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Abstract – In order to function reliably, synthetic molec-

ular circuits require mechanisms that allow them to adapt

to environmental disturbances. Least mean squares (LMS)

schemes, such as commonly encountered in signal processing

and control, provide a powerful means to accomplish that

goal. In this paper we show how the traditional LMS algo-

rithm can be implemented at the molecular level using only

a few elementary biomolecular reactions. We demonstrate

our approach using several simulation studies and discuss its

relevance to synthetic biology.

1 Introduction

Engineered circuits in living cells often exhibit poor ro-
bustness and substantial variations from one cell to the
next [1, 2]. In extreme cases, they are found functional
in only a small fraction of cells in an isogenic popula-
tion, while others act unpredictably. A major cause for
such behavior is that the biochemical components that
constitute a circuit depend on factors in their molecular
environment (or context) of the cell [3]. For instance, the
rate at which a protein is expressed depends on the gene
dosage or the number of available ribosomes and so on.

Recently, progress has been made in taking into ac-
count such environmental factors into the modeling and
design of molecular circuits [4, 5, 6, 7]. This can tremen-
dously improve the faithfulness of computational models
and in turn the predictability of rationally designed cir-
cuits. However, in practical scenarios, the origins and
properties of potential disturbances are barely known and
hard to anticipate during design time. From this point of
view, it seems barely realistic to tune a circuit in silico

such that it acts robustly under all possible perturbations
that it may encounter in the real environment of a cell.

A viable alternative is to employ adaptive design prin-
ciples in which a circuit continuously senses and adjusts
itself to changing environmental conditions. This requires
molecular circuits that learn and make inference about
their surroundings. A few attempts have been made re-
cently to devise such circuits in the form of chemical re-
action networks, for example to perform neural network
computations [8], to realize message passing inference [9]
or supervised learning [10]. Along these lines, we have
recently proposed a molecular implementation of an opti-
mal filter that allows one to estimate dynamically chang-
ing noise signals [11]. This estimator was derived under
a Bayesian optimality criterion by employing a Kushner-
Stratonovich differential equation [12].
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In the present work, we consider another powerful class
of estimation schemes that are frequently used in adap-
tive signal processing and control theory. These schemes
– termed least means squares (LMS) estimators [13, 14] –
iteratively compute the solution of a general least squares
problem through a gradient-based parameter search. This
iterative structure allows a circuit to estimate unknown
quantities in an adaptive fashion by processing measure-
ments in realtime. In this paper we demonstrate how
LMS-type estimators can be realized using elementary
biomolecular reactions. Our work is related to [10], where
the authors have proposed a DNA-based gradient-descent
scheme, which is able to learn static linear functions. In
this work, however, we focus on dynamical and possibly
stochastic biochemical systems that shall be identified by
a molecular LMS estimator.

The remainder of the paper is structured as follows.
In Section 2 we introduce the mathematical notation and
models required to describe molecular circuits. In Sec-
tion 3 we introduce the concept of LMS estimation and
present possible molecular realizations. In Section 4 we
test the performance of the proposed circuits using sev-
eral simulation studies and discuss how they may be used
in practical applications.

2 Biochemical Reaction Networks

We consider well-mixed molecular reaction networks com-
prising K molecular species Z = (Z1, . . . ,ZK)T that in-
teract with each other through L reaction channels of the
form

Z
hi(Z(t))
−−−−−⇀ Z+ νi, (1)

with i as the reaction index, Z(t) as the abundance of Z
at time t, hi as a rate function determined by the law of
mass-action and νi as the stoichiometric change associ-
ated with reaction i. Throughout this paper, we follow
the convention to denote molecular species as boldface
symbols. Note that we use the same symbol also to refer
to the circuit that those species constitute.
We describe the time-evolution of Z as a continuous-

time Markov chain (CTMC) that can take into account
the inherent randomness of biochemical reactions [15]. It
can be shown [16] that the molecular abundance Z(t) sat-
isfies a stochastic integral equation of the form

Z(t) = Z0 +

L
∑

i=1

Pi

(
∫ t

0

hi(Z(s))ds

)

νi, (2)

where Pi is an independent unit Poisson processes de-
scribing the firings of reaction i. Eq. (2) is commonly
known as the random time change model.
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Assuming the chemical species to be highly abundant,
molecular fluctuations become negligible and eq. (2) can
be approximated by a deterministic rate equation of the
form

d

dt
Z̃(t) =

L
∑

i=1

hi(Z̃(t))νi (3)

with Z̃(t) ≈ Z(t). We will make use of equations (2) and
(3) at a later in this manuscript to model stochastic and
deterministic reaction networks, respectively.

3 A Continuous-Time LMS Algorithm

Suppose a circuit requires knowledge about certain envi-
ronmental factors θ. For example, θ could be the number
of phosphotases available to the circuit. However, these
factors are typically not accessible directly by the circuit
but only indirectly through available intermediates Y. In
the example above, Y could be a protein that is targeted
by that phosphatase, for instance.
The idea is now to use a second molecular circuit X

that is able to identify the dynamics of Y through a suit-
able adaptation scheme. We assume here that X and Y

are equivalent in their structure but have distinct param-
eters θ̂ and θ, respectively. The goal of the adaptation
scheme is to adjust the parameters θ̂ such as to minimize
the discrepancy between the measured output Y (t) and
the output of X (termed X(t)). The resulting optimal

parameters θ̂∗ then represent an estimate of θ.
A suitable and analytically convenient metric to as-

sess the discrepancy between Y (t) and X(t) is the mean
squared error

J(θ̂) = E
[

(X(t)− Y (t))2
]

. (4)

According to this measure, we seek for the set of param-
eters that minimizes J(θ̂), i.e.,

θ̂∗ = argmin
θ̂

J(θ̂), (5)

in which case θ̂∗ is referred to as the least mean squared
(LMS) estimator. The closed-form solution of this opti-
mization problem can be found in certain specific scenar-
ios, for instance in the case of linear system dynamics [14].
In most scenarios, however, (5) is analytically intractable

and one has to minimize J(θ̂∗) numerically. Note that
iterative schemes may be beneficial even when (5) is an-
alytically tractable, because it gives X the flexibility to
readapt to changes in θ as will be shown later in this
manuscript.
A common strategy to minimize J(θ̂) is to employ a

gradient-based method that, at each iteration, moves the
parameters θ̂ along the direction of the steepest descent,
giving rise to the well-known LMS algorithm. This algo-
rithm is usually used in a discrete-time scenario, for in-
stance when operated on a digital signal processing unit.
In such case, at each time iteration n, the algorithm would
update the parameters using the relation

θ̂n+1 = θ̂n − α(n)
∂

∂θ̂
J(θ̂)

∣

∣

∣

∣

∣

θ̂n

(6)

with α(n) as a tuneable step-size. The choice of the latter
usually involves a tradeoff between the rate of convergence
and the steady sate error of the scheme (i.e., excess error).

Since we consider continuous-time dynamical systems,
we seek for an infinitesimal variant of the LMS algorithm
[17], i.e.,

d

dt
θ̂(t) = −α(t)

∂

∂θ̂
J(θ̂)

∣

∣

∣

∣

∣

θ̂(t)

, (7)

in which case α(t) can be understood as a rate at which
the scheme adapts.

+

-

Target system

Adaptive system

LMS scheme

Y(t)

X(t)

e(t)

Figure 1: Schematic illustration of an adaptive molecular cir-
cuit. The goal is to construct a biomolecular circuit X that ad-
justs its parameters to mimick those of a target system Y. While
those parameters are inaccessible by the circuit, it can measure
the output Y (t) of the target system. This output is compared
to the output of X to construct an error signal e(t), which is in
turn used to find the optimal parameters of X.

For the sake of simplicity, we make a few simplifica-
tions related to X and Y before deriving the scheme. A
more general scenario, however, will be subject of a future
manuscript. First, we assume that θ (and correspond-

ingly θ̂) contains only a single parameter that needs to be
identified from Y (t). Furthermore, we allow only Y (t) to
be corrupted by molecular noise, and reactions associated
with X(t) are assumed to evolve deterministically (e.g.,
through appropriate rescaling of the associated reaction
rates).

Under these assumptions, the gradient of J(θ̂) is given
by

∂

∂θ̂
J(θ̂) =

∂

∂θ̂
E
[

(X(t)− Y (t))2
]

= E

[

∂

∂θ̂
(X(t)− Y (t))2

]

= E

[

2(X(t)− Y (t))
∂

∂θ̂
X(t)

]

= 2E

[

(X(t)− Y (t))
∂

∂θ̂
X(t)

]

.

(8)

Since we assume that X(t) is deterministic, (8) further
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simplifies to

∂

∂θ̂
J(θ̂) = 2E

[

(X(t)− Y (t))
∂

∂θ̂
X(t)

]

= 2X(t)
∂

∂θ̂
X(t)− 2E [Y (t)]

∂

∂θ̂
X(t)

= 2X(t)S(t)− 2E [Y (t)]S(t),

(9)

with S(t) := ∂

∂θ̂
X(t) as the sensitivity of X(t) with re-

spect to θ̂. Note that the particular form of this sensitiv-
ity depends on X and how θ̂ enters its dynamics. Specific
examples will be given later in Section 4.

Now, plugging eq. (9) into (7) yields a dynamic equa-

tion for the LMS estimator θ̂(t), i.e.,

d

dt
θ̂(t) = −2α(t)X(t)S(t) + 2α(t)E [Y (t)]S(t)

= −α̃(t)X(t)S(t) + α̃(t)E [Y (t)]S(t),
(10)

with α̃(t) = 2α(t).

3.1. Online Adaptation. Eq. (10) provides the desired
continuous-time solution of the LMS problem. However,
in its current form it is not adaptive, meaning that it as-
sumes known (and fixed) statistics of Y (i.e., the output
mean E [Y (t)]). In practice, however, such statistics are
often unknown and they might also vary over time. Using
LMS estimation, this problem can be bypassed by esti-
mating E [Y (t)] online from available measurements Y (t).
This way, the required statistics are extracted directly
from data, which in turn allows the scheme to readapt
when θ changes. A common and simple approach is to
approximate E [Y (t)] by the current value of Y (t) such
that

d

dt
θ̂(t) = −α̃(t)X(t)S(t) + α̃(t)Y (t)S(t) (11)

and we adopt this strategy also in the present work. A
graphical depiction of the online LMS scheme is depicted
in Fig. 1.

3.2. Molecular Implementations. The goal is now to
synthesize eq. (11) using biochemical reactions. How-
ever, in its present form eq. (11) is incompatible with
mass-action rate laws because it contains a negative (i.e.,
degradation) flux that does not depend on the current

value of θ̂(t). To account for this, we choose the adap-

tation rate to be proportional to θ̂(t), i.e., α̃(t) := λθ̂(t)
and thus,

d

dt
θ̂(t) = −λθ̂(t)X(t)S(t) + λθ̂(t)Y (t)S(t). (12)

While (12) is now in principle compatible with mass-
action kinetics, it involves trimolecular reactions, that are
hard or maybe impossible to realize in practice. However,
the trimolecular reaction can be composed from two bi-
molecular reactions with appropriately chosen rate con-
stants. For example, the reaction

A+B+C
λ
−⇀ D

can be represented by

A+B
f
−⇀↽−
b
O

O+C
λb/f
−−−⇀ D,

assuming b, f >> λ.
Specific implementations of the derived LMS adapta-

tion scheme will be given in the subsequent section.

4 Case Studies

In this section we provide several numerical and analytical
examples to demonstrate our molecular LMS estimation
framework. In all of the examples, we will consider a
target process

∅
ρ
−⇀ Y

φ
−⇀ ∅, (13)

with ρ and φ as the process parameters that we aim to
identify using an LMS scheme. As indicated earlier, we
restrict ourselves to the case of a single unknown param-
eter, meaning that we either have θ = {ρ} or θ = {φ}.

4.1. Self-adjusting birth-rate. We first consider the
case where the birth-rate ρ is unknown to the circuit.
The goal is to construct a corresponding adaptive circuit
X

∅
θ̂
−⇀ X

φ
−⇀ ∅, (14)

whose birth-rate θ̂ adapts to that of Y. To accomplish
this, we require a molecular implementation of relation
(11). The first step is to derive the particular form of the
sensitivity function S(t) from the dynamics of X. The
latter is given by the rate equation (3) which in this case
reads

d

dt
X(t) = θ̂ − φX(t). (15)

Differentiating both sides of eq. (15) with respect to θ̂
yields

d

dt

∂

∂θ̂
X(t) =

d

dt
S(t) = 1− φS(t). (16)

Fortunately, this equation is already in the form of a
valid rate equation. In particular, it describes the time-
evolution of a birth-death process

∅
1
−⇀ S

φ
−⇀ ∅. (17)

In conjunction with (11), the overall adaptive system can
be implemented through reactions

∅
θ
−⇀ Y

Y
φ
−⇀ ∅

θ̂
1
−⇀ θ̂ +X

X
φ
−⇀ ∅

∅
1
−⇀ S

S
φ
−⇀ ∅

S+ θ̂ +X
λ
−⇀ S+X

S+ θ̂ +Y
λ
−⇀ S+ 2θ̂ +Y.

(18)

3



We first studied the adaptation performance of (18)
as a function of the tuning parameter λ in an idealized
noise-free scenario. In this case, the network from (18) is
described by the rate equations

d

dt
Y (t) = θ − φY (t) (19)

d

dt
X(t) = θ̂(t)− φX(t) (20)

d

dt
θ̂(t) = −λθ̂(t)X(t)S(t) + λθ̂(t)Y (t)S(t) (21)

d

dt
S(t) = 1− φS(t). (22)

This equation was simulated for different values of λ as
depicted in Fig. 2. The results indicate a tradeoff that is
associated with the choice of λ: too small λ lead to slow
convergence of the scheme, while too large λ cause the
adaptation scheme to “overshoot” the target value and
exhibit oscillations.
In order to analyze the convergence properties of (18),

we performed a local stability analysis of (22) based
on linearization. Noting that Y (t) and S(t) evolve au-
tonomously, we can replace those variables by their steady
state values Y∞ = θ/φ and S∞ = 1/φ, respectively. This
yields the reduced system

d

dt
X(t) = θ̂(t)− φX(t) (23)

d

dt
θ̂(t) = −

λ

φ
θ̂(t)X(t) +

λθ

φ2
θ̂(t) (24)

which has equilibrium points X1
∞

= θ̂1
∞

= 0 and X2
∞

=

θ/φ and θ̂2
∞

= θ. The respective Jaccobians are given by

A1 =

(

−φ 1
0 λθ

φ2

)

A2 =

(

−φ 1
− θλ

φ 0

)

. (25)

The eigenvalue λθ/φ2 of A1 is always positive meaning

that for initial conditions θ̂(0) > 0, the system will not
converge to that equilibrium point. From A2 we find
eigenvalues

µ1 = −

√

φ4 − 4θλφ + φ2

2φ
µ2 = −

−
√

φ4 − 4θλφ+ φ2

2φ
.

(26)
For any λ > 0, the real part of both eigenvalues is
negative, meaning that θ is the only stable equilibrium
of the adaptation scheme. However, we find that for
λ > φ3/(4θ), the system will have complex eigenvalues,
indicating oscillatory behavior. This can also be seen from
in Fig. 2, especially for the case λ = 3e− 6.
We next analyzed the circuit’s performance in the pres-

ence of molecular fluctuations and spontaneous changes
in θ. We used the model from eq. (2) and stochastic sim-
ulations [18] to simulate the reaction network from (18).
The results from Fig. 3 show that the birth-rate θ and in
turn the system output Y (t) is accurately tracked by the
molecular LMS scheme. A detailed and quantitative error
analysis in the presence of molecular fluctuations will be
subject of future work.
Remark: We want to point out another interesting

property of this particular LMS estimator. Replacing the
sensitivity S(t) by a positive constant (e.g., its stationary

100

0

0.1

0.2

0.3

Time

true value

0 20 40 60 80

Figure 2: Convergence of estimated birth-rate as a function of
λ. The adaptive circuit from (18) was simulated using parameters
θ = 0.2 and φ = 0.01. Small λ lead to slow convergence, while
λ > φ3/(4θ) = 1.25e − 6 cause overshooting and oscillatory
behavior.
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(t

)
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Figure 3: Algorithm performance in the presence of molecular
noise. The adaptive circuit from (18) was simulated using the
stochastic simulation algorithm to account for molecular noise.
We assume that the target value θ changes spontaneously at
certain time points to check the circuit’s ability to readapt. The
parameters used for the simulations were θ = 0.2, φ = 0.01 and
λ = 1e− 6.

value S∞ = 1/φ) does not change the asymptotic behav-

ior of θ̂(t), meaning that θ will remain as the only stable
equilibrium point. However, the adaptation law simplifies
to

d

dt
θ̂(t) = −

λ

φ
θ̂(t)X(t) +

λ

φ
θ̂(t)Y (t)

=
λ

φ
θ̂(t)(Y (t)−X(t)),

(27)

which is structurally equivalent to a specific control motif
that has been studied previously [19, 20]. In particular,
it was shown to act as an integral control circuit exhibit-
ing robust perfect adaptation [21]. This points out the
potential use of our adaptive estimation framework for
studying robustness in biological networks.

4.2. Self-adjusting death-rate. We further show how
the LMS adaption can be used to identify the target cir-
cuit’s death rate θ = {φ}. The corresponding sensitivity
S(t) can be shown to satisfy

d

dt
S(t) = −X(t)− θ̂S(t). (28)

There are two issues associated with the above equation.
First, it depends on the tuning parameter θ̂, which will
change over time due to the adaptation scheme. Corre-
spondingly, the value of S(t) will be different from the
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actual sensitivity ∂

∂θ̂
X(t). While this will have an im-

pact on the convergence rate of the LMS scheme, it does
not affect its steady state behavior (see analytical results
below). The second problem is that S(t) is incompati-
ble with mass-action rate laws due to the negative de-
pendency on X(t). In order to address this problem, we
consider the equation for S−(t) = −S(t), which is given
by

d

dt
S−(t) = X(t)− θ̂S−(t) (29)

and correspondingly use the LMS update rule

d

dt
θ̂(t) = −λθ̂(t)X(t)S(t) + λθ̂(t)Y (t)S(t)

= λθ̂(t)X(t)S−(t)− λθ̂(t)Y (t)S−(t).

(30)

Overall, the adaptive circuit is given by the reactions

∅
ρ
−⇀ Y

Y
θ
−⇀ ∅

∅
ρ
−⇀ X

θ̂ +X
1
−⇀ θ̂

X
1
−⇀ X+ S

θ̂ + S
1
−⇀ ∅

S+ θ̂ +Y
λ
−⇀ S+Y

S+ θ̂ +X
λ
−⇀ S+ 2θ̂ +X.

(31)

Similar to the previous section, we performed simula-
tions to check the adaptation performance of the circuit
as a function of λ under idealized noise-free conditions.
This allows us to describe the adaptive circuit by the dif-
ferential equations

d

dt
Y (t) = ρ− θY (t) (32)

d

dt
X(t) = ρ− θ̂(t)X(t) (33)

d

dt
θ̂(t) = −λθ̂(t)X(t)S(t) + λθ̂(t)Y (t)S(t) (34)

d

dt
S(t) = −X(t)− θ̂(t)S(t). (35)

We again performed a local stability analysis of the
differential equations to investigate the convergence of the
circuit. In this case, the sensitivity S(t) is coupled toX(t)

and θ̂(t) and thus, has to be included in the dynamic
analysis. After eliminating the equation corresponding to
Y (t), we obtain a three-dimensional system

d

dt
X(t) = ρ− θ̂(t)X(t) (36)

d

dt
θ̂(t) = −λθ̂(t)X(t)S(t) +

λρ

θ
θ̂(t)S(t) (37)

d

dt
S(t) = −X(t)− θ̂(t)S(t), (38)

which has equilibria at the origin and at the point X3
∞

=

ρ/θ, θ̂3
∞

= θ and S3
∞

= −1/θ2. For compactness, we skip
explicit expressions of the respective Jaccobian matrices
and eigenvalues. However, as in the previous example, we

found that for any λ > 0, only the non-zero equilibrium
point is stable. For any λ > θ4/(4ρ2), the adaptation
exhibit oscillatory behavior, which should be taken into
consideration when designing this circuit. These results
are confirmed in Fig. 4, for which we simulated (35) for
three different values of λ.

100

0

0.01

0.02

Time

500

true value

Figure 4: Convergence of estimated death-rate as a function of
λ. The adaptive circuit from (31) was simulated for θ = 0.1 and
φ = 0.01 and different values of λ. For λ > θ4/(4ρ2) = 2.5e−7,
the adaptation scheme exhibits oscillatory behavior.

5 CONCLUSIONS

LMS schemes provide a powerful and versatile framework
for adaptive estimation. In this work we have shown
how simple LMS-type estimators that usually run on a
computer can be implemented biochemically for the pur-
pose of synthetic biology. Such algorithms would allow
a circuit to make inference about its environment and
facilitate adaptive behavior. We have shown by simula-
tion that the LMS circuit is able to accurately estimate
and track unknown parameters of a birth-death process.
We are currently extending the proposed scheme to more
general scenarios when multiple parameters are to be es-
timated simultaneously and when both X and Y are ar-
bitrary, possibly multivariate stochastic circuits.

We anticipate several important potential applications
of the presented framework. In [11], optimal filters (such
as the Kalman filter [22]) were employed to design noise-
cancelling synthetic circuits. To this end, the LMS ap-
proach provides an attractive alternative to optimal filter-
ing due to its generic and simple structure. In the future,
we will extend the approach to nonlinear and multivariate
models and provide an in-depth analysis of its properties.
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