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Abstract— This paper considers decentralized dynamic opti-
mization problems where nodes of a network try to minimize
a sequence of time-varying objective functions in a real-time
scheme. At each time slot, nodes have access to different sum-
mands of an instantaneous global objective function and they
are allowed to exchange information only with their neighbors.
This paper develops the application of the Exact Second-Order
Method (ESOM) to solve the dynamic optimization problem
in a decentralized manner. The proposed dynamic ESOM
algorithm operates by primal descending and dual ascending
on a quadratic approximation of an augmented Lagrangian of
the instantaneous consensus optimization problem. The conver-
gence analysis of dynamic ESOM indicates that a Lyapunov
function of the sequence of primal and dual errors converges
linearly to an error bound when the local functions are strongly
convex and have Lipschitz continuous gradients. Numerical
results demonstrate the claim that the sequence of iterates
generated by the proposed method is able to track the sequence
of optimal arguments.

Index Terms— multi-agent network, decentralized optimiza-
tion, dynamic optimization, second-order methods

I. INTRODUCTION

We consider a decentralized dynamic consensus opti-
mization problem where the components of a time-varying
global objective function are available at different nodes
of a network. Specifically, consider a discrete time index
t ∈ N, a decision variable x̃ ∈ Rp, and a connected network
containing n nodes where each node i has access to a
dynamic local objective fi,t : Rp → R. The agents’ goal
is to track the time-varying optimal argument

x̃∗t := argmin
x̃∈Rp

n∑
i=1

fi,t(x̃), (1)

while exchanging information with their neighbors only.
Henceforth, we refer to fi,t as the instantaneous local func-
tion of node i at time t and to

∑n
i=1 fi,t as the instantaneous

aggregate or global objective at time t. Distributed dynamic
problems like the one in (1) are used to formulate problems
in distributed signal processing [1]–[3], distributed control
[4]–[6], and multi-agent robotics [7]–[9].

For the static version of (1) – with local functions fi,t = fi
that are time invariant and, consequently, with a fixed global
objective as well –, there exist numerous descent methods

Work supported by NSF CAREER CCF-0952867, ONR N00014-12-1-
0997, and NSFC 61004137. A. Mokhtari and A. Ribeiro are with the Dept.
of Electrical and Systems Engineering, University of Pennsylvania, Philadel-
phia, PA 19104, USA. (aryanm, aribeiro@seas.upenn.edu).
W. Shi is with the Coordinated Science Lab., University of Illinois
at Urbana-Champaign, 1308 W Main St, Urbana, IL 61801, USA.
(wilburs@illinois.edu). Q. Ling is with the Dept. of Automation,
University of Science and Technology of China, 96 Jinzhao Rd., Hefei,
Anhui, 230026, China. (qingling@mail.ustc.edu.cn).

that can solve the problem in a decentralized fashion. Some
of these algorithms implement first order descent in the
primal domain [10], [11], some others rely on first order
ascent in the dual domain [12]–[16], and some recent efforts
attempt to utilize second order information [17]. Since the
dynamic problem in (1) can be interpreted as a sequence of
static optimization problems, any of the methods in [10]–
[17] can be used as a solution methodology. However, the
methods are themselves iterative and their application would
require running a large number of (inner) iterations for each
of the (outer) time steps t; see, e.g., [18].

Dynamic methods avoid the introduction of multiple time
steps and consider that only a few steps of an iterative
optimization method are executed for each time index t
[3], [19]–[24]. Naturally, these methods track x̃∗t with some
error because as they implement a descent on

∑n
i=1 fi,t, the

function drifts towards
∑n

i=1 fi,t+1. These dynamic methods
are therefore concerned with characterizing the tracking error
[3], [19]–[24] and with developing specific techniques to
reduce the steady state gap between the estimated and actual
optima [23], [24]. Our goal in this paper is to develop
the application of the recently proposed exact second order
method (ESOM) [25] for solving the decentralized dynamic
optimization problem in (1).

We begin by introducing decentralized equivalents of (1)
(Section II) and propose the use of the dynamic ESOM
method to solve the resulting decentralized dynamic opti-
mization problem. Dynamic ESOM is a primal-dual algo-
rithm that uses a quadratic approximation of an augmented
Lagrangian (Section III). This approximation is expected to
have good convergence properties because it incorporates
second order information. Alas, this quadratic approximation
requires access to the Hessian inverse of the augmented
Lagrangian, which is not locally computable. This issue
is resolved by using a truncation of the Taylor’s series
expansion of the Hessian inverse [17] (Section III-A). We
study convergence properties of dynamic ESOM and show
that the sequence of iterates it generates converges linearly
to a neighborhood of the sequence of optimal arguments
x∗t (Section IV). We perform a numerical evaluation of
the performance of dynamic ESOM in solving a dynamic
least squares problem (Section V) and close the paper with
concluding remarks (Section VI).

Notation. Vectors are written as x ∈ Rp and matrices as
A ∈ Rp×p. Given n vectors xi, the vector x = [x1; . . . ;xn]
represents a stacking of the elements of each individual xi.
We use ‖x‖ and ‖A‖ to denote the Euclidean norm of vector
x and matrix A, respectively. The norm of vector x with
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respect to positive definite matrix A is ‖x‖A := (xTAx)1/2.
Given a function f its gradient evaluated at x is denoted as
∇f(x) and its Hessian as ∇2f(x). The diagonalized version
of matrix A is denoted by diag(A) where its diagonal
components are identical with those of A and the other
components are null.

II. PROBLEM FORMULATION

Consider xi ∈ Rp as the copy of the decision variable
x̃ at node i and define Ni as the neighborhood of node
i. Connectivity of the network implies that problem (1) is
equivalent to the optimization problem

{x∗i,t}ni=1 := argmin
{xi}ni=1

n∑
i=1

fi,t(xi),

s.t. xi = xj , for all i, j ∈ Ni. (2)

To verify the equivalence of (1) and (2), note that a set
of feasible solutions for (2) has the general form of x1 =
· · · = xn, since the network is connected. Likewise, the
optimal solution of (2) satisfies x∗1,t = · · · = x∗n,t. When the
arguments xi of the functions fi,t(xi) are equal to each other
the objective function

∑n
i=1 fi,t(xi) in (2) can be simplified

as the aggregate function
∑n

i=1 fi,t(x) in (1). Thus, the
optimal argument of each node x∗i,t in (2) is identical to
the optimal solution x̃∗t of (1), i.e., x∗1,t = · · · = x∗n,t = x̃∗t .

To derive the update for the dynamic ESOM algorithm,
define x := [x1; . . . ;xn] ∈ Rnp as the concatenation
of the local decision variables xi and the global function
ft : Rnp → R at time t as ft(x) = ft(x1, . . . ,xn) :=∑n

i=1 fi,t(xi). Further, we introduce the weight matrix W ∈
Rn×n where the element wij ≥ 0 represents the weight
that node i assigns to node j. The weight wij is nonzero
if and only if j ∈ Ni or j = i. We assume that the assigned
weights are chosen such that the weight matrix W satisfies
the following conditions

W = WT , W1 = 1, null(I−W) = span(1). (3)

The first condition W = WT implies that the weights are
symmetric, i.e., wij = wji. The condition W1 = 1 ensures
that the weight matrix W is doubly stochastic and the
matrix I−W has a zero eigenvalue where its corresponding
eigenvector is vector 1. The last condition null(I −W) =
span(1) ensures that the matrix I−W has rank n−1 and the
condition (I−W)v = 0 holds if and only if v ∈ span{1}.
Conditions in (3) are typical of mixing matrices and they are
required to enforce consensus.

It has been shown (Proposition 1 in [25]), if we define the
matrix Z = W ⊗ Ip ∈ Rnp×np as the Kronecker product
of the weight matrix W and the identity matrix Ip, the
optimization problem in (2) can be written as

x∗t = argmin
x∈Rnp

ft(x) s.t. (I− Z)1/2x = 0. (4)

Thus, the optimization problem in (4) is equivalent to the
original dynamic problem in (1) and we proceed to develop
dynamic ESOM to solve (4) in lieu of (1). By introducing
v ∈ Rnp as the dual variable associated with the constraint

(I−Z)1/2x = 0 in (4), we define the augmented Lagrangian
Lt(x,v) of (4) as

Lt(x,v) = ft(x) + vT (I− Z)1/2x+
α

2
xT (I− Z)x, (5)

where α is a positive constant. Based on the properties of the
matrix Z, the inner product xT (I − Z)x augmented to the
Lagrangian is null when the variable x is a feasible solution
of (4), otherwise the inner product is positive and behaves
as a penalty for the violation of the consensus constraint.

A well studied approach to estimate the instantaneous
minimizer x∗t is to define xt as the minimizer of the
proximal augmented Lagrangian which is the sum of the
augmented Lagrangian Lt(x,vt−1) and the proximal term
(ε/2)‖x − xt−1‖2. This scheme can be interpreted as a
dynamic extension of the proximal method of multipliers
[26], [27]. Thus, the estimator xt is the minimizer of the
optimization problem

xt = argmin
x∈Rnp

{
Lt(x,vt−1) +

ε

2
‖x− xt−1‖2

}
, (6)

where vt−1 is the dual variable evaluated at step t−1 and ε is
a positive constant. The updated dual variable vt is updated
by ascending through the augmented Lagrangian gradient
∇vLt(xt,vt−1) with respect to v with stepsize α,

vt = vt−1 + α(I− Z)1/2xt. (7)

However, there are two issues with the updates in (6). The
first issue is the computation time of the update, since the
minimization could be computationally costly. The second
drawback is the quadratic term xT (I− Z)x in (6) which is
not separable. Thus, the update is not implementable in a
decentralized fashion. To resolve these issues we introduce
the dynamic ESOM algorithm in the following section.

III. DYNAMIC ESOM

In this section, we introduce the dynamic ESOM algo-
rithm as a decentralized algorithm that replaces the aug-
mented Lagrangian Lt(x,vt−1) in (6) by its quadratic ap-
proximation. This modification reduces the computational
complexity of the update in (6) and leads to a separable
primal update. In particular, we approximate the augmented
Lagrangian Lt(x,vt−1) in (6) by its second-order Taylor’s
expansion near the point (xt−1,vt−1) which is given by
Lt(xt−1,vt−1)+∇xLt(xt−1,vt−1)

T (x−xt−1)+(1/2)(x−
xt−1)

T∇2
xxLt(xt−1,vt−1)(x−xt−1). Applying this substi-

tution leads to the update

xt = (8)

argmin
x∈Rnp

{
Lt(xt−1,vt−1) +∇xLt(xt−1,vt−1)

T(x− xt−1)

+
1

2
(x− xt−1)

T
(
∇2

xxLt(xt−1,vt−1) + εI
)
(x− xt−1)

}
.

Solving the minimization in the right hand side of (8) and
using the definition of the augmented Lagrangian Lt(x,v)



in (5), it follows that the variable xt can be evaluated as

xt = xt−1 −H−1t

[
∇ft(xt−1) + (I− Z)1/2vt−1

+ α(I− Z)xt−1

]
, (9)

where the matrix Ht ∈ Rnp×np is defined as the Hessian of
the objective function in (8) which is given by

Ht := ∇2ft(xt−1) + α(I− Z) + εI. (10)

The Hessian Ht in (10) is a block neighbor sparse matrix. In
other words, its (i, j)th block, which is in Rp×p, is non-zero
if and only if j ∈ Ni or j = i. This is true since the matrix
∇2ft(xt−1) + εI is block diagonal and the matrix α(I−Z)
is block neighbor sparse. Albeit, the Hessian Ht is block
neighbor sparse, its inverse H−1t in (9) is not. Thus, the
nodes cannot implement the update in (9) in a decentralized
fashion.

To resolve this issue, we use a Hessian inverse approxi-
mation that is built on truncating the Taylor’s series of the
Hessian inverse H−1t as in [17]. To be precise, we decompose
the Hessian as Ht = Dt −B where Dt is a block diagonal
positive definite matrix and B is a neighbor sparse positive
semidefinite matrix. We define the matrix Dt as

Dt := ∇2ft(xt−1) + εI+ 2α(I− Zd), (11)

where Zd := diag(Z). Hence, the relation B = Dt − Ht

implies that
B := α (I− 2Zd + Z) . (12)

Considering the decomposition Ht = Dt−B, it follows that
the Hessian inverse H−1t = (Dt − B)−1 can be written as
H−1t = D

−1/2
t (I − D

−1/2
t BD

−1/2
t )−1D

−1/2
t by factoring

D
1/2
t from both sides. Note that the absolute value of

the eigenvalues of the matrix D
−1/2
t BD

−1/2
t are strictly

smaller than 1; see e.g. Proposition 2 in [17]. Thus, we
can use the Taylor’s series (I − X)−1 =

∑∞
u=0 X

u for
X = D

−1/2
t BD

−1/2
t to write the Hessian inverse H−1t as

H−1t := D
−1/2
t

∞∑
u=0

(
D
−1/2
t BD

−1/2
t

)u
D
−1/2
t . (13)

Computation of the Hessian inverse H−1t in (13) requires in-
finite rounds of communication between the nodes; however,
we can approximate the Hessian inverse H−1t by truncating
the first K+1 terms of the sum in (13). This approximation
leads to the Hessian inverse approximation

Ĥ−1t (K) := D
−1/2
t

K∑
u=0

(
D
−1/2
t BD

−1/2
t

)u
D
−1/2
t . (14)

The approximate Hessian inverse Ĥ−1t (K) is K-hop block
neighbor sparse, i.e., its (i, j)th block is nonzero if and only
if there exists at least one path between nodes i and j of
length K or smaller.

We introduce the dynamic ESOM algorithm as a second-
order method for solving the decentralized consensus opti-

mization problem which substitutes the Hessian inverse H−1t

in (9) by the K-hop block neighbor sparse Hessian inverse
approximation Ĥ−1k (K) defined in (14). Thus, the update for
the primal variable of dynamic ESOM is given by

xt = xt−1 − Ĥ−1t (K)

[
∇ft(xt−1) + (I− Z)1/2vt−1

+ α(I− Z)xt−1

]
. (15)

The update for the dual variable vt of dynamic ESOM is
identical to the update in (7),

vt = vt−1 + α(I− Z)1/2xt. (16)

Note that the primal and dual updates of dynamic ESOM
in (15) and (16) are different from the updates of ESOM in
[25] which is designed for static consensus optimization. In
particular, the primal and dual updates of ESOM are derived
by approximating the time-invariant augmented Lagrangian
L(x,v) := f(x) + vT (I − Z)1/2x + (α/2)xT (I − Z)x,
while the updates for dynamic ESOM are established by
a quadratic approximation of the time-variant augmented
Lagrangian Lt(x,v) defined in (5).

The updates in (15) and (16) explain the rationale behind
dynamic ESOM; however, they are not implementable in a
decentralized fashion, since the squared matrix (I − Z)1/2

is not block neighbor sparse. In the following section, we
introduce a new set of updates for dynamic ESOM which
are implementable in a distributed fashion, while they are
equivalent to the updates in (15) and (16).

A. Decentralized implementation of dynamic ESOM

To come up with updates for dynamic ESOM that can be
implemented in a decentralized setting, define the sequence
of variables qt as qt := (I − Z)1/2vt. Substitute the term
(I− Z)1/2vt in (15) by qt to rewrite the primal update as

xt = xt−1 − Ĥ−1t (K)[∇ft(xt−1) + qt−1 + α(I− Z)xt−1].
(17)

Multiplying the dual update in (16) by (I− Z)1/2 from the
left hand side and using the definition qt := (I − Z)1/2vt,
it follows that

qt = qt−1 + α(I− Z)xt. (18)

The system of updates in (17) and (18) are implementable
in a decentralized fashion, since the matrix I− Z, which is
required for both updates, is block neighbors sparse. Notice
that the updates in (17) and (18) are equivalent to the updates
in (15) and (16), i.e., the sequence of iterates xt generated
by these two schemes are identical.

We proceed to derive the local updates at each node
to implement the primal and dual updates in (17) and
(18), respectively. To do so, define gt as the augmented
Lagrangian gradient ∇xLt(xt−1,vt−1) with respect to x
which is given by

gt = ∇ft(xt−1) + qt−1 + α(I− Z)xt−1 (19)



Further, define the primal descent direction d
(K)
t evaluated

using the Hessian inverse approximation Ĥ−1t (K) with K
levels of approximation as

d
(K)
t := −Ĥ−1t (K)gt. (20)

The definition of the descent direction d
(K)
t in (20) allows us

to rewrite the update in (17) as xt = xt−1+d
(K)
t . According

to the mechanism of Hessian inverse approximation in (14),
the descent directions d

(k)
t and d

(k+1)
t satisfy the recursion

d
(k+1)
t = D−1t Bd

(k)
t −D−1t gt. (21)

Consider d
(k)
i,t−1 as the descent direction of node i at step

t which is the i-th element of the global descent direction
d
(k)
t = [d

(k)
1,t ; . . . ;d

(k)
n,t]. Use this definition to write the

localized version of the relation in (21) at node i as

d
(k+1)
i,t = D−1ii,t

∑
j=i,j∈Ni

(
Bijd

(k)
j,t

)
−D−1ii,tgi,t, (22)

where Dii,t is the i-th diagonal block of the matrix Dt and
Bij is the (i, j)-th block of the matrix B. Based on the
expression in (22), node i is able to compute its descent
direction d

(k+1)
i,t using the k-th level descent direction of

itself d
(k)
i,t and its neighbors d

(k)
j,t for j ∈ Ni. Therefore, if

nodes exchange their k-th level descent direction d
(k)
i,t with

their neighbors, they can compute the (k+1)-th level descent
direction d

(k+1)
i,t .

Notice that the block Dii,t := ∇2fi,t(xi,t−1) + (2α(1 −
wii))I + εI is locally available at node i. Moreover, node
i can evaluate the blocks Bii = α(1 − wii)I and Bij =
αwijI locally. In addition, nodes can compute the gradient
gt by communicating with their neighbors. To confirm this
claim, observe that the i-th element of the gradient gt =
[g1,t; . . . ;gn,t] associated with node i is given by

gi,t := ∇ft(xi,t−1) + qi,t−1 + α(1− wii)xi,t−1

− α
∑
j∈Ni

wijxj,t−1, (23)

where qi,t−1 ∈ Rp is the i-th element of the vector qt−1 =
[q1,t−1; . . . ;qn,t−1] ∈ Rnp. Hence, node i can compute its
local gradient gi,t using local information qi,t−1 and xi,t−1,
and its neighbors’ information xj,t−1 where j ∈ Ni.

The recursive update in (22) shows that at each step t

nodes can compute the descent directions d(K)
i,t by K rounds

of communication with their neighbors. Moreover, observe
that nodes can implement the dual update in (18) as

qi,t = qi,t−1 + α(1− wii)xi,t − α
∑
j∈Ni

wijxj,t, (24)

by having access to the updated primal variables xj,t of their
neighbors j ∈ Ni.

The steps of dynamic ESOM-K at node i are summarized
in Algorithm 1. In step 3, each node i observes its local
function fi,t for the current time t and uses this information
to compute the block Dii,t and the local gradient gi,t in
Steps 4 and 5, respectively. Node i computes its (k + 1)-

Algorithm 1 Dynamic ESOM-K method at node i
Require: Initial iterates xi,0=xj,0=0 for j∈Ni and qi,0=0.

1: Compute Bii = α(1− wii)Ip and Bij = αwijIp all j ∈ Ni

2: for times t = 1, 2, . . . do
3: Observe the local function fi,t
4: Compute Dii,t = ∇2fi,t(xi,t−1) + 2α(1− wii)Ip
5: Compute the gradient gi,t as in (23)
6: Compute the initial descent direction d

(0)
i,t = −D−1

ii,tgi,t

7: for k = 0, . . . ,K − 1 do
8: Exchange d

(k)
i,t−1 with neighbors j ∈ Ni

9: Compute d
(k+1)
i,t = D−1

ii,t

∑
j=i,j∈Ni

Bijd
(k)
j,t −D−1

ii,tgi,t

10: end for
11: Update primal iterate: xi,t = xi,t−1 + d

(k)
i,t−1.

12: Exchange iterates xi,t with neighbors j ∈ Ni.
13: Update the dual iterate:

qi,t = qi,t−1 + α(1− wii)xi,t − α
∑
j∈Ni

wijxj,t

14: end for

th level descent direction d
(k+1)
i,t in Step 9 using the k-th

level local descent direction d
(k)
i,t and the neighbors’ decent

directions d
(k)
j,t which are exchanged in Step 8. Note that

the recursion in Steps 8 and 9 are initialized by the descent
direction d

(0)
i,t of dynamic ESOM-0 evaluated in Step 6. Each

node computes its local primal variable xi,t in Step 11 and
exchanges it with its neighbors in Step 12. The dual variables
qi,t can be updated in Step 13, using the updated local and
neighboring primal variables. The blocks Bij for j = Ni and
j = i are time invariant and they are computed and stored
locally in Step 1.

Remark 1 One may raise the question about the choice of
K for dynamic ESOM-K. Note that the implementation of
dynamic ESOM-K requires K+1 rounds of communication
between neighboring nodes. Thus, by increasing the choice
of K the computation time of the algorithm increases.
Although, larger choice of K leads to a better Hessian
inverse approximation and faster convergence, the required
time may exceed the time between the subsequent instances
t− 1 and t. Therefore, based on the available time between
the consecutive times t− 1 and t, we should pick the largest
choice of K which is affordable in terms of computation and
communication time.

IV. CONVERGENCE ANALYSIS

In this section we study the difference between the se-
quence of the iterates xt generated by dynamic ESOM
and the sequence of the optimal arguments x∗t =
[x∗1,t; . . . ;x

∗
n,t] = [x̃∗t ; . . . ; x̃

∗
t ]. To prove the results, we

assume the following conditions are satisfied.

Assumption 1 The instantaneous local objective functions
fi,t(x) are twice differentiable and the eigenvalues of the
instantaneous local objective functions Hessian ∇2fi,t are
bounded by positive constants 0 < m ≤M <∞, i.e.

mI � ∇2fi,t(xi) � MI, (25)



for all xi ∈ Rp and i = 1, . . . , n.

Assumption 2 The instantaneous local objective functions
Hessian ∇2fi,t are Lipschitz continuous with constant L,

‖∇2fi,t(xi)−∇2fi,t(yi)‖ ≤ L‖xi − yi‖, (26)

for all xi,yi ∈ Rp and i = 1, . . . , n.

We can interpret the lower and upper bounds on the
eigenvalues of the Hessians ∇2fi,t as the strong convexity
of the instantaneous local functions fi,t with constant m and
the Lipschitz continuity of the instantaneous local gradients
∇fi,t with constant M , respectively. The global objective
function Hessian ∇2ft(x) at step t is a block diagonal
matrix where its i-th diagonal block is ∇2fi,t(xi). Hence,
the bounds in (25) for the eigenvalues of the instantaneous
local Hessians also hold for the instantaneous global Hessian
∇2ft(x), i.e.,

mI � ∇2ft(x) � MI, (27)

for all x ∈ Rnp. Thus, the global objective function ft
is also strongly convex with constant m and its gradients
∇ft are Lipschitz continuous with constant M . Likewise,
the Lipschitz continuity of the local Hessians ∇2fi,t, which
is a customary assumption in the analysis of second-order
methods, implies that the instantaneous global Hessian ∇2ft
is also Lipschitz continuous with constant L, i.e.,

‖∇2ft(x)−∇2ft(y)‖ ≤ L‖x− y‖, (28)

for any x,y ∈ Rnp – see e.g., Lemma 1 in [17].
To characterize the error of dynamic ESOM, we define

the vector ut = [xt;vt] ∈ R2np as the concatenation of
the primal and dual iterates at step t. Likewise, we define
u∗t = [x∗t ;v

∗
t ] ∈ R2np as the concatenation of the optimal

arguments at time t. We proceed to characterize an upper
bound for the error sequence ‖ut−u∗t ‖G where the positive
definite matrix G is defined as G := diag(Inp, εαInp) ∈
R2np×2np. In the following lemma we establish an upper
bound for the norm ‖ut − u∗t ‖G in terms of the difference
between the previous vector ut−1 and the current optimal
argument u∗t .

Lemma 1 Consider the updates of dynamic ESOM as intro-
duced in (15)-(16) and recall the definitions of the vector u
and matrix G. If Assumptions 1 and 2 hold, then there exists
a positive scalar 0 < δ such that the sequence of iterates ut

generated by dynamic ESOM satisfies

‖ut − u∗t ‖G ≤ 1√
1 + δ

‖ut−1 − u∗t ‖G. (29)

Proof: The proof can be established by following the steps
of the proof of Theorem 2 in [25].

The constant δ in (29) is a function of the objective func-
tion ft parameters, network topology, and level of Hessian
inverse approximation K. In particular, the constant δ is close
to zero when the objective function is ill-conditioned, or the

network is not well connected. Moreover, larger choice of K
leads to a larger choice of δ which leads to a smaller error
‖ut − u∗t ‖G.

The result in Lemma 1 illustrates that the iterate ut is
closer to the optimal argument u∗t at step t relative to the
previous iterate ut−1. This result is implied from the fact that
ut is evaluated based on the observed function ft at step t.
Based on the result in Lemma 1, we can establish an upper
bound for the error ‖ut − u∗t ‖G at step t in terms of the
error of the previous time ‖ut−1−u∗t−1‖G and the variation
of the optimal arguments. We characterize this upper bound
in the following theorem.

Theorem 1 Consider the dynamic ESOM algorithm as in-
troduced in (15)-(16) and recall the definitions of the vector
u and matrix G. Define γ as the smallest non-zero eigenvalue
of the positive semidefinite matrix I−Z. Further, define the
dynamic optimality drift dt as

dt := ‖x∗t−1−x∗t ‖+
√
αε
√
γ
‖∇ft(x∗t )−∇ft−1(x∗t−1)‖. (30)

If Assumptions 1 and 2 hold, then the sequence of iterates
ut generated by dynamic ESOM satisfies

‖ut−u∗t ‖G ≤ 1√
1 + δ

‖ut−1−u∗t−1‖G +
dt√
1 + δ

. (31)

Proof: See Appendix VII-A.

The optimality drift dt captures the drift between the
two consecutive optimal arguments x∗t and x∗t−1 as well as
the difference between the two successive optimal gradients
∇ft(x∗t ) and ∇ft−1(x∗t−1). The result in Theorem 1 shows
that the sequence of the error ‖ut−u∗t ‖G approaches linearly
a steady state error bound. Note that the optimality drift dt
is small when the functions ft change sufficiently slow. The
result in (31) is consistent with the results for the static
version of the optimization problem in (1). In the static
setting, where u∗t = u∗t−1 = u∗, x∗t = x∗t−1 = x∗, and
∇ft(x∗t ) = ∇ft−1(x∗t−1) = ∇f(x∗), the result in (31) can
be simplified as ‖ut − u∗‖G ≤ (1/

√
1 + δ)‖ut−1 − u∗‖G

which shows linear convergence of the iterates generated by
ESOM to the optimal argument.

In the following theorem we use the result in Theorem 1 to
show that the error of dynamic ESOM, which is characterized
by the norm ‖ut − u∗t ‖G, approaches a steady state error.

Theorem 2 Consider the dynamic ESOM algorithm as in-
troduced in (15)-(16) and recall the definition of the opti-
mality drift dt in (30). Further, define dmax := maxt dt as
the maximum of the optimality drift dt for all times t. If
Assumptions 1 and 2 hold, then the limit supremum of the
sequence ‖ut − u∗t ‖G is bounded above by

lim sup
t→∞

‖ut − u∗t ‖G ≤ dmax√
1 + δ − 1

. (32)

Proof: See Appendix VII-B.

The steady state error of the sequence generated by dy-
namic ESOM is characterized in Theorem 2. As we expect, if



the maximum optimality drift dmax is not large the dynamic
ESOM algorithm approaches a reasonable asymptotic error.
Moreover, the steady state error is smaller for the case that
the constant of linear convergence δ is larger. This observa-
tion shows that the steady state error of ESOM-K reduces
by increasing the level of Hessian inverse approximation K.
This is true, since for larger choice of K, the constant δ is
larger.

Convergence of the sequence ‖ut − u∗t ‖G, which charac-
terizes the primal and dual errors of the iterates of dynamic
ESOM, follows that the sequence of primal iterates xt

converges to a neighborhood of the optimal argument x∗t .
This is shown in the following corollary.

Corollary 1 Recall the definition of the maximum optimality
drift dmax and suppose that the conditions in Theorem 2 are
satisfied. Then the primal error ‖xt−x∗t ‖ of dynamic ESOM
is upper bounded as

lim sup
t→∞

‖xt − x∗t ‖ ≤
dmax√

1 + δ − 1
. (33)

Proof : Based on the definition of the norm ‖ut −
u∗t ‖G, we can simplify the norm as ‖ut − u∗t ‖G =[
‖xt − x∗t ‖2 + αε‖vt − v∗t ‖2

]1/2
. According to this defni-

tion, we obtain that the primal error ‖xt − x∗t ‖ is smaller
than the norm ‖ut − u∗t ‖G. This observation in conjunction
with the result in (32) implies the claim in (33).

V. NUMERICAL EXPERIMENTS

In this section, we study the performance of the proposed
dynamic ESOM method in solving a dynamic least squares
problem. We consider a connected network with n = 20
and connectivity ratio rc = 0.15, i.e., edges are generated
randomly with probability 0.15.

We consider a decentralized dynamic least squares prob-
lem where at time t nodes aim to estimate the true signal
x̃∗t ∈ R5. Consider the linear model yi,t = Hi,tx̃

∗
t + ηi,t

where the matrix Hi,t ∈ R5×5 is a regressor matrix and the
vector ηi,t ∈ R5 is an additive noise. We assume that node i
observes the vector yi,t and collaborates with its neighbors
to find the true signal x̃∗t . In other words, the nodes’ goal is
to solve the least squares problem

x̃∗t = argmin
x∈R5

n∑
i=1

1

2
‖Hi,tx− yi,t‖2. (34)

Considering the definition of the global optimization problem
in (34), the local objective function of node i at time t is
given by fi,t := (1/2)‖Hi,tx− yi,t‖2.

We compare the dynamic variations of ESOM-0, ESOM-
2, Network Newton-0 (NN-0) [17], and EXTRA [28] in
solving the dynamic least squares problem in (34). In our
experiments, we assume that the matrices Hi,t are fixed over
time, i.e., Hi,t = Hi. We generate the components of Hi

following the Gaussian distribution N (0, 1). Although, the
matrices Hi are time-invariant, we assume that the vectors
yi,t are changing over time. We assume that after every
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Fig. 1: The convergence path of et versus time index t for dynamic
ESOM-0, ESOM-2, EXTRA, and NN-0. Dynamic ESOM-2 has the
best performance among all the considered methods.

100 iterations the components of the vectors yi,t change
in a way that the new global minimizer x̃∗t satisfies x̃∗t =
| sin(πt/500)|x̃∗0. In other words, x̃∗t = | sin(πt/500)|x̃∗0 if
t is a multiplicant of 100, otherwise x̃∗t = x̃∗t−1. Moreover,
we assume that every agent starts from the initial point xi,0

that satisfies the condition ‖xi,0 − x̃∗0‖ = 100.
We characterize error as the maximum difference between

the coordinates of each node’s variable and the optimal
argument x̃∗t . Thus, if we define xi,t[s] as the s-th coor-
dinate of the variable xi,t, the error is defined as et :=
maxi{maxs{|xi,t[s] − x̃∗t [s]|}}. The error et also can be
written as

et := max
i
{‖xi,t − x̃∗t ‖∞} , (35)

using the definition of the infinity norm ‖ · ‖∞.
Figure 1 shows the error et versus the time index t for

the four algorithms of interest. As we observe, during the
time that the optimal argument is fixed, NN-0 approaches a
neighborhood of the optimal solution and its error et stays
constant, while EXTRA, ESOM-0, and ESOM-2 converge
linearly to the exact solution and their error et diminish. It
is also worth mentioning that both ESOM-0 and ESOM-2
outperform EXTRA by incorporating second-order informa-
tion, and ESOM-2 has the best performance among all the
considered methods. If more rounds of communication is
affordable between the subsequent instances t and t+1, then
the performance of dynamic ESOM-K can be improved by
using larger values for K. Note that whenever the optimal
argument x∗t changes, which happens every 100 iterations,
all the algorithms readjust and correct their descent direction
to track the new optimal argument.

To study the performance of dynamic NN-0, EXTRA,
ESOM-0, and ESOM-2 in more details, we compare the
values of the first coordinate x1,t[1] of node 1 generated
by these methods with the first coordinate of the optimal
argument x̃∗t [1]. This comparison is shown in Figure 2. As
we observe in Figure 2, all the dynamic methods are unable
to track the true path in the first 200 iterations. Dynamic
ESOM-0 and ESOM-2 can track the optimal argument after
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generated by dynamic variations of ESOM-0, ESOM-2, NN-0, and
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the first 200 iterations, while the accuracy of dynamic
ESOM-2 is higher relative to dynamic ESOM-0. Dynamic
EXTRA starts tracking the true path after 400 iterations,
while its error is worse than the ones for dynamic ESOM-0
and ESOM-2. For the dynamic NN-0 method, the error is
always larger than the error of the other dynamic methods.

These observations verify the theoretical results in Section
IV. To be more precise, they show that the dynamic varia-
tions of EXTRA and ESOM-K outperform dynamic NN,
since they converge linearly to the optimal arguments while
NN converges to a neighborhood of the optimal solution
in static settings. Moreover, dynamic ESOM-K, irrespective
to the choice of K, improves the performance of dynamic
EXTRA by incorporating second-order information of the
augmented Lagrangian in (5). Further, larger choice of K
for dynamic ESOM-K leads to a faster linear convergence,
i.e., larger δ, which implies a smaller steady state error. This
observation verifies the result in Corollary 1.

VI. CONCLUSIONS

We considered the application of the Exact Second-Order
Methods (ESOM) in solving a dynamic consensus optimiza-
tion problem where the local functions available at nodes are
time-variant. The proposed dynamic ESOM method relies
on the use of a separable quadratic approximation of a
suitably defined time-varying augmented Lagrangian, and a
truncated Taylor’s series to estimate the solution of the first
order condition imposed on the minimization of the quadratic
approximation of the augmented Lagrangian. We proved that
under proper assumptions, the sequence of iterates generated
by dynamic ESOM converges linearly to a neighborhood
of the sequence of optimal arguments. We characterized
the steady state error in terms of the maximum difference
between the successive optimal arguments x∗t−1 and x∗t as
well as the optimal gradients ∇ft−1(x∗t−1) and ∇ft(x∗t ).
Numerical results showcase the advantages of the proposed
dynamic ESOM method relative to existing dynamic decen-
tralized methods.

VII. APPENDIX

A. Proof of Theorem 1

According to the definition of the vector u and matrix G
we can write

‖u∗t−1 − u∗t ‖G =
[
‖x∗t−1 − x∗t ‖2 + αε‖v∗t−1 − v∗t ‖2

]1/2
≤ ‖x∗t−1 − x∗t ‖+

√
αε‖v∗t−1 − v∗t ‖, (36)

where the inequality follows from the inequality a2 + b2 ≤
(a+ b)2 for positive scalars a and b. The KKT condition of
the optimization problem in (4) yields

∇ft(x∗t ) + (I− Z)1/2v∗t = 0. (37)

By writing the KKT condition in (37) for time t − 1 we
obtain that

∇ft(x∗t )−∇ft−1(x∗t−1)+(I−Z)1/2(v∗t −v∗t−1) = 0. (38)

Since the vectors v∗t and v∗t−1 are in the column space of
the matrix I − Z, we obtain that (I − Z)1/2(v∗t − v∗t−1) is
bounded below by γ1/2‖v∗t − v∗t−1‖. This lower bound in
conjunction with the expression in (38) implies that the norm
‖v∗t − v∗t−1‖ is bounded above as

‖v∗t − v∗t−1‖ ≤
1
√
γ
‖∇ft(x∗t )−∇ft−1(x∗t−1)‖. (39)

By substituting the upper bound in (39) to (36), the inequality
‖u∗t−1 − u∗t ‖G ≤ dt follows.

Based on the triangle inequality, the weighted norm
‖ut−1 − u∗t ‖G is bounded above by the sum

‖ut−1 − u∗t ‖G ≤ ‖ut−1 − u∗t−1‖G + ‖u∗t−1 − u∗t ‖G. (40)

Since the norm ‖u∗t−1 − u∗t ‖G is smaller than the drift dt
defined in (30), we can replace ‖u∗t−1−u∗t ‖G in (40) by dt

‖ut−1 − u∗t ‖G ≤ ‖ut−1 − u∗t−1‖G + dt. (41)

Combining the results in (41) and (29), the claim in (31)
follows.

B. Proof of Theorem 2

We prove the claim in (32) based on (31) in Theorem 1.
First, consider the inequality in (31) for time t− 1 which is
given by

‖ut−1 − u∗t−1‖G ≤ 1√
1 + δ

‖ut−2 − u∗t−2‖G +
dt−1√
1 + δ

.

(42)
Substituting the norm ‖ut−1−u∗t−1‖G in (31) by the upper
bound in (42) yields

‖ut − u∗t ‖G ≤
‖ut−2 − u∗t−2‖G

(
√
1 + δ)2

+
dt−1

(
√
1 + δ)2

+
dt√
1 + δ

.

(43)
By considering the expression in (31) for all times s ≤ t and
recursively it follows that the error ‖ut−u∗t ‖G at step t and
the initial error ‖u0 − u∗0‖G satisfy

‖ut − u∗t ‖G ≤ ‖u0 − u∗0‖G
(
√
1 + δ)t

+

t∑
s=1

ds

(
√
1 + δ)t−s+1

. (44)



Now considering the definition of dmax as dmax = supt≥1 dt,
we obtain that the sum in the right hand side of (44) is
bounded above by

t∑
s=1

ds

(
√
1 + δ)t−s+1

≤
t∑

s=1

dmax

(
√
1 + δ)t−s+1

≤ dmax√
1 + δ

× 1− (
√
1 + δ)−t

1− (
√
1 + δ)−1

, (45)

where the second inequality is implied from the simplifica-
tion

∑t
s=1 ρ

t = ρ(1 − ρt)/(1 − ρ) when ρ < 1. Replacing
the sum in the right hand side of (44) by the upper bound
in (45) yields

‖ut−u∗t ‖G ≤ ‖u0 − u∗0‖G
(
√
1 + δ)t

+
dmax√
1 + δ

× 1− (
√
1 + δ)−t

1− (
√
1 + δ)−1

.

(46)
Taking t→∞, the term ‖u0 − u∗0‖G/(

√
1 + δ)t in the right

hand side of (46) vanishes. Moreover, the term (
√
1 + δ)−t

approaches 0. From these observations it follows that

lim sup
t→∞

‖ut − u∗t ‖G ≤ dmax√
1 + δ − 1

, (47)

and the proof is complete.
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