restricted arenaT α′

. and assume thatα′

is less limiting thatα0, i.e. thatλ(α′) < λ(α0). Then from
the definition ofλ in Eq. (3), there exists a protagonist’s
strategyσα′

p ∈ Ωα′

p , such thatγ(σα′

p ) < λ(α0). Henceforth,
there also exists a winning playπ = sp,1sa,1sp,2sa,2 . . . ∈

Playsσ
α′

p ,Σα′

a on T α′

with the property that for somek ≥ 1,
sp,k+1 ∈ T (sa,k, ua), where ua 6∈ α′(sa,k) and ua ∈
α0(sa,k). If such a winning play does not exist, it holds that
γ(σα′

p ) ≥ λ(α0), which contradicts the assumption thatα′ is
less limiting thanα0. Sinceua ∈ α0(sa,k), it holdssp,k+1 ∈
Losing by construction (line 12). Eithersp,k+1 ∈ Unsafe,

(A)

s1 s2

s3

s4

s5

s6 s7

up1

ua1

ua2

ua3

up2 up4

up3

ua4

ua5

ua6

(B) (C)

Fig. 2: (A) An example of a game arena with a safety winning
condition. The protagonist’s and adversary’s states are illustrated
as squares and circles, respectively. The safe setSafe is in green,
the unsafe setUnsafe in blue. Transitions are depicted as arrows
between them and they are labeled with the respective inputsthat
trigger them. (B) shows the nominal adviserα0 and Losing via
marking the forbidden transitions and the states inLosing in red.
(C) shows an alternative adviserα′ that is also good and less
limiting thanα0.

which directly contradicts the assumption thatα′ is good,
or sp,k+1 ∈ Losingj , for somej ≥ 1. From the iterative
construction ofLosing , we obtainsa,k+1 ∈ Losingj−1 and
if sa,k+1 6∈ Unsafe, thensp,k+2 ∈ Losingj−2. By inductive
reasoning it follows that there existsℓ ≥ k + 1, such that
either sp,ℓ ∈ Losing0 = Unsafe, or sa,ℓ ∈ Losing0 =
Unsafe. This contradicts the assumption thatπ is winning,
i.e. the assumption thatα′ is good.

Thanks to Lemma 3, we know that there exists a good
adviserα⋆ that is least-limiting and builds on the nominal
one in the following sense:α0(sa) ⊆ α⋆(sa), for all
sa ∈ Sa. Whereas following the nominal adviser is essential
for maintaining the system safety, following the additional
restrictions suggested byα⋆ can be perceived as a weak form
of advice. If this advice is not respected by the adversary,
safety is not necessarily going to be violated, however, in
order to maintain safety, the adversary might need to obey
further, more limiting advises. We will discuss later on in
Sec. IV-D how to use both the combination of a least-limiting
adviser and the nominal one in order to guide the adversary
during the system execution (the play on the game arena).

B. Least-limiting solution

Let Ȧcand denote the finite set of candidate advisers
obtained from the nominal adviserα0, Ȧcand = {α |
α0(sa) ⊆ α(sa), for all sa ∈ Sa}. Note thatα ∈ Ȧcand

does not have to be good since it might not allow for an
existence of a non-blocking adviser restricted arenaT α.
As outlined in Sec. II, it can be however decided whether
Ṫ α from Def. 2 has an equivalent non-blocking arenaT α.
Building on ideas from Lemmas 1 and 2, we can easily see
that the existence of non-blocking adviser restricted arena



T α also implies the existence of a protagonist’s winning
strategyσα

p ∈ Ωα
p . In fact, because states fromLosing were

removed fromT α0

(lines 4–6, 9–16 of Alg. 1), all plays in
T α are winning andΣα

p = Ωα
p .

Acand = {α ∈ Ȧcand | α is a good adviser}. (5)

From Lemma 3 and the construction ofAcand , at least
one least-limiting good adviser belongs toAcand . In the
remainder of the solution, we focus on solving the following
sub-problem for eachα ∈ Acand .

Problem 2 Consider a good adviserα ∈ Acand . Find λ(α)
and an optimal protagonist’s winning strategyσα⋆

p with
γ(σα⋆

p ) = infσα
p ∈Ωα

p
γ(σα

p ) = infσα
p ∈Σα

p
γ(σα

p ).

We propose to translate Problem 2 to finding an optimal
strategy to a mean-payoff game on a modified arenaT̃ α:

Definition 5 (Mean-payoff game arenaT̃ α) Given
a non-blocking adviser restricted arenaT α =
(Sα, 〈Sα

p , S
α
a 〉, sinit , Up, Ua, T

α
p ∪ Tα

a ), we define the
mean-payoff game arenãT α = (T α, w), where for all
T̃p(sp, up) = sa, w(sp, sa) = −|α(sa)| and for all
T̃a(sa, ua) = sp, w(sa, sp) = 0.

Lemma 4 Problem 2 reduces to the problem of optimal
strategy synthesis for the mean-payoff gameT̃ α.

Proof: The optimal strategỹσα⋆
p for the mean-payoff

gameT̃ α obtained e.g., by the algorithm from [5] has the
valueν(σ̃α⋆

p ) =
sup

σα
p ∈Σα

p

inf
σα
a ∈Σα

a

lim inf
n→∞

1

n

n∑

j=1

w(πσα
p ,σα

a (j), πσα
p ,σα

a (j + 1)) =

inf
σα
p ∈Σα

p

sup
σα
a ∈Σα

a

lim sup
n→∞

1

n

n∑

j=1

−w(πσα
p ,σα

a (j), πσα
p ,σα

a (j + 1)) =

inf
σα
p ∈Σα

p

sup
σα
a ∈Σa

lim sup
n→∞

1

n

n∑

j=1

|α(πσα
p ,σα

a (2j)| = λ(α).

Furthermore, as noted aboveΣα
p = Ωα

p and hence the
proof is complete.

It has been shown in [8] that in mean-payoff games,
memoryless strategies suffice to achieve the optimal value.
In fact, using the algorithm from [5], the strategyσ̃α⋆

p takes
the form of a memoryless strategỹςα⋆p : Sα

p → Up.

C. Overall solution
We summarize how the algorithms from Sec. IV-A and

Sec. IV-B serve in finding a solution to Problem 1. 1) The
nominal adviserα0 is built according to Alg. 1. If there
does not exist a non-blocking adviser restricted arenaT α0

,
then there does not exist a solution to Problem 1. 2) The
set of candidate advisersAcand is built according to Eq. (5).
3) For each candidate adviserα ∈ Acand , the valueλ(α)
and the memoryless optimal protagonist’s winning strategy
ςα⋆p ∈ Ωα

p are computed through the translation to a mean-
payoff game optimal strategy synthesis according to Def. 5.
4) An adviserα⋆ ∈ Acand with λ(α⋆) = infα∈Acand

λ(α)
together with its associated optimal strategyςα

⋆⋆
p are the

solution to Problem 1.

D. Guided system execution

Finally, we discuss how the set of good advisersAcand can
be used to guide the adversary on-the-fly during the system
execution. Given an adviserα ∈ Acand , let us call the fact
that ua ∈ α(sa) an advise. We distinguish two types of
advises,hard and soft. Hard advises are the ones imposed
by the nominal adviser,ua ∈ α0(sa), while soft are the
remaining ones that can be violated without jeopardizing the
system safety. The goal of the guided execution is to permit
the adversary to disobey a soft advise and react to this event
via a switch to another, possibly more limiting adviser that
does not contain this soft advise. Let� be a partial ordering
on the setAcand , whereα � α′ if α(sa) ⊆ α′(sa), for all
sa ∈ Sa. Hence, for the nominal adviserα0, it holds that
α0 � α, for all α ∈ Acand .

The system execution that corresponds to a play inT
proceeds as follows: 1) The system starts at the initial state
scurr = sinit with the current adviser being least-limiting
adviserαcurr = α⋆ and the current protagonist’s strategy
being the memoryless winning strategyςp,curr = ςα

⋆⋆
p . 2)

The input ςp,curr (scurr ) is applied by the protagonist and
the system changes its current statescurr according toTp.
The current state belongs to the adversary. 3)αcurr (scurr )
is provided. The adversary chooses an inputua ∈ Uscurr

a .
a) If ua 6∈ αcurr (scurr ), then the system updates its state
scurr according toTa and proceeds with step2. b) If ua ∈
α0(scurr ) then hard advise is disobeyed and system safety
will be unavoidably violated and the system needs to stop
immediately. c) Ifua ∈ αcurr (scurr ), but ua 6∈ α0(scurr ),
then only a soft advise is disobeyed. The current adviser
αcurr is updated toα′, with the property thatλ(α′) =
infα∈A�

λ(α), whereA� = {α ∈ Acand | α � αcurr}
and the current protagonist’s strategyςp,curr is updated to
ςα

′⋆
p . The current statescurr is updated according toTa and

the system proceeds with step 2).

Example 4 Consider the safety game in Fig. 3.(A). The re-
sult of the nominal adviser computation according to Alg. 1 is
illustrated in Fig. 3.(B). Namely,α0(s2) = {ua2

}, α0(s6) =
∅, α0(s7) = {ua5

}, α0(s8) = {ua7
, ua8

}, and α0(s11) =
ua9

. The states inLosing are marked in red. Fig. 3.(C) shows
the non-blocking adviser restricted arenaT α0

with the re-
moved states and transitions in light grey. The corresponding
optimal protagonist’s winning strategyςα

0⋆
p in T α0

is high-
lighted in green in Fig. 3.(B), i.e.ςα

0⋆
p (s1) = up1

, ςα
0⋆

p (s3) =

up2
, ςα

0⋆
p (s5) = up5

, and ςα
0⋆

p (s9) = up6
. The level of

limitation of α0 is λ(α0) = lim supn→∞
1

n
(|α0(s2)| +∑n

j=2
|α0(s8)|) = lim supn→∞

1

n
(2n− 1). Fig. 3.(D) shows

least-limiting adviserα⋆. As opposed toα0, α⋆(s2) =
{ua2

, ua3
}, where the adviseua3

∈ α⋆(s2) (in magenta) is
soft. Fig. 3.(E) illustrates the non-blocking adviser restricted
arenaT α⋆

. The optimal protagonist’s winning strategy is the
only protagonist’s strategy inT α⋆

. The level of limitation of
α⋆ is λ(α⋆) = lim supn→∞

1

n
(|α⋆(s2)| +

∑n

j=2
|α0(s6)|)

= lim supn→∞
1

n
< λ(α0). There exist more good advisers

α′ ∈ Acand . For each of them, eitherλ(α′) = λ(α0) or
λ(α′) = λ(α⋆).
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Fig. 3: (A) An example of a game arena with a safety winning
condition. (B) The nominal adviserα0 and Losing via marking
the forbidden transitions and states inLosing in red. ςα

0⋆
p is in

green. (C) The non-blocking adviser restricted arenaT α0

. (D) α⋆

and (E) The non-blocking adviser restricted arenaT α⋆

.

The guided system execution proceeds as follows: The
system starts in statescurr = sp1

with αcurr = α⋆ and
ςp,curr = ςα

⋆⋆
p . Input up1

is applied, scurr = s2. Then,
αcurr (scurr ) = α⋆(s2) is provided. The adversary chooses
eitherua1

, ua2
, or ua3

, but, through the adviser it is recom-
mended not to selectua3

(soft advise) andua2
(hard advise).

If the choice isua1
, the system state is updated toscurr = s3,

and in the remainder of the execution, the protagonist and
the adversary applyup2

and ua4
, respectively, switching

between statess3 and s6. If the choice isua3
, a soft

advice is disobeyed, the current state becomess5 and the
current adviser and strategy are updated toαcurr = α0 and
ςp,curr = ςα

0⋆
p , which satisfy thatλ(α0) = infα∈A�

λ(α).
Input up5

is then applied andscurr = s8. In the remainder
of the execution, the adversary is guided to follow the
hard advicesua7

, ua8
∈ αcurr (s8), leading the system to

switching betweens8 ands9. If the choice ins2 is ua2
despite

the hard advice, the system reaches an unsafe state.

V. CONCLUSIONS AND FUTURE WORK

We have studied the problem of synthesizing least-limiting
guidelines for decision making in semi-autonomous systems

involving entities that are uncontrollable, but partiallywilling
to collaborate on achieving safety of the overall system.
We have proposed a rigorous formulation of such problem
and an algorithm to synthesize least-limiting advisers foran
adversary in a 2-player safety game and we have proposed
a systematic way to guide the system execution with their
use. As far as we are concerned, this paper presents one of
the first steps towards studying the problem of synthesizing
guidelines for uncontrollable entities. Future work naturally
includes extensions to more complex winning conditions,
different measures of level of violation, and continuous state
spaces. We also plan to implement the algorithms and show
their potential in a case study.

REFERENCES

[1] R. Alur, S. Moarref, and U. Topcu. Counter-strategy guided refinement
of GR(1) temporal logic specifications. InFormal Methods in
Computer-Aided Design, pages 26–33. IEEE, 2013.
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