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MEAN FIELD GAME THEORY FOR AGENTS WITH

INDIVIDUAL-STATE PARTIAL OBSERVATIONS∗

NEVROZ ŞEN † AND PETER E. CAINES‡

Abstract. Subject to reasonable conditions, in large population stochastic dynamics games,
where the agents are coupled by the system’s mean field (i.e. the state distribution of the generic
agent) through their nonlinear dynamics and their nonlinear cost functions, it can be shown that
a best response control action for each agent exists which (i) depends only upon the individual
agent’s state observations and the mean field, and (ii) achieves a ǫ-Nash equilibrium for the system.
In this work we formulate a class of problems where each agent has only partial observations on
its individual state. We employ nonlinear filtering theory and the Separation Principle in order to
analyze the game in the asymptotically infinite population limit. The main result is that the ǫ-Nash
equilibrium property holds where the best response control action of each agent depends upon the
conditional density of its own state generated by a nonlinear filter, together with the system’s mean
field. Finally, comparing this MFG problem with state estimation to that found in the literature
with a major agent whose partially observed state process is independent of the control action of any
individual agent, it is seen that, in contrast, the partially observed state process of any agent in this
work depends upon that agent’s control action.

Key words. mean field games, partially observed stochastic control, nonlinear filtering, stochas-
tic games.

AMS subject classifications. 35Q83, 35R60, 60G35, 91A10, 91A23, 93A14, 93E20

1. Introduction. For dynamical games of mean field type it has been demon-
strated that when the agents are coupled through their dynamics and their cost func-
tions, the best response control policies in the asymptotically infinite population limit
only depends upon their individual state and the system mean field. Furthermore,
such policies generate approximate Nash equilibria when they are applied to a large
finite population game, see [14], [17], [18] and [16] among others, by Huang, Malhamé
and Caines, [21], [22] and [23], by Lasry and Lions.

A distinct consequence of such a result is that in the mean field games (MFG)
set-up an individual agent does not have a significant benefit in learning the state
of an other agent, and therefore the estimation of any other agent’s state process
has negligible value. Nonetheless, in practical situations one does not have access to
complete observation of its own state and and therefore models of such (PO) MFG
systems where the agents’ controls depend upon the agents’ observation processes can
only represent them as functions of the agents’ states via estimates of those states.
Such a model for linear quadratic Gaussian (LQG) MFG type of problems has been
considered in [15] and approximate Nash equilibrium is obtained on an extended state
space. In this work, we consider the nonlinear MFG where an individual agent has
noisy observation on its own state.

Recent works, ([13] and [24]), consider MFG involving a major agent and many
minor agents (MM-MFG) where, by definition, a minor agent is an agent which,
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asymptotically as the population size goes to infinity, has a negligible influence on
the overall system while the overall population’s effect on it is significant, and where
a major agent is the agent which has asymptotically non-vanishing influence on each
minor agent as the population size goes to infinity. A fundamental feature of this setup
is that, in contrast to the situation without a major agent, the mean field is stochastic
due to the stochastic evolution of the state of the major agent and the best response
processes of each minor agent depend on the state of the major agent. Motivated
by this observation, state estimation problems in the nonlinear MFG with a major
agent is considered in [10] (see [6] and [11] for the LQG case) where the major agent’s
state process is partially observed but the agents have complete observation of their
own states. Adopting the approach of constructing an equivalent completely observed
model via application of nonlinear filtering, the MFG problem is analyzed in the space
of conditional densities and the existence of Nash equilibria in the infinite population
and the ǫ-Nash equilibria for the finite population game is obtained. We finally remark
that in addition to [13] and [24], MFG setup with major and minor agents has also
been considered in [5] and [8] where in the former the authors generalized the MM-
MFG setup to the case where the mean field is determined by control policy of the
major agent and in the later, a probabilistic approach is taken for MFG problems in
which major agent’s state exists in the both state and the cost functions. We also
refer to [7] for the analysis of MFG with common noise.

The individuals dynamics in the infinite population limit in an MFG setup are
charactherized by McKean-Vlasov (MV) type stochastic differential equations (SDEs).
These SDEs have the property that the dynamics depend on the distribution of the
state process. Hence, a PO stochastic optimal control problem (SOCP) is formulated
for MV type SDEs and as a consequence, the filtering equations should first be de-
veloped for such SDEs for which a theory for joint state and distribution estimation
in the case the measure is stochastic is developed in [26]. Following the standard
approach in the literature, once the filtering equations in the form of normalized or
unnormalized densities are obtained, it is possible to obtain a form of the Hamilton-
Jacobi-Bellman (HJB) equation in functional spaces. This is the path that we employ
in the paper by using the unnormalized conditional densities.

It is also worthwhile to provide a summary of the technical steps that one shall
develop in a nonlinear PO MFG setup. We first remark that one can follow differ-
ent approaches in order to prove the convergence properties of MFG in the infinite
population. Among these, the convergence of the dynamics of the controlled state
process into a MV type dynamics when feedback controls are applied, see [17], greatly
simplifies the analysis of the associated optimal control problem. In the partially
observed setup, we follow this approach consequently, as the first step, we shall prove
such a convergence argument for the case where the control policies are in the feed-
back form for conditional densities. We next analyze the fixed point property on the
Wasserstein space of probability measures. Recall however that the solution to the
completely observed MFG problem is given by a coupled HJB and a Fokker-Plank-
Kolmogorov (FPK) equation which essentially requires to analyze the sensitivity of
the solutions to the HJB equations with respect to the probability measure represent-
ing the mean field. In the PO MFG one needs to generalize such sensitivity results
with respect to the conditional density component representing the information state.
This is achieved by using the robustness property of the nonlinear filter. In the final
stage, we shall prove the approximate Nash equilibrium property of the best response
control policies obtained as the solution to the HJB equation of the infinite population
game.
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The organization of the paper is as follows. In Section 2 we present a MFG setup
with uniform agents and discuss the main results in a brief manner. In Section3
we formulate the state estimation problem and present the associated completely
observed system via applying the separation principle. We also provide a solution in
the form of HJB equation for the completely observed problem. In Section 4 we prove
the existence of a Nash equilibrium between an individual and the mass in the infinite
population limit and in Section 5, we demonstrate the approximate Nash equilibrium
property of the best response processes obtained in the former section. In Section 6
we present an example where the completely observed model has a finite dimensional
information state and hence provides a more tractable MFG system. In Section 7 we
briefly compare the results presented in the paper with a PO MM-MFG model. We
conclude the paper with Section 8.

Throughout the paper we use the following notation. For a matrix A, AT , tr(A)
and Aij denotes the transpose, the trace and the corresponding entry, respectively. ∇x

and∇2
xx denotes the gradient and Hessian operators with respect to the variable x and

in a one-dimensional domain, ∂x and ∂2xx will be used instead. Let S be a metric space.
Then, B(S) denotes the Borel σ-algebra and P(S) denotes the space of probability
measures, respectively, on S. Let (Ω,F , {Ft}t≥0, P ) be a filtered probability space
satisfying usual conditions. Conditional expectation with respect to a sigma algebra
F is denoted by E (·|F). For an Euclidean space H , we denote by L2

G ([0, T ];H) the

set of all {G}-adapted H-valued processes such that E
∫ T

0 |f(t, ω)|2dt <∞.

2. Mean Field Games with Uniform Agents. We consider a stochastic dy-
namic game with N agents, {Ai, 1 ≤ i ≤ N}, where the dynamics of the agents are
given by the following controlled SDEs on

(

Ω,F , {Ft}t≥0, P
)

:

dzNi (t) =
1

N

N
∑

j=1

f
(

t, zNi (t), uNi (t), zNj (t)
)

dt+ σdwi(t),(1)

with terminal time T ∈ (0,∞) and initial conditions zNi (0) = zi(0), 1 ≤ i ≤ N , where
(i) zNi (t) ∈ R, uNi (t) ∈ U , 0 ≤ t ≤ T , are the state and control input of agent Ai, (ii)
f : [0, T ]× R× U × R→ R is a measurable function, (iii) (wi(t))t≥0 are independent
standard Brownian motions in R and; (iv) σ > 0 is constant. For 1 ≤ j ≤ N we denote
by uN−j := {uN1 , . . . , uNj−1, u

N
j+1, . . . , u

N
N}, where agents’ states and controls are taken

to be scalar valued for simplicity of notation throughout the paper. The objective of
each agent is to minimize its cost-coupling function given by

JN
i (uNi , u

N
−i) := E

∫ T

0

1

N

N
∑

j=1

L
(

zNi (t), uNi (t), zNj (t)
)

dt,(2)

where L : R × U × R → R+. Remark that the above model can be generalized to
the case where the diffusion coefficient depends on the mean field coupling, where the
state processes take values in, say, Rm and where the cost functions are time varying.
We assume the followings:

(A0) The initial states {zj(0), 1 ≤ j ≤ N} are mutually independent, independent
of all Brownian motions and satisfy supj∈{1,...,N} E|zj(0)|2 ≤ k < ∞, where

k is independent of N . Furthermore, let FN (x) := (1/N)
∑N

i=1 1{Ezi(0)≤x}
denote the empirical distribution of agents where 1{Ezi(0)<x} = 1 if Ezi(0) < x
and 1{Ezi(0)<x} = 0 otherwise. Then we assume {FN : N ≥ 1} converges to
a distribution F weakly.



4 NEVROZ ŞEN AND PETER E. CAINES

(A1) U is a compact set.
(A2) The functions f(t, x, u, y), L(x, u, y) are continuous and bounded in all their

parameters and Lipschitz continuous in (x, y).
(A3) The first and second order derivatives of f(t, x, u, y) and L(x, u, y) with re-

spect to x are all uniformly continuous and bounded with respect to all their
parameters and Lipschitz continuous in y.

(A4) f(t, x, u, y) is Lipschitz continuous in u.
For the system described by (1)-(2), the goal is to find individual control strategies and
characterize their optimality with regard to Nash equilibrium. Following the standard
approaches in literature, the asymptotic analysis (N → ∞) of the above game shall
be considered first and as a consequence, MV type dynamics approximating the state
dynamics of an individual agent should be obtained. More explicitly, let φ (t, x) ∈
CLip(x) ([0, T ]× R;U), the space of U -valued, continuous functions on [0, T ]×R with
Lipschitz coefficient in x, which is used by the agents as their control laws. Hence,
the closed loop dynamics of agents are given by

dẑoi (t) =
1

N

N
∑

j=1

f
(

t, ẑoi (t), φ(t, ẑ
o
i ), ẑ

o
j (t)

)

dt+ σdwi(t),(3)

for which unique solution is known to exist [28, Chapter 1, Theorem 6.16]. Consider
the following MV type dynamics

dzoi (t) = f [t, zoi (t), φ (t, z
o
i (t)) , µt] dt+ σdwi(t),(4)

with zoi (0) = zi(0) and µt ∈ P (R). Here f [t, x, u, µt] =
∫

R
f (t, x, u, y)µt(dy) and

we use the same notation in the rest of the paper. A pair (zoi (t), µt) for (4) is said
to be a consistent solution if zoi (t) is a solution to the SDE in (4) and P (zoi (t) ≤
α) =

∫ α

−∞ µt(dy) for all α ∈ R and 0 ≤ t ≤ T . The closed loop dynamics in (3) can

be O(1/
√
N)-approximated by the MV type dynamics given by (4) [17]. We shall

now proceed, following the outline summarized in the introduction, with the partially
observed MFG in the infinite population and McKean-Vlasov approximation with
filtering dependent control policies.

3. Partially Observed Mean Field Games and Nonlinear Filtering for

MV Systems. In this section we formulate the estimation problem associated to the
MFG set-up described above. Let agent Ai has access to a noisy observation of its
own state via:

dyi(t) = h (t, zoi (t)) dt+ dνi(t),(5)

where (νi(t))0≤t≤T is a Brownian motion independent of
{

zi(0), (wi(t))0≤t≤T , 1 ≤ i ≤
N
}

and of the other noise processes
{

(ν−i(t)0≤t≤T

}

. We assume the following.

(A5) The function h : [0, T ] × R → R ∈ C1,2
t,x ([0, T ]× R), the space of functions

which are differentiable in t and twice differentiable in x, with |∂xh(t, x)| +
|∂2xxh(t, x)| ≤ K and |∂th(t, x)| ≤ K(1 + |x|) for all (t, x) ∈ [0, T ]× R.

Following the standard approach to the PO SOCP, we shall construct the associated
completely observed system via application of nonlinear filtering for the dynamics
described in (4). But prior to that we obtain an MV type approximation result for
the state process controlled with filtering dependent policies, since under suitable
assumptions the optimal control takes a feedback form given by the solution of an
HJB equation with infinite dimensional domain.
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3.1. Nonlinear Filtering for McKean-Vlasov Dynamics. The nonlinear
filtering equations that each agent needs to generate are defined as follows: Given the
history of observations Fyi

t := σ{yi(s) : s ≤ t}, determine a recursive expression for
E [ℓ (zoi (t)) |Fyi

t ] for ℓ ∈ C2
b (R), the space of all bounded differentiable functions with

bounded derivatives up to order 2. Note that the agent’s state zoi (t) has MV type
dynamics and so, for a fixed measure flow, we have

f [t, zoi , ui, µt] =

∫

R

f [t, zoi , ui, x]µt(dx) := f∗ (t, zoi , ui) ,(6)

where f∗ : [0, T ]× R× U → R. Hence, consider the SDEs

dzoi (t) = f∗ (t, zoi (t), ui(t)) dt+ σdwi(t),(7)

dyi(t) = h (t, zoi (t)) dt+ dνi(t).(8)

The filtering problem for the MV system described by (7)-(8) has been analyzed
in [26] where filtering equations generating conditional distributions are obtained.
We can similarly obtain filtering equations in the form of conditional densities as
follows. Define the following innovation process: Ii(t) = yi(t)−

∫ t

0
E [h(s, zoi (s))|Fyi

s ] ds
which can be shown to be a Fyi

t -Brownian motion under the measure P . Let πi :=
P (zoi (t)|Fyi

t ) and define

Lℓ := 1

2
σ2∂2xxℓ+ f∗∂xℓ.(9)

Define the adjoint operator on C2 (R) as:

L∗θ(x) = 1

2
∂2xxσθ(x) − ∂xf∗θ(x).(10)

Let ϕi denote the probability density for πi i.e., for A ∈ B(R), πi(t, A) =
∫

A ϕi(t, x)dx
where ϕi(·) is (t, x)-measurable and Fyi

t adapted for each t ∈ [0, T ]. Then ϕi(t, x)
satisfies the following: For every t,

ϕi(t, x) = ϕi(0, x)(11)

+

∫ t

0

L∗ϕi(s, x)ds+

∫ t

0

ϕi(s, x)

{

h(s, x)−
∫

R

h(s, x′)ϕi(s, x
′)dx′

}

dIi(s),

for a.e. x with probability 1 and where ϕi(0, x) is the initial conditional density
and Ii(t) is the Innovations process, which is a Brownian motion, defined above.
This can be shown, for instance, by following [19, Theorem 11.2.1]. Based on the
consistency based approach to MFG [17], we now provide a decoupling result which
demonstrates that the closed loop dynamics of each agent in the infinite population
limit is approximated by MV SDEs in the partially observed setup.

3.2. McKean-Vlasov Approximation with Partial Information. Let E

be a vector space with norm ‖ · ‖E such that the process ϕi(t), 0 ≤ t ≤ T , satisfying
(11) takes values in. Recall also that the process ϕi(t) is Fyi

t -adapted. Let α(t, p) :
[0, T ]× E→ U be an arbitrary measurable process and assume that
(M1) α(t, p) ∈ CLip(p) ([0, T ]× E;U) and α(t, 0) ∈ L2

Fyi
t

([0, T ];U).

Assume that the process α(t, ·) is used by agent i as its control laws in (1) such that
ui = α for 1 ≤ i ≤ N . We then obtain the following closed-loop dynamics:

dzNi (t) =
1

N

N
∑

j=1

f
(

t, zNi (t), α (t, ϕi(t)) , z
N
j (t)

)

dt+ σdwi(t), z
N
i (t) = zi(0).(12)
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One can show that under the assumptions (A1)-(A4), the systems of equation given
in (12) has a unique solution

(

zN1 , . . . , z
N
N

)

by following similar steps to those in the
proof of Theorem 6.16 of [28, p. 49] and by using the robustness (i.e., continuity with
respect to the observation path) of nonlinear filter; see Theorem 6. We now introduce
the MV system for the generic agent where the agent’s MV system shall contain the
estimation of its own state via nonlinear filtering equations:

dẑ(t) = f [t, ẑ(t), α (t, ϕ(t)) , µt] dt+ σdw(t),(13)

dy(t) = h (ẑ(t)) dt+ dν(t), 0 ≤ t ≤ T,(14)

with the initial condition ẑ(0) = z(0) and
(

w(t), ν(t)
)

0≤t≤T
are standard Brownian

motion in R, which are independent of each other and independent of initial condition
z(0). Furthermore, we characterize µt by P (ẑ(t) ≤ α) =

∫ α

−∞ µt(dx), 0 < t ≤ T . Fi-

nally, ϕ(t) is the Fy
t -adapted solution to filtering equation for the conditional density.

We remark that under (A0)-(A4), (A5) and (M1) it can be shown that a unique con-
sistent solution to the above MV system exists; see Theorem 6. Let us also introduce

dẑi(t) = f [t, ẑi(t), α (t, ϕi(t)) , µt] dt+ σdwi(t),(15)

dyi(t) = h (t, ẑi(t)) dt+ dνi(t), 0 ≤ t ≤ T,(16)

where (wi(t), νi(t))0≤t≤T 1 ≤ i ≤ N Brownian motions in R which are are indepen-
dent of each other and independent of (zi(0), 1 ≤ i ≤ N) and µt is the law of ẑi(t).
These equations can be considered as N independent copies of (13)-(14). We can now
state the MV approximation result.

Theorem 1. Assume (A0)-(A4), (A5) and (M1) hold. Then

sup
1≤j≤N

sup
0≤t≤T

E|zNj (t)− ẑj(t)| = O

(

1√
N

)

,(17)

where zNj (t) and ẑj(t), 1 ≤ j ≤ N , are given in (12) and (15), respectively, and

O( 1√
N
) depends on T .

Proof. The proof is an extension of [17, Theorem 12] to the case where control
laws depend on the filtering processes. Consider first the ith agent and notice that

zNi (t)− ẑi(t) =(18)
∫ t

0

1

N

N
∑

j=1

f
(

t, zNi , α (s, ϕi(s)) , z
N
j

)

ds−
∫ t

0

f [s, ẑi(s), α (s, ϕi(s)) , µs] ds.

Let

Di(s) :=(19)

1

N

N
∑

j=1

f
(

s, zNi (s), α (s, ϕi(s)) , z
N
j (s)

)

−
∫

R

f (s, ẑi(s), α (s, ϕi(s)) , y)µs(dy),

and observe that

Di(s) = D1
i (s) +D2

i (s) +D3
i (s),

D1
i (s) :=

1

N

N
∑

j=1

f
(

s, zNi (s), α (s, ϕi(s)) , z
N
j (s)

)

− 1

N

N
∑

j=1

f
(

s, ẑi(s), α (s, ϕi(s)) , z
N
j (s)

)

,
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D2
i (s) :=

1

N

N
∑

j=1

f
(

s, ẑi(s), α (s, ϕi(s)) , z
N
j (s)

)

− 1

N

N
∑

j=1

f (s, ẑi(s), α (s, ϕi(s)) , ẑj(s)) ,

D3
i (s) :=

1

N

N
∑

j=1

f (s, ẑi(s), α (s, ϕi(s)) , ẑj(s)) −
∫

R

f (s, ẑi(s), α (s, ϕi(s)) , y)µs(dy).

By the Lipschitz continuity of f and α, there exists a constant C > 0 independent of
N such that

|D1
i +D2

i | ≤ C
N
∑

j=1

(1/N)
(

|zNi − ẑi|+ |zNj − ẑj |
)

.(20)

From (18)-(20), it follows that

sup
0≤s≤t

∣

∣zNi (s)− ẑi(s)
∣

∣ ≤ C
∫ t

0

∣

∣zNi (s)− ẑi(s)
∣

∣ ds

+C

∫ t

0

(1/N)

N
∑

j=1

∣

∣zNj (s)− ẑj(s)
∣

∣ ds+

∫ t

0

D3
i (s)ds(21)

which gives

N
∑

i=1

sup
0≤s≤t

∣

∣zNi (s)− ẑi(s)
∣

∣

≤ 2C
N
∑

i=1

∫ t

0

∣

∣zNi (s)− ẑi(s)
∣

∣ ds+

∫ t

0

N
∑

i=1

D3
i (s)ds

≤ 2C

N
∑

i=1

∫ t

0

sup
0≤τ≤s

∣

∣zNi (s)− ẑi(s)
∣

∣ ds+

∫ t

0

N
∑

i=1

D3
i (s)ds.(22)

We consider the last item in (22). We have that

E
∣

∣D3
i (t)

∣

∣

2 ≤
∫ t

0

E

∣

∣

∣

∣

1

N

N
∑

j=1

f (s, ẑi(s), α (s, ϕi(s)) , ẑj(s))

−
∫

R

f [s, ẑi(s), α (s, ϕi(s)) , y]µs(dy)

∣

∣

∣

∣

2

.(23)

Define now g(s, ẑi, x) := f (s, ẑi(s), α (s, ϕi(s)) , x)− f [s, ẑi(s), α (s, ϕi(s)) , µs] and
recall that ϕi(t) depends on ẑi(t) through (16). Therefore, for j 6= k, we have

E [g(s, ẑi, ẑj)g(s, ẑi, ẑk)] = 0,(24)

which implies that there are no cross terms in (23). Consequently, by the boundedness

of f and the inequality that
(

∑N
i=1 xi

)2

≤ N
∑N

i=1 x
2
i , we obtain

E
∣

∣D3
i (t)

∣

∣

2 ≤ k1(t)/N = O(1/N),(25)
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where k1 is an increasing function of t but independent of N . Now by (22), (25) and
Gronwall’s lemma

N
∑

i=1

E sup
0≤t≤T

∣

∣zNi (t)− ẑi(t)
∣

∣ = O

(

1√
N

)

,(26)

which yields E sup0≤t≤T

∣

∣zNi (t)− ẑi(t)
∣

∣ = O
(

1√
N

)

.

3.3. A Completely Observed Stochastic Optimal Control Problem for

the Generic Agent. The widely adopted procedure in the literature in the construc-
tion of a completely observed stochastic optimal control problem from the partially
observed one is to use the unnormalized conditional density in the separation principle
since it is known that the cost function under an equivalent measure is linear in the
initial unnormalized conditional density. Furthermore, the dynamics of the unnor-
malized conditional density is also a linear functional of the initial density and hence
one can significantly benefit from the unnormalized construction including the closed
form computation of the first and second order functional (Fréchet) derivatives with
respect to the density-valued state component. However, in order to proceed with the
unnormalized form, following the standard assumptions in the literature (see [3], [12]
and [4]), we shall restrict ourselves to the state dynamics in the following form:

(A6) The function f(t, x, u, y) is linear in the control: f(t, x, u, y) = f †(t, x, y)+ u.
Recall that if the probability measure flow (µt)0≤t≤T is fixed, f [t, x, u, µ] and L[x, u, µ]
become a function of (t, x, u) and as before, we denote

f∗(t, x, u) := f [t, x, u, µ], L∗(x, u) := L[x, u, µ].

We need a further condition that the measure flow satisfies so that the induced func-
tions are well behaved, see Definition 3 and Proposition 4 of [17].

Definition 2. A probability measure flow µt on [0, T ] is inM[0,T ] if there exists
β ∈ (0, 1] such that for any bounded and Lipschitz continuous function ψ on R,

sup
1≤j≤K

∣

∣

∣

∣

∫

R

ψ(y)µj
t′(dy)−

∫

R

ψ(y)µj
t′′ (dy)

∣

∣

∣

∣

≤ B|t′ − t′′|β ,(27)

for all t′, t′′ ∈ [0, T ] where for given µt, B depends on upon the Lipschitz coefficient
of ψ.

In order to obtain the unnormalized filtering equations for the MV SDE, we first need
to define an exponential martingale for the change of measure argument. Consider
first the following MV SDE

dzo(t) = f [t, zo(t), α(t), µt] dt+ σdw(t),(28)

dy(t) = h (t, zo(t)) dt+ dν(t), 0 ≤ t ≤ T,(29)

with zo(0) = z(0), y(0) = 0 where (α(t))0≤t≤T is an admissible control, i.e., an

Fy
t -adapted process taking values in U . In the rest of this section, we assume that

(µt) ∈ M[0,T ] is fixed with exponent β and we follow the approach presented in [3].
Hence, we define the process

w−(t) = w(t)−
∫ t

0

u(s)ds(30)



MEAN FIELD GAMES WITH PARTIAL OBSERVATIONS 9

and let introduce a new measure P̃ such that dP
dP̃

=MT
0 (u) where

M t
s(u) := exp

{
∫ t

s

(

u(τ)dw−(τ) + h (τ, zo (τ)) dν(τ)
)

−1

2

∫ t

s

(

|u(τ)|2 + |h (τ, zo (τ)) |2
)

dτ

}

.(31)

It now follows from Girsanov’s theorem that under P̃ , y(t) is a Brownian motion.
Define now the backward differential operator and its adjoint as follows: For a ∈ U

J a
t :=

1

2
∂2xx + (f † + a)∂x,

J ∗a
t :=

1

2
∂2xx − (f † + a)∂x − ∂xf †.(32)

Similarly, for a given control process u ∈ U , where U :=
{

u(·) ∈ U : u(t) is Fy
t −

adapted and E
∫ T

0
|u(t)|2dt <∞

}

, we denote the family of operators by

{J u
t := J ut

t , J ∗u
t := J ∗ut

t , 0 ≤ t ≤ T }.(33)

Consider a random function {q(t, z; τ, κ); τ < t ≤ T } with (z, κ) ∈ R×R and assume
that it is a fundamental solution of the Zakai equation (which is known to exist [3])
given by:

dq(t, z; τ, κ) = J ∗u
t q(t, z; τ, κ)dt+ h(t, z)q(t, z; τ, κ)dy(t),

lim
t↓τ

q(t, z; τ, κ) = δz−κ, τ ≤ t ≤ T, P̃ − a.s.(34)

Let p(z) denote the density of z(0) and set qt(z;κ) := q(t, z; 0, κ). Then by [3, Theorem
4.1] the function

pt(z) =

∫

R
qt(z;κ)p(κ)dκ

∫

R

∫

R
qt(z;κ)p(κ)dκdz

,(35)

is a version of the conditional density of P (zo(t) ∈ A|Fy
t ) i.e., for ℓ ∈ Cb (R) and

A ∈ B(R),

E [ℓ (zo(T )) |Fy
T ] =

∫

R

pT (z)ℓ(z)dz P̃ − a.s.(36)

Finally, let us set ϕ̃(t, z) :=
∫

R
qt(z;κ)p(κ)dκ. Then, by [3, Theorem 4.1], we obtain

dϕ̃(t, z) = J ∗u
t ϕ̃(t, z)dt+ h(t, z)ϕ̃(t, z)dy(t), 0 ≤ t ≤ T,

ϕ̃(0, z) = p(z),(37)

where (37) is the Zakai equation for the unnormalized conditional density which will
serve as the infinite dimensional state process of the completely observed optimal
control problem. It is worthwhile recalling at this point that the goal is to solve the
partially observed SOCP at the infinite population limit for which we aim to obtain an
HJB equation in a function space by constructing the associated completely observed
SOCP. We now proceed with such a derivation the first step of which requires one
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to define the cost in terms of the conditional density process and the new measure
defined via (31).

Indeed, consider the cost function and note that

J(u; p) = E

∫ T

0

L [zo(t), u(t), µt] dt

= Ẽ

∫ T

0

(
∫

R

∫

R

L [z, u(t), µt] qt(z;x)p(x)dxdz

)

dt,(38)

where Ẽ denotes expectation with respect to P̃ and (38) follows from [3, Equation
5.1]. Note that we explicitly indicate dependence on the initial condition. Define the
following space of functions:

Ek
△
=

{

p ∈ L1(R); ‖p‖k =

∫

R

(

1 + |z|k
)

|p(z)|dz <∞
}

.(39)

In the derivation of the HJB equation we consider the function space (39) where for
the expected total cost incurred during [T − τ, T ], 0 ≤ τ ≤ T , we assume that the
initial condition satisfies pT−τ (z) ∈ Ek and hence, for a constant control ut = a ∈ U
for all 0 ≤ t ≤ T , we have J : [0, T ]× Ek → R.

Definition 3. [3] Consider a probability space
(

Ω,F , {Ft}t≥0, P
)

and an El-
valued stochastic process (η(t, z))0≤t≤T adapted to the filtration Ft with l ≥ 0. If

E

∫ T

0

(
∫

R

(

1 + |z|l
)

|η(t, z)|
)j

dt <∞,(40)

than we say that η(t, z) ∈ Ml,j [Ft].

A continuous cost functional is next defined by setting:

V u(τ, p) := E

∫ T

T−τ

L [zo(t), u(t), µt] dt,(41)

where (τ, p) ∈ [0, T ]× Ek and zo(T − τ) has a distribution with density p. We now
recall the definition of the Fréchet derivative. A function f : X→ Y is said be Fréchet
differentiable at x if there exists Df(x) ∈ L(X;Y), where L(X;Y) denote the space of

bounded linear operators from X to Y, such that lim06=‖h‖→0
‖f(x+h)−f(h)−Df(x)·h‖Y

‖h‖X

=

0. One can define higher order Fréchet derivatives in a similar manner. For in-
stance, the second order Fréchet derivative of f at x ∈ X satisfies that D

2f(x) ∈
L (X;L(X;Y)). We define the following assumptions.

(A7) The function V (τ, p) : [0, T ]×Ek → R possesses continuous first derivatives in
τ and first and second order Fréchet derivatives DV (τ, p) and D

2V (τ, p) with
respect to p in the form of linear functional and a bilinear form, respectively,
which are given by

DV (τ, p)[η] =

∫

R

Vp (τ, p) (z)η(z)dz,

D
2V (τ, p)[η, θ] =

∫

R

∫

R

V 2
pp (τ, p) (z, z

′)η(z)θ(z′)dzdz′, η(·), θ(·) ∈ El,

where the kernels Vp (τ, p) (z) and V
2
pp (τ, p) (z, z

′) are continuous in their ar-
guments and satisfy the following:

|Vp (τ, p) (z)| ≤ ζ1 (τ, ‖p‖l)
(

1 + |z|l
)

,
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|V 2
pp (τ, p) (z, z

′)| ≤ ζ2 (τ, ‖p‖l)
(

1 + |z|l
) (

1 + |z′|l
)

,(42)

for ζ1, ζ2 being continuous functions on [0, T ]× R+.
(A8) Consider (37). Assume that

J ∗u
t ϕ̃(z) ∈ Ml,1[Fy

t ] ∩Ml,2[Fy
t ],

h(t, z)ϕ̃(t, z) ∈ Ml,2[Fy
t ] ∩Ml,4[Fy

t ],(43)

for some l ≥ 0.
Let ut = a, 0 ≤ t ≤ T and define Nt(x) :=

∫

R
L[z, a, µt] q(T, z; t, x)dz and s := T − τ .

Notice that with this notation, we have that V a(τ, p) = Ẽ (Ns, p) where we use the
notational convention that (α, β) :=

∫

R
α(z)β(z)dz. Consider V a and note that due to

the linearity in the infinite dimensional component, for a fixed control a, the Fréchet
derivatives satisfy

DV a(τ, p)[η] =

∫

R

V a
p (τ, p)(x)η(x)dx, η(·) ∈ El−1,

where V a
p (τ, p)(x) = ẼNs(x). Similarly,

D
2V a(τ, p)[η, θ] =

∫

R2

V a
pp(τ, p)(x, x

′)η(x)θ(x′)dxdx′,

where η(·), θ(·) ∈ El−1 and V a
pp(τ, p)(x, x

′) = 0. Therefore, the first set of conditions
of (A7) are already satisfied when the unnormalized conditional density is considered.

We are now in the position to provide a HJB equation that the function given in
(41) satisfies.

Proposition 4. Consider the probability space
(

Ω,F , {Fy
t }t≥0, P

)

and any ad-
missible control process {ut; 0 ≤ t ≤ T } ∈ U along with (zo(t), y(t), ν(t), w(t))0≤t≤T .
Assume that (A1), (A2), (A3), (A5), (A6) and (A8) hold. If the following equation

∂V (τ, p)

∂τ
=

1

2
D

2V (τ, p) · [h(T − τ)p, h(T − τ)p]

+min
θ∈U

{(

J θ
T−τDV (τ, p)(·), p

)

+ (L[·, θ, µT−τ ], p)
}

,

V (0, p) = 0, (τ, p) ∈ [0, T ]× Ek,(44)

has a solution V (τ, p) := [0, T ]× Ek → R which satisfies the assumptions defined in
(A7), then V (τ, p) is a lower bound to the cost achieved under the control process u,
i.e.,:

V u(τ, p) := E

∫ T

T−τ

L[zo(t), u(t), µt]dt ≥ V (τ, p),(45)

for any (τ, p) ∈ [0, T ]× Ek.

Under the assumptions (A1)-(A3), (A5)-(A8) and the condition that the measure flow
(µt)0≤t≤T ∈ M[0,T ] is fixed, the proof of this proposition follow from [3, Theorem 5.2].

Notice now that the PDE described in (44) is difficult to analyze (notice the
existence of a function space in the domain of V ); indeed, the solution to such an
equation is not completely understood in the literature. Hence, in order to proceed
with the analysis of the PO MFG system, we assume the following.
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(A9) The equation (44) has a unique solution V (t, p) : [0, T ]×Ek → R with V (t, p) ∈
C1,2

t,p ([0, T ]× Ek).
Notice that due to this assumption, the best response control process can now be
given in the following separated form:

u∗ = {u∗(t, p) = a∗ (T − t, pt) ; 0 ≤ t ≤ T },
a∗ (τ, p) = argmin

a∈U

{(

J a
T−τDV (τ, p)(·), p

)

+ (L [·, a, µT−τ ] , p)
}

,(46)

if the Zakai equation (37) is strongly solvable for an Fy
t -adapted random function

ϕ̃(t, z) with u(t) = a∗
(

T − t, ϕ̃(t)
(ϕ̃(t),1)

)

.

Following standard procedures, e.g., see [10, Theorem 4], one can also show that
the value function V̄ : [0, T ] × Ek → R defined as V̄ (t, p) := infu∈U V u(t, p) is a
solution to the HJB equation given in (44).

To summarize: in order to obtain its optimal control, a generic agent solves its
partially observed control problem defined by (28), (29) and (38) and obtains the
optimal control law in the feedback form given in (46).

However, as in the completely observable and hence in the finite dimensional
cases, the existence of feedback control policies is in general not sufficient for the
validity of the fixed point argument. Therefore, we further assume the following.

(A10) For each (µt) ∈ M[0,T ], u
∗
(

t, p| (µt)0≤t≤T

)

is continuous in (t, p) ∈ [0, T ]×Ek

and Lipschitz continuous in p ∈ Ek.
Before we proceed with the fixed point analysis we remark the following.

remark 3.1. For the stochastic partial differential equation (SPDE) defined in
(37), a solution via a Sobolev space characterization is considered in [28] where the

solution is defined on H1 where H1 :=
{

f ∈ L2 (R) : ∂f
∂x ∈ L2 (R)

}

with the norm

‖∂k‖H1 := {
∫

R

(

|k(x)|2 + |∂k∂x |2
)

dx}1/2. Therefore, the infinite dimensional state pro-
cess takes values in H1 and one can obtain a similar expression for the HJB equation
for which the stochastic calculus for Hilbert space-valued stochastic process can be used.

4. Analysis of the Partially Observed MFG System. Following the widely
used approach in MFG theory, it is now required to demonstrate that when the
completely observed SOCP derived in Section 3.3 is considered and solved by each
generic agent, the corresponding strategies should collectively replicate the aggregate
behavior, which is the system mean field. This corresponds to the fixed point argument
of MFG analysis which is also referred to as Nash Certainty Equivalence (NCE). For
such an analysis, it suffices to prove that the MFG system has a unique solution
which can be achieved by proving that starting with an exogenous measure, µo

(·), the
composition map below has a fixed point in the space of probability measures.

µo
(·)

MV−→ zo(·) NLF−→ ϕ̃(·)
↑ ↓HJB

zo(·) MV←− uo(·, p) BRC←− V (·, p)

We now introduce some preliminary material about the metrics on a space of prob-
ability measures which can be found in [17] and [27]. Let C ([0, T ];R) be the space
of continuous functions on [0, T ]. For x, y ∈ C ([0, T ];R) define the norm ‖x− y‖ :=
supt∈[0,T ] |x(t) − y(t)|. Then, (C ([0, T ];R) , ‖ · ‖) is a Banach space. Consider also
the metric ρ(x, y) = supt∈[0,T ] |x(t) − y(t)| ∧ 1; one can show that the metric space
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(C ([0, T ];R) , ρ) is complete and separable (Polish). Let Cρ := C ([0, T ];R). On
(C ([0, T ];R) , ‖ · ‖) we define the σ-algebra F generated by the cylindrical sets of
the form

{

x(·) ∈ Cρ : x(ti) ∈ Bi; ti ∈ [0, T ], i = 1, . . . , l
}

where each Bi ∈ B (R)
and l is a positive integer. Let M (Cρ) denote the space of all probability mea-
sures m on (Cρ,F). M (Cρ × Cρ) denotes the space of all probability measures
on the product space. Define the canonical process X with the sample space Cρ;
i.e.,Xt(ξ) = ξt, ξ ∈ Cρ.

Definition 5. For m1,m2 ∈ M (Cρ), the Wasserstein metric is defined as fol-
lows:

DT (m1,m2) = inf
Υ∈Π(m1,m2)

∫

Cρ×Cρ

(

sup
s≤T
|Xs(ξ1)−Xs(ξ2)| ∧ 1

)

dΥ(ξ1, ξ2)(47)

where

Π(m1,m2) :=
{

Υ ⊂M(Cρ × Cρ) : Υ(A× C([0, T ];R)) = m1(A) and

Υ(C([0, T ];R)×A) = m2(A), A ∈ B(C([0, T ];R))
}

.

Note that the metric space (M (Cρ) , DT ) is also Polish.
We continue with the existence and uniqueness proof for MV SDEs in the partially

observed setup which is based on a fixed point argument in the spaceM (Cρ). Hence,
for 1 ≤ i ≤ N , consider first the following SDEs:

dzoi (t) = f [t, zoi (t), α (t, ϕ̃i(t)) , µt] dt+ σdwi(t),(48)

dyi(t) = h (t, zoi (t)) dt+ dνi(t), 0 ≤ t ≤ T,(49)

where zoi (0) = zi(0) and ϕ̃i is generated by the unnormalized nonlinear filter and α
is an admissible control. Let m ∈ M (Cρ) and observe that one can re-write (48) by
defining the random process ϑ(t) on [0, T ] as follows:

ϑi(t) =

∫ t

0

∫

Cρ

f (s, ϑi(s), α (s, ϕ̃i(s)) , ξs) dm(ξ)ds

+zi(0) +

∫ t

0

σdwi(s), 0 ≤ t ≤ T.(50)

Let us denote the law of ϑi by Φ(m) ∈ M (Cρ).
Although the results which we derived in the previous sections hold with time

varying observation dynamics, it is simpler to handle the sensitivity analysis of the
filtering equation when the observation dynamics are time invariant. We therefore
assume the following in the rest of the paper.
(A11) The observation dynamics is time invariant: h(t, x) = h(x).

Theorem 6. Under (A0)-(A3), (A5) and (A10), there exists a unique consistent
solution pair

(

zoi (t), µt

)

with µt ∈ M[0,T ].

Proof. The proof is a generalization of [17, Theorem 6], [24, Theorem 6.12] and
[10, Theorem 13] requires to consider an unnormalized conditional density in the

control law. For m, m̂ ∈M (Cρ) let ϑi(t) and ϑ̂i(t) be defined by (50) corresponding
to m and m̂, respectively, with the same initial condition zi(0). Similarly, let ϕ̃(t)

and ˆ̃ϕ(t) be generated by the unnormalized filtering equations for ϑi(t) and ϑ̂i(t),
respectively. It follows that

sup
0≤s≤t

∣

∣

∣
ϑi(s)− ϑ̂i(s)

∣

∣

∣
≤(51)
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∫ t

0

∣

∣

∣

∣

∫

Cρ

f (s, ϑi(s), α (s, ϕ̃(s)) , ξs) dm(ξ)−
∫

Cρ

f
(

s, ϑ̂i(s), α
(

s, ˆ̃ϕ(s)
)

, ξs

)

dm̂(ξ)

∣

∣

∣

∣

ds.

For any m̄ ∈M (Cρ × Cρ) with marginals (m, m̂), we have

Λs =

∣

∣

∣

∣

∫

Cρ

f (s, ϑi(s), α (s, ϕ̃(s)) , ξs) dm(ξ)−
∫

Cρ

f
(

s, ϑ̂i(s), α
(

s, ˆ̃ϕ(s)
)

, ξs

)

dm̂(ξ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Cρ×Cρ

f (s, ϑi(s), α (s, ϕ̃(s)) , ξs) dm̄(ξ, ξ̂)

−
∫

Cρ×Cρ

f
(

s, ϑ̂i(s), α
(

s, ˆ̃ϕ(s)
)

, ξ̂s

)

dm̄(ξ, ξ̂)

∣

∣

∣

∣

(52)

≤ C1

(∣

∣ϑi(s)− ϑ̂i(s)
∣

∣ ∧ 1
)

+ C2

(∥

∥ϕ̃i(s)− ˆ̃ϕi(s)
∥

∥

Ek
∧ 1

)

+

∫

Cρ×Cρ

C3

(∣

∣ξs − ξ̂s
∣

∣ ∧ 1
)

dm̄(ξ, ξ̂)(53)

where (53) follows due to the boundedness and the Lipschitz continuity of f and
α. We note that the essential difference with the completely observed MV SDEs
is the existence of the conditional density terms, that is to say the solutions to the
nonlinear filtering equations in the Zakai form where the observation process y(t) acts
as the exogenous input process, which are going to be handled through the robust
representation of the filtering processes.

Recall that for 0 ≤ t ≤ T ,

dy(t) = h
(

ϑi(t)
)

dt+ dν(t),

dŷ(t) = h
(

ϑ̂i(t)
)

dt+ dν(t),(54)

and hence, the filtering processes ϕ̃i(t) and ˆ̃ϕi(t) are Fy
t and F ŷ

t -adapted, respectively.
Let ℓ ∈ Cb(R) and for 0 ≤ t ≤ T consider the following unnormalized conditional
expectations:

Ẽ
[

ℓ (ϑi(t))M
t
0(α)|Fy

t

]

, Ẽ
[

ℓ
(

ϑ̂i(t)
)

M t
0(α)|F ŷ

t

]

.(55)

Let us also define the path valued random variable y· : Ω → ([0, t];R) such that
y· (ω) = (y(s, ω), 0 ≤ s ≤ t). Hence, by [1, Theorem 5.12], there exists a function
ηℓ : C ([0, t];R) → R such that

Ẽ
[

ℓ (ϑi(t))M
t
0(α)|Fy

t

]

= ηℓ(y·),

Ẽ
[

ℓ
(

ϑ̂i(t)
)

M t
0(α)|F ŷ

t

]

= ηℓ(ŷ·), P̃ − a.s.(56)

Furthermore, the function ηℓ is locally Lipschitz in the sup-norm and locally bounded
[1, Lemma 5.6]. To continue, recall that by [3, Theorem 4.1],

Ẽ
[

ℓ (ϑi(t))M
t
0(α)|Fy

t

]

=

∫

R

ℓ(x)ϕ̃(x)dx, P̃ − a.s.(57)

Take l = (1 + |x|k) for a k that is set in (39) so that we have

∣

∣

∣
Ẽ
[

ℓ (ϑi(t))M
t
0(α)|Fy

t

]

− Ẽ
[

ℓ
(

ϑ̂i(t)
)

M t
0(α)|F ŷ

t

]

∣

∣

∣
=

∣

∣

∣

∣

∫

R

(

1 + |x|k
)(

ϕ̃(x)− ˆ̃ϕ(x)
)

dx

∣

∣

∣

∣
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= ‖ϕ̃(x)− ˆ̃ϕ(x)‖Ek
.(58)

Notice that η(1+|x|k) is only locally Lipschitz, however, since y· and ŷ· take values in
C ([0, t];R), there exists R′ > 0 such that ‖y·‖ ≤ R′ for all ω ∈ Ω. Hence let R > R′

and consequently for any ‖y·‖, ‖ŷ·‖ ≤ R, there exists a constant CR
f > 0 such that

‖ϕ̃(x)− ˆ̃ϕ(x)‖Ek
= ‖η(1+|x|k) (y·)− η(1+|x|k) (ŷ·) ‖
≤ CR

f sup
0≤s≤t

|y(s)− ŷ(s)| ≤ CR
f C4 sup

0≤s≤t

∣

∣

∣
ϑi(s)− ϑ̂i(s)

∣

∣

∣
(59)

where C4 is a constant obtained from the Lipschitz continuity of h. Substituting (59)
in (53) yields

Λs ≤
(

C1 + C2C
R
f C4

) (
∣

∣ϑi(s)− ϑ̂i(s)
∣

∣ ∧ 1
)

+

∫

Cρ×Cρ

C3

(
∣

∣ξs − ξ̂s
∣

∣ ∧ 1
)

dm̄(ξ, ξ̂).(60)

Clearly, by (60) the proof easily follows from [17, Theorem 6]. We herein provide
details for the sake of completeness. Notice first that (60) implies

Λs ≤
(

C1 + C2C
R
f C4

)

(|ϑi(s)− ϑ̂i(s)| ∧ 1) + C3Ds(m, m̂),(61)

since m̄ is any measure with marginals m and m̂. (53) and (61) together imply

sup
0≤s≤t

∣

∣

∣
ϑi(s)− ϑ̂i(s)

∣

∣

∣
≤

∫ t

0

[

C3Ds(m, m̂) +
(

C1 + C2C
R
f C4

)

(
∣

∣

∣
ϑi(s)− ϑ̂i(s)

∣

∣

∣
∧ 1

)

]

ds.(62)

Applying Gronwall’s lemma yields

sup
0≤s≤t

∣

∣

∣
ϑi(s)− ϑ̂i(s)

∣

∣

∣
∧ 1 ≤ CR

T

∫ t

0

C3Ds(m, m̂)ds.(63)

where CR
T = exp

((

C1 + C2C
R
f C4

)

T
)

. Notice that ϑi and ϑ̂i induce two probability

distributions, denoted by Φ(m) and Φ(m̂), respectively, on Cρ, Likewise, the joint

distribution of (ϑi, ϑ̂i) gives a measure m̄Φ on Cρ × Cρ. Taking expectation of both
sides of (64) we obtain

Dt

(

Φ(m),Φ(m̂)
)

≤ CR
T

∫ t

0

C3Ds(m, m̂)ds.(64)

The proof of the existence and uniqueness is now complete by following the Cauchy
argument in [27]. Finally, the claim that µt ∈M[0,T ] directly follows from [17, Lemma
7].

By the analysis in Section 3.3, we have first obtained the optimal control law for the
generic agent by assuming that (i) it has only access to partial information on its
own state and (ii) the flow of probability measures is fixed. In the second step we
proved that the closed loop MV dynamics of the generic agent has a unique solution
when the agent uses the Lipschitz control strategy obtained as the solution of HJB
equation derived in Section 3.3. Furthermore, it follows that after all agents apply such
Lipschitz control strategies, the resulting measure flow maintains a certain continuity.
Hence, one can refine its strategy by solving the HJB equation of the partially observed
control problem by using this new measure. In the next section we discuss this in
more detail.
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4.1. Fixed Point Analysis and the Main Result. Given µo
t ∈ M[0,T ], by

the proposition 4, we obtain a solution for V (·) and subsequently, corresponding to
each (t, p) ∈ [0, T ] × Ek we get u(t, p) as a well defined function minimizing (44).
Consequently, we write the optimal control law in the feedback form

u = u∗
(

t, p
∣

∣ (µo
t )0≤t≤T

)

, (t, p) ∈ [0, T ]× Ek,(65)

for which we define the well defined map: Υ :M[0,T ] → CLip(p) ([0, T ]× Ek;U) with

Υ
(

(µo
t )0≤t≤T

)

:= u∗
(

t, p
∣

∣ (µo
t )0≤t≤T

)

.(66)

Notice that the map characterizes the interaction of individual and the mass which can
be considered as the best response map; the individual optimal decision is obtained
while the actions of all other agents are fixed.

We now consider the second component of the fixed point argument. Given a func-
tion α(t, p) ∈ CLip(p) ([0, T ]× Ek;U) we implement it as a control law in (48) which
leads to a well defined solution (zo(t), y(t)), 0 ≤ t ≤ T . Let us denote the law of the
solution of zo by m ∈M (Cρ). Then, we define the map Υ̂ : CLip(p) ([0, T ]× Ek;U)→
M (Cρ) by

m = Υ̂ (α) .(67)

Note that by Theorem 6, (µt)0≤t≤T , the law of zo(t), is inM[0,T ] and hence one can

also specify the well defined map Ῡ : CLip(p) ([0, T ]× Ek;U)→M[0,T ] by

(µt)0≤t≤T = Ῡ (α) .(68)

Therefore, we obtain the following proposition as the partially observed equivalent of
[17, Proposition 8].

Proposition 7. Assume (A0)-(A10) and (µo
t )0≤t≤T ∈ M[0,T ]. We have Ῡ ◦

Υ
(

(µo
t )0≤t≤T

)

∈ M[0,T ], i.e., ΥM := Ῡ ◦Υ :M[0,T ] →M[0,T ].

It is now clear that by the construction of Υ and Ῡ we obtain a solution to NCE
system if we can find µo

t ∈M[0,T ] that satisfies the fixed point equation

Ῡ ◦Υ
(

(µo
t )0≤t≤T

)

= (µo
t )0≤t≤T .(69)

As mentioned in [17], there exists several difficulties in demonstrating the existence
of a fixed point for (69); most notably, the sensitivity of the optimal control policies
with respect to the measure flow (µo

t )0≤t≤T and hence, such a regularity condition is
taken as an assumption in [17, See (37)]. By generalizing the approach presented in
[24], we derive a similar sensitivity analysis for the partially observed setup.

Let 0 ≤ t ≤ T and s = T − t and consider the best response process given by the
solution of HJB equation in (44):

u∗(t, pt) = argmin
a∈U
{(J a

t DV (s, pt)(·), pt) + (L[·, a, µo
t ], pt)}

= argmin
a∈U

{

a

(
∫

∂xVp(s, pt)(x)pt(x)dx + L[x, a, µo
t ]pt(x)dx

)}

.(70)
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Define the Hamiltonian

H (t, p, a, ∂xVp(s, p)(x)) := a

(
∫

R

∂xVp(s, p)(x)p(x)dx + L[x, a, µo
t ]p(x)dx

)

.(71)

We also define the closed loop dynamics by

dzo(t) = f [t, zo(t), u(t), µo
t ] dt+ σdw(t), zo(0) = z(0),

dy(t) = h (zo(t)) dt+ dν(t), y(0) = 0.(72)

We assume the following.
(A11) For each µt ∈M[0,T ], the set

S(t, p, q) := argmin
a∈U

H (t, p, a, q) ,(73)

is singleton and the resulting u∗ as a function of (t, p, q) ∈ [0, T ] × Ek × R

is continuous in t, Lipschitz continuous in (p, q), uniformly with respect to t
and µt ∈M[0,T ].

The conditions under which the above assumptions hold in the partially observed case
are beyond the scope of this work. However, in the completely observed situation,
such conditions can be satisfied under sutiable convexity assumptions in the control
variable; the reader is referred to [17] for more details.

Following [20], we define the Gâteux derivative of a function F (t, p, µ) : [0, T ]×
Ek × P (R)→ R with respect to the measure µ(y) as follows :

∂µ(y)F (t, p, µ) = lim
ǫ→0

F (t, p, µ+ ǫδ(y))− F (t, p, µ)
ǫ

,(74)

where δ is the Dirac delta function. We assume the following.
(A12) The Gâteux derivatives of f and L with respect to µ exists are C∞(R) and

uniformly bounded. Let V (t, p) : [0, T ]×Ek → R be the unique solution to the
HJB equation in (44). Then, V (t, p) is uniformly bounded, its Gâteaux deriva-
tive DVp(t, p) (or the Kernel Vp(t, p)(x)) exists and is uniformly bounded with
respect to all its parameters.

Theorem 8. Assume (A0)-(A12) hold and in addition assume that the resulting
control law is Lipschitz in µ. Then for given (µt)0≤t≤T , (µ̃t)0≤t≤T ∈ M[0,T ], there
exists a constant c1 such that

sup
t,p∈[0,T ]×Ek

|u∗(t, p)− ũ∗(t, p)| ≤ c1
(

DT (µ, µ̃)
)

.(75)

Proof. Note that Assumption (A12) and the fact that resulting u∗ is Lipschitz
continuous in µ yields

|u∗(t, p)− ũ∗(t, p)| ≤ k1Dt

(

µ, µ̃
)

+ k2|∂xV µ
p (t, p)(x)− ∂xV µ̃

p (t, p)(x)|,(76)

with positive constants k1 and k2 where V µ
p (t, p)(x) and V µ̂

p (t, p)(x) are the kernels
defined in (42) corresponding to measures µ and µ̂.

The goal is to use the existence of Gâteux derivative of the Kernel ∂xVp(t, p)(x)
with respect to the measure µ which satisfy the boundedness assumption so that
one can invoke the mean value theorem (MVT). Indeed, by the assumption that
∂µ∂xVp(t, p)(x) is uniformly bounded, by MVT we obtain

|∂xV µ
p (t, p)(x) − ∂xV µ̃

p (t, p)(x)| ≤ k3Dt

(

µ, µ̃
)

.(77)
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Consequently, we obtain

|u∗(t, p)− ũ∗(t, p)| ≤ (k1 + k2k3)Dt

(

µ, µ̃
)

|,(78)

which completes the proof with c1 = k1 + k2k3.

remark 4.1. In Theorem 8 above, we assume the uniform boundedness of the
Gâteux derivative of the function that satisfies the HJB equation obtained for the par-
tially observed setup. We note that one could follow a similar approach to [20, Section
6] in order to analyze the boundedness property of the solution of the HJB equation
(44) (see also [24, Appendix F] for the finite dimensional case) and its Fréchet deriva-
tives by analyzing associated kernels. However, such an analysis would considerably
depend upon the analysis of PDE in the form (44) which is not well understood in the
literature.

We now provide a sensitivity result for the distance between two measures with respect
to the control policies by combining the general developed in [17], [24] and [10].

Lemma 9. Under (A0)-(A11) there exists a constant c2 such that

DT (m, m̂) ≤ c2 sup
t,p∈[0,T ]×Ek

|u∗(t, p)− û∗(t, p)| ,(79)

where m, m̂ ∈ M(Cρ) are induced by (67) using u∗, û∗ ∈ CLip(p) ([0, T ]× Ek;U).

Proof. Denote the two solutions corresponding to u∗ and ũ∗ by zo(t) and ẑo(t).
Hence,

zo(t) =

∫ t

0

∫

Cρ

f (s, zo(s), u∗ (s, ϕ̃(s)) , ξs) dm(ξ)ds+ z(0) +

∫ t

0

σdw(s),

ẑo(t) =

∫ t

0

∫

Cρ

f
(

s, ẑo(s), û∗
(

s, ˆ̃ϕ(s)
)

, ξ̂s

)

dm̂(ξ̂)ds+ z(0) +

∫ t

0

σdw(s).(80)

By the Lipschitz continuity of f , u∗ and û∗ we obtain
∣

∣

∣
f (s, zo(s), u∗ (s, ϕ̃(s)) , ξs)− f

(

s, ẑo(s), û∗
(

s, ˆ̃ϕ(s)
)

, ξ̂s
)

∣

∣

∣

≤
∣

∣f (s, zo(s), u∗ (s, ϕ̃(s)) , ξs)− f
(

s, ẑo(s), u∗
(

s, ˆ̃ϕ(s)
)

, ξ̂s
)
∣

∣

+
∣

∣f
(

s, ẑo(s), u∗
(

s, ˆ̃ϕ(s)
)

, ξ̂s
)

− f
(

s, ẑo(s), û∗
(

s, ˆ̃ϕ(s)
)

, ξ̂s
)∣

∣

≤ C1 (|zo(s)− ẑo(s)| ∧ 1) + C2

(

‖ϕ̃(s)− ˆ̃ϕ(s)‖Ek
∧ 1

)

+C3

(∣

∣

∣
ξs − ξ̂s

∣

∣

∣
∧ 1

)

+ C5 sup
(s,p)∈[0,T ]×Ek

|u∗(s, p)− û∗(s, p)| .(81)

Following similar steps in the proof of Theorem 6 we get

|zo(t)− ẑo(t)| ≤
∫ t

0

C1 (|zo(s)− ẑo(s)| ∧ 1)ds+

∫ t

0

C2

(

‖ϕ̃(s)− ˆ̃ϕ(s)‖Ek
∧ 1

)

ds

+C3

∫ t

0

Ds(m, m̂)ds+ C5t sup
(s,p)∈[0,T ]×Ek

|u∗(s, p)− û∗(s, p)| .(82)

Now by use of the robust representation of nonlinear filter demonstrated in (54)-(60),
we obtain

|zo(t)− ẑo(t)|
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≤
∫ t

0

C1 (|zo(s)− ẑo(s)| ∧ 1) +
(

C1 + C2C
R
f C4

)

sup
0≤s≤t

(

|zo(s)− ẑo(s)| ∧ 1
)

ds

+C3

∫ t

0

Ds(m, m̂)ds+ C5t sup
(s,p)∈[0,T ]×Ek

|u∗(s, p)− û∗(s, p)|(83)

where CR
f and C4 are defined in (59). Applying Gronwall’s lemma to (83) gives

sup
0≤s≤t

|zo(t)− ẑo(t)| ∧ 1 ≤

exp
((

C1 + C2C
R
f C4

)

T
)

(

C3

∫ t

0

Ds(m, m̂)ds+ C5t sup
(s,p)∈[0,T ]×Ek

|u∗(s, p)− û∗(s, p)|
)

.

Consequently,

Dt(m, m̂) ≤(84)

exp
((

C1 + C2C
R
f C4

)

T
)

(

C3

∫ t

0

Ds(m, m̂)ds+ C5t sup
(s,p)∈[0,T ]×Ek

|u∗(s, p)− û∗(s, p)|
)

.

Applying Gronwall’s lemma to (84) we complete the proof.

We can now present the main result of PO MFG theory.

Theorem 10 (Main Result). Assume (A0)-(A12) hold and consider the pro-
cesses V (t, p), u∗(t), zo(t) and y(t), which are defined in (44), (70) and (72), re-
spectively. If the constants (c1, c2) for (75) and (79) satisfy the gain condition that
c1c2 < 1 there exists a unique solution to (69) and hence a unique solution to the
MFG system given by (44), (70) and (72).

Proof. The proof follows from the Banach fixed point theorem for the map Γ̄ ◦ Γ
defined on the Polish spaceM[0,T ] since the gain condition assures that the map is a
contraction.

5. ǫ-Nash Equilibrium Property of the MFG Control Laws. Following
the common methodology employed in the MFG literature, we shall investigate the
performance of the best response control processes obtained in the previous section
in a finite population setting. Consider the following dynamics described in (1):

dzNi (t) =
1

N

N
∑

j=1

f
(

t, zNi (t), uNi (t), zNj (t)
)

dt+ σdwi(t),(85)

dyNi (t) = h
(

zNi (t)
)

dt+ dνi(t),(86)

with zNi (0) = zi(0), yi(0) = 0, 1 ≤ i ≤ N . Here (wi(t), νi(t), 1 ≤ i ≤ N) are indepen-
dent Brownian motions in R. Similarly, define the following set of MV equations

dzoi (t) = f [t, zoi (t), u
o
i (t), µt] dt+ σdwi(t),(87)

dyoi (t) = h (zoi (t)) dt+ dνi(t),(88)

with the same initial conditions where µt is the law of zoi (t). Recall that a unique
solution exists to (85) when uNi ∈ CLip(x) ([0, T ]× R;U), and a unique consistent
solution to (87) exists when uoi ∈ CLip(p) ([0, T ]× Ek;U). Notice that in contrast to
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the coupled process in (85)-(86), the system in (87)-(88) gives N decoupled pairs of
processes. Let z(0) :=

∫

R
xdF (x) be the mean value of the initial states and define

ǫN :=

∣

∣

∣

∣

∫

R

x2dFN (x)− 2z(0)

∫

R

xdFN (x) + z(0)2
∣

∣

∣

∣

,(89)

where limn→∞ ǫN = 0. Consider the following σ-algebras:

F (yo)
t := σ

{

yo1(s), . . . , y
o
N(s); 0 ≤ s ≤ t

}

,

Fyo
i

t := σ
{

yoi (s); 0 ≤ s ≤ t
}

,

F (yN )
t := σ

{

yN1 (s), . . . , yNN (s); 0 ≤ s ≤ t
}

,

FyN
i

t := σ
{

yNi (s); 0 ≤ s ≤ t
}

.(90)

We now define class of admissible control policies. Let

Uo
i :=

{

u(·) : u(t) is adapted to F (yo)
t ,

u ∈ CLip(pN)

(

[0, T ]× E
N
k ;U

)

and E

∫ T

0

|u(t)|2dt <∞
}

,

Uo,d
i :=

{

u(·) : u(t) is adapted to Fyo
i

t ,

u ∈ CLip(p) ([0, T ]× Ek;U) and E

∫ T

0

|u(t)|2dt <∞
}

,

UN
i :=

{

u(·) : u(t) is adapted to F (yN )
t ,

u ∈ CLip(pN)

(

[0, T ]× E
N
k ;U

)

and E

∫ T

0

|u(t)|2dt <∞
}

,

UN,d
i :=

{

u(·) : u(t) is adapted to FyN
i

t ,

u ∈ CLip(p) ([0, T ]× Ek;U) and E

∫ T

0

|u(t)|2dt <∞
}

,(91)

where 1 ≤ i ≤ N and CLip(pN)

(

[0, T ]× E
N
k ;U

)

denote the space of U -valued continu-

ous functions on [0, T ]× E
N
k with Lipschitz coefficients in E

N
k := ⊗N

j=1Ek,j , where for
1 ≤ j ≤ N , Ek,j is a copy of Ek

In the above admissible control policies, Uo
i represents centralized information on

the partially observed states at the infinite population game whereas UN
i represents

centralized information on the partially observed states at the finite population game.
On the other hand Uo,d

i represents decentralized control policies at infinite population

game whereas UN,d
i represents decentralized control policies at the finite population.

For the dynamic game problem specified in (85), recall that the cost function for
the ith agent is given as

JN
i (uNi , u

N
−i) = E

∫ T

0

1

N

N
∑

j=1

L
(

zNi (t), uNi (t), zNj (t)
)

dt.(92)

Recall also the generic agent’s PO SOCP:
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Generic Agent’s SOCP: For 0 ≤ t ≤ T

dzo(t) = f [t, zo(t), u(t), µt] dt+ σdw(t), zo(0) = z(0),

dyo(t) = h (zo(t)) dt+ dν(t), y(0) = 0,

J(u) = E

∫ T

0

L[zo(t), u(t), µt]dt(93)

where J(u) is to be minimized over U :=
{

u(·) ∈ U : u(t) is Fyo

t − adapted and

E
∫ T

0
|u(t)|2dt <∞

}

.
The optimal control law for the above PO SOCP (and hence the best response

control process for the MFG game) is characterized by (70) which we denote by uo(t).

Recall that under (A6)-(A10), uoi ∈ CLip(p) ([0, T ]× Ek;U) ⊂ Uo,d
i .

Definition 11. [17] Given ǫ, the set of admissible control laws (uo1, . . . , u
o
N) gen-

erates ǫ-Nash equilibrium with respect to the cost JN
i if for any 1 ≤ i ≤ N

JN
i

(

uoi ;u
o
−i

)

− ǫ ≤ inf
ui∈UN

i

JN
i

(

ui;u
o
−i

)

≤ JN
i

(

uoi ;u
o
−i

)

.(94)

We now show that the MFG best responses for a finite N population system (85)-(88)
is an ǫ-Nash equilibrium with respect to the cost function defined in (92).

Theorem 12. Assume (A0)-(A12) hold and there exists a unique solution to
MFG system such that the best response control process uo(t, p) is continuous in (t, p)
and Lipschitz continuous in p. Then (uo1, u

o
2 . . . , u

o
N) where uoi = uo, 1 ≤ i ≤ N ,

generates an O
(

ǫN + 1/
√
N
)

-Nash equilibrium with respect to the cost function (92)

such that limN→∞ ǫN = 0.

Proof. Proof involves several linked perturbation estimates which involve condi-
tional density process. We consider a strategy change for the first agent. Consider
the following closed loop individual dynamics under the best response control policies
uoi = uo, 1 ≤ i ≤ N , at finite population

dzo,Ni (t) =
1

N

N
∑

j=1

f
(

t, zo,Ni (t), uo
(

t, ϕ̃o,N
i (t)

)

, zo,Nj (t)
)

dt+ σdwi(t),

dyo,Ni (t) = h
(

zo,Ni (t)
)

dt+ dνi(t),(95)

where zo,Ni (0) = zi(0), y
o,N
i (0) = 0 and ϕ̃o,N

i (t), 1 ≤ i ≤ N , denote the associated
unnormalized filtering processes. Similarly, consider the MV system

dzoi (t) = f [t, zoi (t), u
o(t, ϕ̃o

i (t)), µt] dt+ σdwi(t),(96)

dyoi (t) = h (zoi (t)) dt+ dνi(t),(97)

with the same initial conditions and ϕ̃o
i (t) denotes the associated unnormalized filter-

ing processes. Following similar lines of the proof of Theorem 6 and using
∥

∥

∥
ϕ̃o,N
i (t)− ϕ̃o

i (t)
∥

∥

∥

Ek

≤ CR
f C4 sup

0≤s≤t

∣

∣

∣
zoi (t)− zo,Ni (t)

∣

∣

∣
,(98)

we obtain, as a consequence of Gronwall’s lemma,

sup
1≤j≤N

sup
0≤t≤T

E|zoj (t)− zo,Nj (t)| = O
(

1/
√
N
)

,(99)
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where the right hand side depends on the terminal time T .
Assume now that while each agent j, 2 ≤ j ≤ N , are using the MFG best response

control law uo(t, p), the first agent implement a strategy change from uo to u1 ∈ UN
1

which yields

dzo,N1,c (t) =
1

N

N
∑

j=1

f
(

t, zo,N1,c (t), u1
(

t, ϕ̃o,N
1:N,c(t)

)

, zo,Nj,c (t)
)

dt+ σdw1(t),

dyo,N1,c (t) = h
(

zo,N1,c (t)
)

dt+ dν1(t),(100)

dzo,Ni,c (t) =
1

N

N
∑

j=1

f
(

t, zo,Ni,c (t), uo
(

t, ϕ̃o,N
i (t)

)

, zo,Nj,c (t)
)

dt+ σdwi(t),

dyo,Ni,c (t) = h
(

zo,Ni,c (t)
)

dt+ dνi(t),(101)

where initial conditions are given by zo,Ni,c (0) = zi(0), y
o,N
i,c (0) = 0 and ϕ̃o,N

i,c (t), 1 ≤
i ≤ N , denotes the filtering processes and ϕ̃o,N

1:N,c(t) :=
(

ϕ̃o,N
1,c (t), . . . , ϕ̃o,N

N,c(t)
)

.

We also introduce the MV dynamics and its observation:

dẑo1(t) = f
[

t, ẑo1(t), u1
(

t, ˜̂ϕo
1:N (t)

)

, µt

]

dt+ σdw1(t)(102)

dŷo1(t) = h (ẑo1(t)) dt+ dν1(t)(103)

dẑoi (t) = f
[

t, ẑoi (t), u
o(t, ˜̂ϕo

i (t)), µt

]

dt+ σdwi(t)(104)

dŷoi (t) = h (ẑoi (t)) dt+ dνi(t)(105)

for 2 ≤ i ≤ N with the same initial conditions and ˜̂ϕo
i (t) denotes the unnormalized

filtering equations for the signal and observation pair
(

ẑoi (t), ŷ
o
i (t)

)

, 1 ≤ i ≤ N .
It now follows that

sup
2≤j≤N

sup
0≤t≤T

E

∣

∣

∣
zo,Nj,c (t)− ẑoj (t)

∣

∣

∣
= O

(

1/
√
N
)

.(106)

Furthermore, by the robustness of the nonlinear filter, for 2 ≤ j ≤ N and 0 ≤ t ≤ T ,
∥

∥

∥
ϕ̃o,N
j (t)− ˜̂ϕo

j(t)
∥

∥

∥

Ek

≤ sup
0≤s≤t

CR
f C4

∣

∣

∣
zo,Nj,c (t)− ẑoj (t)

∣

∣

∣
.(107)

Gronwall’s lemma, (106) and (107) imply that

sup
0≤t≤T

E

∣

∣

∣
zo,N1,c (t)− ẑo1(t)

∣

∣

∣
= O

(

1/
√
N
)

.(108)

Observe that (108) and so (108) and the robustness of the filtering together imply
that

sup
0≤t≤T

E

∥

∥

∥

˜̂ϕo
1(t)− ϕ̃o,N

1,c (t)
∥

∥

∥

Ek

= O
(

1/
√
N
)

.(109)

Consequently, under the modified strategy, we obtain

JN
1

(

u1;u
o
−i

)

≡
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E

∫ T

0

1

N

N
∑

j=1

L
(

zo,N1,c (t), u1

(

t, ϕ̃o,N
1:N,c(t)

)

, zo,Nj,c (t)
)

dt(110)

(106),(108)
≥ E

∫ T

0

1

N

N
∑

j=1

L
(

ẑo1(t), u1

(

t, ϕ̃o,N
1:N,c(t)

)

, ẑoj (t)
)

dt

−O
(

ǫN +
1√
N

)

(111)

(106),(107)
≥ E

∫ T

0

1

N

N
∑

j=1

L

(

ẑo1(t), u1

(

t, ϕ̃o,N
1,c (t), ˜̂ϕo

2:N (t)

)

, ẑoj (t)

)

dt

−O
(

ǫN +
1√
N

)

(112)

(109)
≥ E

∫ T

0

1

N

N
∑

j=1

L

(

ẑo1(t), u1

(

t, ˜̂ϕo
1(t),

˜̂ϕo
2:N (t)

)

, ẑoj (t)

)

dt

−O
(

ǫN +
1√
N

)

(113)

(17)
≥ E

∫ T

0

L
[

ẑo1(t), u1
(

t, ˜̂ϕo
1:N (t)

)

, µt

]

dt−O
(

ǫN +
1√
N

)

Furthermore, by the construction of the generic agent’s partially observed MFG sys-
tem (93) we have

E

∫ T

0

L
[

ẑo1(t), u1

(

t, ˜̂ϕo
1:N (t)

)

, µt

]

dt ≥ E

∫ T

0

L [zo1(t), u
o
1 (t, ϕ̃

o
1(t)) , µt] dt.(114)

On the other hand we have

E

∫ T

0

L [zo1(t), u
o
1 (t, ϕ̃

o
1(t)) , µt] dt

(17)
≥ E

∫ T

0

1

N

N
∑

j=1

L
[

zo1(t), u
o
1 (t, ϕ̃

o
1(t)) , z

o
j (t)

]

dt−O
(

ǫN +
1√
N

)

(99)
≥ E

∫ T

0

1

N

N
∑

j=1

L
[

zo,N1 (t), uo1

(

t, ϕ̃o,N
1 (t)

)

, zo,Nj (t)
]

dt−O
(

ǫN +
1√
N

)

≡ JN
1

(

uo1;u
o
−1

)

−O
(

ǫN +
1√
N

)

.(115)

It now follows from (110)-(115)

JN
1

(

uo1;u
o
−1

)

− O
(

ǫN +
1√
N

)

≤ inf
u1∈UN

1

JN
1

(

u1;u
o
−1

)

,(116)

which completes the proof for agent 1. The analysis for the other agents follows
similarly.

6. An Explicit Example with Finite Dimensional Nonlinear Filters. In
nonlinear filtering theory, initiated by the work [2], there has been a considerable
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progress in representing a large class of nonlinear filters with finite dimensional quan-
tities. Furthermore, in the case that these quantities are sufficient for the control,
then the infinite dimensional conditional density can be replaced by this finite dimen-
sional sufficient statistics. Consequently, a rigorous proof of the verification theorem
can be obtained in this finite dimensional, completely observed stochastic optimal
control problem. The literature for such a theory is vast and we refer reader to [9,
Section I] for a succinct summary of the related works. In this section we consider
such an explicit model whose nonlinear filters can be expressed with finite dimensional
quantities and hence yield a more tractable PO MFG system.

Consider the following MFG system where f , h and L are motivated from [9,
Section III.B-C] and given in the following form: Let zNi (t) = [zNi,1(t), z

N
i,2(t)]

T , Gt :=
[

G11
t 0
0 G22

t

]

, wi(t) := (wi,1(t), wi,2(t)) and

dzNi (t) =
[

g
(

t, zNi,1(t)
)

, uNi (t, yi)
]T
dt+Gtdwi(t)

dyi(t) = Htz
N
i (t) +N

1

2

t dbi(t),

zNi (0) = zi(0), yi(0) = 0, 1 ≤ i ≤ N,(117)

where (i) zNi,j(t) : [0, T ] → R, j ∈ {1, 2}, (ii) (wi,1(t), wi,2(t), bi(t); 0 ≤ t ≤ T ) are
independent Brownian motions in R which are also independent of zi(0), (iii) g, Ht,
Gt, Nt and h satisfy [9, Assumptions A2)-A6) and A9)]. We note that the example
is a suitably specialized case of [9, Section III.B-C] where (A2)-(A4) and (A5) are
satisfied by [9, Assumptions A2), A4), A9)]. The cost function is given by

JN
i (uNi ;uN−i) := E

∫ T

0

1

N

N
∑

j=1

l2
(

t, zNi (t), uNi (t, yi), z
N
j (t)

)

dt(118)

where for any z ∈ R
2, l2(·, z) satisfy [9, Assumption A7]. Let Ûi := {ui(·) ∈

L2
Fyi

t

([0, T ];U)}.
For the dynamics (117), we also consider the limiting system

dzi(t) =
[

g
(

t, zi,1(t)
)

, ui(t, yi)
]T
dt+Gtdwi(t)

dyi(t) = Htzi(t) +N
1

2

t dbi(t),

Ji := E

∫ T

0

l2 [t, zi(t), ui(t, yi), µt] dt

zi(0) = zi(0), yi(0) = 0, 1 ≤ i ≤ N,(119)

where we emphasize that the mean field exists only in the performance functions.
Assume now that there exists a function φ(t, x) ∈ C1,2

t,x ([0, T ]× R) which satisfies

∂tφ(t, x) +
1

2
(G11

t )2∂2xxφ(t, x) +
1

2
|G11

t ∂xφ(t, x)|2 =
1

2

(

Qtx
2 + 2mtx+ δt

)

(120)

where Q, m and δ are arbitrary functions. Then, for each u ∈ Û with the following
conditions are satisfied:

(E1) The random variable zi(0), 1 ≤ i ≤ N , has density

qi(zi) =
exp

(

− P−1
0 (zi − ξ)2

)

(2π)
n
2 |P0|

1

2

, P0 ≥ 0(121)

for a given ξ > 0.
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(E2) The nonlinear drift function satisfies

g(t, x) = (G11
t )2∂xφ(t, x),(122)

the system defined by (119) has an information state given by

qit = exp (φ(x, t) + λt)
exp

(

− 1
2

∣

∣P
− 1

2

t (zi − rt)2
∣

∣

)

(2π)
n
2 |Pt|

1

2

(123)

where Pt ≥ 0, ∀t ∈ [0, T ] and λt ∈ R and rt ∈ R
2 are given by:

drt = (PtQt) rtdt− Ptmtdt+ ui(t)dt, r(0) = ξ(124)

dPt

dt
= −PtQtPt +GtG

T
t , P (0) = P0(125)

λt =
1

2

∫ t

0

(

Qsr
2
s + 2msrs + δs + tr(PsQs

)

ds.

For the partially observed MFG problem defined by (117)-(118), the information state
qt in (123) for the generic agent will be given in a finite-dimensional form if the PDE
in (120) has shown to an explicit solution. This is discussed in [9, Theorem 3.9] and
it is shown that solution is given by

φ(t, x) = log Γ(t, x)

Γ(t, x) =
1

2
∆tx

2 + xςt + ηt(126)

where ∆(·), ς(·), η(·) are given in the statement of the theorem which sets the function
g(t, x) to be:

g(t, x) =
G11

t G
11
t

Γ(t, x)

(

∆tx+ ςt
)

.(127)

Consequently, by (117)-(127), we obtain a PO MFG model whose filtering equation
has a finite dimensional solution.

remark 6.1. Consider the following filtering problem

dz(t) = f
(

z(t)
)

dt+ dw(t)(128)

dy(t) =

∫ t

0

z(s)ds+ dν(t).(129)

It is shown in [2] that the solution to the unnormalized conditional density of ρ(t, x) of
P (z(t)|Fy

t ) is given in terms of 10 sufficient statistics when f satisfies the condition
that f ′+ f2 = ax2+ bx+ c, a ≥ −1. The model defined in (117) is a generalization of
this result to the case where the control enters into the dynamics which is in general
the case in MFG.

By the Separation Theorem discussed in Section 3.3, the optimal control process for
a generic agent is given by the minimizer of a Hamiltonian which was defined earlier.
Before, we define the forward and backward operators as:

Oa
t :=

1

2
∇2

xx + (g, a)
T ∇x
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O∗a
t :=

1

2
∇2

xx − (g, a)
T ∇x − tr [∇x (g, a)] .(130)

Consequently, one can write the the optimal control in the form:

u∗ = {u∗(t, p) = a∗ (T − t, qt) ; 0 ≤ t ≤ T }
a∗ (τ, p) = argmin

a∈U

{(

Oa
T−tDV (τ, p)(·), p

)

+ (l2[t, ·, a, µt], p)
}

.(131)

Notice that the control law given in the separated form a∗ (T − t, qt) depends on qt
which has an explicit solution given by (123)-(126) and entails a finite dimensional
representation. In other words, the best response process of the agents in the above
partially observed MFG example, which is Fy

t -adapted, can be written as a function
of

(

Gt, g, yt, Ht, φ(t), P0, ξ, Qt, C
−1
t ,mt

)

.
Finally, we remark that one can follow the rest of the analysis in Section 4.1

in order to obtain a sufficient condition so that PO MFG system admits a unique
solution. Alternatively, one can employ the models considered in [9, Section IV] and
obtain an equivalent LQG MFG system for such nonlinear models. Such a path is
currently under investigation and we will report further details in a future work.

7. Comparison with MFG with a Partially Observed Major Agent. In
the nonlinear MFG setup where there is a major agent, the best response control
policy of each minor agent depends on the state of the major agent in addition to the
mean field which is stochastic; the mean field is adapted to the filtration generated by
the Brownian motion of the major agent [24] (see also [13] for the LQG case). More
explicitly, consider the following stochastic coefficient MV (SMV) type dynamics:

dz0(t) = f0[t, z0, u0(t, ω, z0), µt(ω)]dt+ σ0[t, z0, µt(ω)]dw0(t, ω),(132)

dz(t) = f [t, z, u(t, ω, z), µt(ω)]dt+ σ[t, z(t), µt(ω)]dw(t),(133)

with z0(0) = z0(0) and z(0) = z(0) where
(

µt(ω)
)

0≤t≤T
satisfies P (z(t) ≤ α|Fw0

t ) =
∫ α

−∞ µt(ω, dx) for all α ∈ R
n. The SMV SDEs in (132) and (133) represent the closed

loop state dynamics (with Fw0

t := σ{w0(s) : 0 ≤ s ≤ t}-adapted feedback control)
of the major and the generic minor agents, respectively, in the infinite population

limit. Let U0 := {u(·) ∈ U0 : u is adapted to Fw0

t and E
∫ T

0
|u(t)|2dt < ∞} and

Ui := {u(·) ∈ U : u is adapted to Fw0,wi

t and E
∫ T

0
|u(t)|2dt < ∞}. Then we define

two SOCPs as follows:
Major Agent’s SOCP at Infinite Population:

dz0(t) = f0[t, z0(t), u0(t), µt(ω)]dt+ σ0[t, z0(t), µt(ω)]dw0(t),

J0(u0) = E

∫ T

0

L[z0(t), u0(t), µt(ω)]dt.

Generic Minor Agent’s SOCP at Infinite Population:

dzi(t) = f [t, zi(t), u(t), µt(ω)]dt+ σ[t, zi(t), µt(ω)]dwi(t)

Ji(u) = E

∫ T

0

L[zi(t), z0(t), u(t), µt(ω)]dt.

where J0 is to be minimized over U0, Ji is to be minimized over Ui, (wi(t); 1 ≤ i ≤ N)
are N independent Brownian motions and u0(t) and u(t) are Fw0

t -adapted best re-
sponse control processes (i.e., the unique solutions satisfying [24, (5.14)-(5.19)]. The
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main contribution of the nonlinear MM-MFG theory can then be summarized by that
the set of control laws given by uN0 = u0, u

N
i = u, i = 1, . . . , N when applied to

a finite population game generates an ǫ-Nash equilibrium [24, Theorem 7.2]. One
essential point in this result is that the state of the major agent and the stochastic
measure induced by the generic minor agent, (z0(t, ω), µt(ω))0≤t≤T , are completely
observed by the minor agents. It is worth remarking that the solution to these two
SOCPs are given by certain backward SPDEs (BSPDE) (see [10, Theorem 4]). This
nonstandard feature is due the fact that the dynamics and the cost functions have
explicit dependence on the underlying probability space, i.e., each f0, f , L0 and L is
Fw0

t -adapted. Such problems are referred to as SOCP with random parameters which
is introduced in [25].

Motivated by the observation that the best response control policies depend upon
the state of the major agent, the corresponding PO MM-MFG is examined in [10]
where it is assumed that minor agents have partial observations on the major agent’s
state in a distributed manner where each agent has complete observation on its own
state.

8. Conclusions. In this work we consider an MFG model where the agents have
nonlinear dynamics and cost functions and have noisy measurements on their individ-
ual state dynamics. By constructing the associated completely observed model via an
application of nonlinear filtering theory and the Separation Principle, a control prob-
lem with infinite dimensional state space is formulated and a solution is characterized
via a solution to the HJB equation in this function space. The optimal control law
obtained from the solution of the HJB equation is next applied by the agents in the
infinite population limit. We show that the aggregate behaviour of the population
under such policies collectively generate the mean field and then establish the ǫ-Nash
property of such solutions.

9. Acknowledgement. The authors wish to thank the referees for their valu-
able comments which greatly improved the quality of the manuscript.
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