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Rational Observers of Rational Systems

Jana Němcová and Mihály Petreczky and Jan H. van Schuppen

Abstract— Rational observers are to be constructed for ratio-
nal systems while polynomial observers are to be constructed
for polynomial systems. An observer synthesis procedure is
formulated. First an output-based rational realization is synthe-
sized for the considered rational system. Then a perturbation
technique creates an observer. Finite algebraic observability
of the rational system impies the existence of a output-based
rational realization. Several examples of rational observers are
provided including a polynomial system of which the state-
space dimension of the polynomial observer is strictly higher
than that of the corresponding system.

I. INTRODUCTION

The aim of this paper is to show how, for a rational
system, a rational observer can be synthesized. The synthesis
procedure is illustrated by several examples.

In control theory there is a need for observers of systems.
Observers are used to produce estimates or predictions of
values of the output of a system.

There is a large body of literature on observers of nonlin-
ear systems. The reader is referred to the next section for a
brief literature review.

The focus of this paper is on rational systems which arise
in biochemical reaction systems, in physiological systems,
and in engineering. These systems have been investigated
by the authors in various papers, [1], [2], [3]. The scope of
the investigation is restricted by imposing the condition that
for a rational system one wants a rational observer while for
a polynomial system one wants a polynomial observer. This
is a self-imposed restriction but it makes sense considering
the algebraic framework of rational systems.

A procedure for observer synthesis is proposed. The
procedure consists of several steps of which the first one is
the construction of an output-based realization followed later
on by an output injection step. That observers are basically
output-based realizations of the system generating the output
is due to R.E. Kalman, [4], and to the subsequent research
on stochastic realization.

In general a rational or a polynomial observer may have
a higher state-space dimension than the dimension of the
system. Example VII.1 of a polynomial system provides a
polynomial observer of a strictly higher state-space dimen-
sion than the system.
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The outline of the paper follows. The next section provides
a problem description and motivation. Section III defines
rational systems and shows how to check their observability.
Section IV provides the procedure for observer synthesis.
The theory on which the procedure is based is provided in
Section V. The performance of the observer is discussed in
Section VI. Section VII shows several examples of observers.

II. PROBLEM FORMULATION

The motivations for the synthesis of an observer of a
system are primarily: (1) the interest in estimation of the state
of the observer for example if the state is the concentration
of a chemical species or if it is a concentration of a
physiological model of a human being; (2) the starting point
for prediction of a time series for example prediction of
traffic flow in a road network, [5], or prediction of produced
photo-voltaic power of solar panels; (3) control based on
partial observations, [6]; and (4) the use of observers in
system identification, [7].

There is an extensive literature on observers of control
systems. The foundation is the publication of the Kalman
filter, [8], followed by the papers of D. Luenberger on
an observer of a linear system, [9], [10]. By now there
is an extensive literature on observers of several classes
of nonlinear systems, [11]. Recent books exclusively on
observers include [12], [13] while major papers include [14],
[15], [16].

What is the definition of an observer? Several definitions
for an observer have been proposed. In this paper an observer
will be based on an output-based realization of a nonlinear
system, meaning a realization of which the state is a function
of the output and of the output’s derivatives. From such
a realization one can directly construct the observer. The
view point of an observer being based on an output-based
realization of the system, is inspired by the publications of
Kalman on the stochastic realization theory of Kalman filters,
see [4].

A restriction is imposed on the algebraic form of the
observers. For a polynomial system the search is restrictedto
a polynomial observer and for a rational system the search
is restricted to a rational observer. It should be clear that
this is a self-imposed restriction, there may exists observers
in a wider class of systems for example in the class of
Nash systems defined by the authors in [3]. A consequence
of this restriction on the algebraic form of the observer is
that the observer may have a higher dimension than the
corresponding system, see Example VII.1 below.

The performance of the observer is investigated. The initial
condition of the observer is related to the output function
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and its derivatives which derivatives are often not directly
available. Therefore, there is a convergence issue in case
the observer is started in an initial state which is different
from that of an output-based realization. Stability analysis
of observers is difficult and one has to prove that the
prediction of the observer for the output converges to the
observed output. This performance criterion is discussed but
not completely treated in this short conference paper.

Problem II.1 Observer Synthesis. Consider a rational sys-
tem without inputs,

dx(t)

dt
= f(x(t)), x(0) = x0 ∈ R

n,

y(t) = h(x(t)).

Synthesize an observer of the form,

dxo(t)

dt
= fo(xo(t), y(t)), xo(0) = xo,0 ∈ R

no ,

yo(t) = ho(xo(t)), such that,

0 = lim
s→∞

[y(s)− yo(s)], and,

• if the system is a rational system (f and h rational
maps), then the observer is a rational system (fo and
ho are rational maps); and

• if the system is a polynomial system (f and h are
polynomial maps), then the observer is a polynomial
system, (fo and ho are polynomial maps).

Realization theory of discrete-time polynomial systems was
formulated by E.D. Sontag in his Ph.D. thesis, [17], and
generalized by Z. Bartosiewicz to continuous-time polyno-
mial systems, [18]. Realization theory of continuous-time
nonlinear and rational systems was initiated in [19], [20]
and further developed by by J. Němcová, [1], [2].

III. RATIONAL SYSTEMS

The concepts of rational systems and their observability
recalled in this section are adopted from [18], [1], [2].
To state the proper definitions, let us first provide a short
overview of necessary terms from commutative algebra and
algebraic geometry. For more details see e.g. [21], [22], [23],
[24].

By R[X1, . . . , Xn] we denote the algebra of polynomials
in n variables with coefficients in the real numbers. A subset
X ⊆ R

n is called avariety if it is a set of points ofRn

which satisfy finitely many polynomial equalities. We say
it is irreducible if it cannot be written as a union of two
disjoint varieties. LetI(X) denote the ideal of polynomials
of R[X1, . . . , Xn] vanishing onX . Then the elements of
R[X1, . . . , Xn]/I(X) are referred to aspolynomialson X .
The ring of all such polynomials is denoted byAX . Since
X is irreducible and thusAX is an integral domain, one can
defineQX , the field of rational functionson X , as a field
of fractions ofAX .

Definition III.1 By a rational systemΣ (without inputs) we
refer to a control system as understood in system theory,
[25], with the notation,

Σ = (X,Y, f, h, x0),

dx(t)

dt
= f(x(t)), x(0) = x0 ∈ X, (1)

y(t) = h(x(t)), (2)

where the state-spaceX is an irreducible variety inRn, Y =
R

my with my ∈ Z+, and the components off : X → R
n

and h : X → R
my are rational maps onX defined atx0.

Polynomial systems are defined analogically with the com-
ponents off andh being polynomial maps onX .

Example III.2 Rational systems are widely used, among
others, for mathematical description of biological phenom-
ena. One such example is the following rational systemΣ
which describes an enzyme catalyzed change of a substrate
to a product. The structure ofΣ is derived by considering
the corresponding single reversible reaction to be modeled
by Michaelis-Menten kinetics. Letx1 denote the substrate
concentration and letx2 denote the product concentration,
thenΣ is described by the equations,

dx1(t)

dt
= −ax1(t) +

cx1(t) + bx2
1(t)

x1(t) + d
, x1(0) = 1,

dx2(t)

dt
=

ex1(t)

x1(t) + d
, x2(0) = 1,

y(t) = x2(t),

where the considered state-spaceX equalsR2, the concen-
tration x2 of the product is assumed to be observed, the
initial conditions are chosen to be positive, and constant
parametersa, b, c, d, e have specific biological meaning. Let
us, for simplicity, assumea = b = c = e = 1 andd = 2.

In the remainder of the paper the concept of observability
of a rational system is needed which is thus borrowed from
[1], [2].

Definition III.3 Consider a rational systemΣ =
(X,Y, f, h, x0). Define theobservation algebraAobs(Σ) of
Σ as the algebra over the real numbers generated by the
components ofh and closed with respect to Lie derivatives
along the vector fieldf . Thus,

Aobs(Σ) = R[{Lk
fhi | i = 1, . . . ,m, k = 0, 1, . . .}], (3)

whereL0
fhi = hi, L1

fhi = Lfhi =
∑n

j=1 fj(x)
∂

∂xj
hi, and

Lk
fhi = Lf(L

k−1
f hi) for k = 2, 3 . . . , i = 1, . . . ,m. Because

X was an irreducible variety, one can define theobservation
field Qobs(Σ) of Σ as the field of fractions ofAobs(Σ), i.e.

Qobs(Σ) = {p/q| p, q ∈ Aobs(Σ), q 6= 0}. (4)

The rational systemΣ is calledalgebraically observableif
its observation field equals the field of all rational functions
on the state-space,QX = Qobs(Σ).
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The polynomial systemΣ is called algebraically observ-
able if its observation algebra equals the algebra of all
polynomials on the state-space,AX = Aobs(Σ).

Example III.4 Consider the rational system defined in Ex-
ample III.2. Let us refer to it as toΣ = (X,Y, f, h, x0).
Then,

Lfh(x1, x2) =
−x1

x1 + 2

∂h(x1, x2)

∂x1
+

x1

x1 + 2

∂h(x1, x2)

∂x2

and h(x1, x2) = x2. Let us compute few elements of
Qobs(Σ):

h = x2 ∈ Qobs(Σ),

Lf (x2) =
x1

x1 + 2
∈ Qobs(Σ),

Lf

(

x1

x1 + 2

)

=
−2x1

(x1 + 2)3
∈ Qobs(Σ).

To obtain further elements one can keep on computing
Lie derivatives of known elements, multiply and divide the
elements and multiply them by real numbers. For example,
−2x1

(x1+2)3
−1
2 = x1

(x1+2)3 ∈ Qobs(Σ) and x1

(x1+2)
(x1+2)3

x1

=

(x1 + 2)2 ∈ Qobs(Σ). Then, Lf

(

(x1 + 2)2
)

= −2x1

and consequentlyx1 belong toQobs(Σ). Becausex1, x2 ∈
Qobs(Σ), it follows thatQobs(Σ) = R(x1, x2) = QX which
impliesΣ is algebraically observable.

IV. OBSERVER SYNTHESIS

The observer synthesis procedure is stated below and is
complemented in the next section by theory of the various
steps. Below either a rational or a polynomial system is
considered. A polynomial system is taken along in the
exposition to illustrate the various steps.

Procedure IV.1 Observer Synthesis Procedure

1) Construct a state-space transformation
s : X → X̂.

2) Prove the existence of an inverse functions−1 of s
of the state-space transformation in the subclass of
rational or of polynomial functions depending on the
case.

3) Derive an output-based realization.
4) Derive the observer.
5) Choose an observer gain to meet performance objec-

tives, including stability.

Example IV.2 Polynomial system. Consider the observable
polynomial system for which an observer is wanted.

dx(t)

dt
=

(

−a11x1(t)
3 + a12x2(t)

−a22x2(t)

)

, x(0) = x0,

y(t) = x1(t) = Cx(t) =
(

1 0
)

x(t),

a11, a22 ∈ (0,∞), a12 ∈ R, a12 6= 0.

Procedure IV.3 Step 1. Construction of a state-space trans-
formation. Define,

s1(x) = h(x), s1 : X → R
my , y(t) = h(x(t)),

dy(t)

dt
=

dh(x(t))

dt
=

∂h(x)

∂x
|x=x(t)

dx(t)

dt

=
∂h(x)

∂x
f(x)|x=x(t) = s2(x(t)),

s2(x) =
∂s1(x)

∂x
f(x), s2 : X → R

my ,

sk+1(x) =
∂sk(x)

∂x
f(x), k ∈ Z+,

mo ∈ Z+, no = mo ×my,

s(x) =











s1(x)
s2(x)
...
smo

(x)











, s : X = R
n → R

no .

The choice of the rational observability indexmo ∈ Z+ is
best made in Step 2 based on the existence of the inverse of
the state-space transformations in a specified set.

Example IV.4 Polynomial system. Example IV.2 is contin-
ued. The state-space transformation function is calculated.

s1(x) = h(x) = x1, s2(x) = −a11x
3
1 + a12x2,

s(x) = (s1(x), s2(x))
T .

Procedure IV.5 Step 2. Prove the existence and construct a
rational inverse or a polynomial inverse of the state-space
transformation,

x̂(t) =
(

y(t) dy(t)
dt

. . . dmo−1y(t)
dtmo−1

)T

,

x̂ : T → R
no ,

x̂(t) = s(x(t)), s ∈ Qobs(Σ)
no .

Construct an inverse functions−1 of the state-space trans-
formation s such that ifs is a rational, thens−1 will be
a rational while if s is a polynomial, thens−1 will be a
polynomial.

It is proven in the next section that observability of the
rational or polynomial system implies the existence of the
inverse in the required class of algebraic objects.

Example IV.6 Polynomial system. Example IV.4 is contin-
ued. The state-space transformations admits a polynomial
inverse,

x̂1 = s1(x) = x1, x1 = x̂1,

x̂2 = s2(x) = −a11x
3
1 + a12x2,

s−1(x̂) =

(

x1

x2

)

=

(

x̂1
a11

a12
x̂3
1 +

1
a12

x̂2

)

.
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Procedure IV.7 Step 3. Derivation of the output-based real-
ization. Next the output-based realization can be calculated,

x(t) = s−1(x̂(t)),

dx̂(t)

dt
= for(x̂(t)),

y(t) = hor(x̂(t)) = Cox̂(t) = x̂1:my
(t),

for(x̂) =
∂s(x)

∂x
f(x)|x=s−1(x̂),

Co =
(

Imy
0 . . . 0

)

.

Definition IV.8 Special case of single output. Below atten-
tion is restricted to a system with a one-dimensional output,
hencemy = 1. Thenno = mo. Note that then,

x̂(t) =
(

y(t) dy(t)
dt

. . . dno−1y(t)
dtno−1

)T

,

d

dt
x̂i(t) =

d

dt

di−1y(t)

dti−1
=

diy(t)

dti
= x̂i+1(t),

i = 1, 2, . . . , no − 1,

d

dt
x̂no

(t) =
d

dt

dno−1y(t)

dtno−1
=

dnoy(t)

dtno
= sno+1(x(t)).

dx̂(t)

dt
= for(x̂(t)) = Aox̂(t) + bo(x̂(t)),

Ao =















0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
...

0 0 0 . . . 1
0 0 0 0 0















,

bo(x̂) = 0, except that,

bo,no
(x̂) = sno+1(s

−1(x̂)) =
∂sno

(x)

∂x
f(x)|x=s−1(x̂).

The same structure holds in the multi-output case, with
my > 1 though then the matrixAo and the vectorbo have
multivariable components.

Example IV.9 Polynomial system. Example IV.6 is contin-
ued. The output-based realization is,

dx̂(t)

dt
=

(

x̂2(t)

f̂or,2(x̂(t))

)

, x̂(0) = s(x(0)),

f̂or,2(x̂) = −a11a22x̂
3
1 − 3a11x̂

2
1x̂2 − a22x̂2,

y(t) = Corx̂(t) = x̂1(t).

In an output-based realization, the output is a component of
the state vector of the realization. What is needed is that
the output of the system becomes an input of the observer.
This can be achieved by replacing the first component of
the output-based realization by an abstract variable and by
injecting the output into the first component. Due to the fact
that in the output-based realization the output function is
linear, the injection of the output in the observer is with the
linear functiony(t)− Coxo(t).

Procedure IV.10 Step 4. Derivation of the observer by
output injection. Define the observer as the system,

dxo(t)

dt
= Aoxo(t) + bo(xo(t)) +

+[ko(xo(t)) +K][y(t)− Coxo(t)],

xo(t0) = xo,0 ∈ R
n, K ∈ R

n0×my ,

ko(xo) =
(

0 0 . . . ko,mo
(xo)

)T
∈ R

no×my ,

ko,mo
(xo) =

∂bo,mo
(xo)

∂xo,1
∈ R

my×my .

An explanation of the derivation of the observer follows for
the casemy = 1. Apply a Taylor expansion to the output-
based realization, and retain only the first-order term, [26].

dx̂(t)

dt
= for(x̂(t)), x̂(0) = x̂0 ∈ R

no ,

y(t) = hor(x̂(t)),

x̂(t) =
(

x̂1(t) x̂2(t) x̂3(t) . . . x̂no
(t)

)T
,

x(t) =
(

y(t) x̂2(t) x̂3(t) . . . x̂no
(t)

)T
,

for(x̂(t))

= for(x(t)) + [for(x̂(t)) − for(x(t))],

≈ for(x(t)) +
∂for(x)

∂x
|x=x(t)[x̂(t)− x(t)]

= for(x(t)) +
∂for(x)

∂x1
|x=x(t)[y(t)− Cox(t))],

dxo(t)

dt
= fo(xo(t)) + [ko(xo(t)) +K][y(t)− Coxo(t)].

The choice for a gain matrixK ∈ R
no×my made above

is expected to guarantee local stability for specific values.
Further research is required on the global asymptotic stability
of the performance system, see Section VI, to allow the
formulation of nonlinear gain functions.

Example IV.11 Polynomial system. Example IV.9 is contin-
ued.

dxo(t)

dt
=

(

xo,2(t)
fo,2(xo(t), y(t))

)

+

+[ko(xo(t)) +K][y(t)− Cxo(t)]

=

(

xo,2(t)
−a11a22x

3
o,1 − 3a11x

2
o,1xo,2 − a22xo,2

)

+

(

k1
k2 − 3a11a22x

2
o,1 − 6a11xo,1xo,2

)

×

×[y(t)− Cxo(t)],

yo(t) = Cxo(t).

Procedure IV.12 Step 5. Choose the oberver gain. Choose
the gain matrix such that the performance system of Def.
VI.1 meets the performance objective of stability and good
transient response.

V. THEORY OF OBSERVER SYNTHESIS

This section provides concepts and results which show
that the synthesis procedure of the previous section produces
indeed a rational or a polynomial observer.
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Consider a rational system. Def. III.3 defined first the
observation algebra of a rational system as the algebra of
rational functions generated by the infinite sequence of Lie
derivatives of the system for the output components and
subsequently the observation field as the field of fractions of
this observation algebra. Below a corresponding concept is
defined for a finite sequence of these Lie derivatives of output
components. Note that the finite set of the zero-th upto the
mth Lie derivative of the components of the output function
are precisely the family of{si, i ∈ Zm+1} functions.

The exposition below was first written for the sin-
gle output case, thus formy = 1. It can be read
also for the multi-output case, formy ≥ 2, if the se-
quence ofs functions and their components are renum-
bered. For the rest of the section, renumber the functions,
s1,1, s1,2, . . . , s1,my

, s2,1, . . . , s2,my
, s3,1, . . . as s1, s2, . . . ,

i.e. s1 = s1,1, s2 = s1,2, . . . , smy
= s1,my

, smy+1 = s2,1,
. . . .

Definition V.1 Finite algebraic observability of a rational
and of a polynomial system.
(a) Consider a rational systemΣ = (X,Y, f, h, x0) and

let the functions{si : Rn → R, i ∈ Z+} be as con-
structed in Procedure IV.3. Define them-th observation
algebraof rational functions and the associatedm-th
observation fieldfor all m ∈ Z+ as respectively,

Aobs,m(Σ) = R[{s1, s2, . . . , sm}],

Qobs,m(Σ) = {p/q| p, q ∈ Aobs,m(Σ), q 6= 0}.

Call the rational systemfinitely algebraically observ-
able if there exists an integerm ∈ Z+ such that
Qobs,m(Σ) = R(x).
Call the least-integerm ∈ Z+ such thatQobs,m(Σ) =
R(x), the rational observability indexof the rational
system, denote it bymo ∈ Z+, and letno = mo ∗my

(with disregard of renumbering).
(b) Consider a polynomial system. Define correspondingly

for this polynomial system them-th observation algebra
of polynomial functions,finite algebraic observability,
and thepolynomial observability index.

The concept of a rational observability index and its poly-
nomial analogue are analogous to those for linear systems,
see [27, p. 356–357]. Less useful for observers because of
robustness reasons seems the concept of rational Kronecker
indices, see [28] for those of linear systems. Each such
index for a component of the output function is defined as
the least integer for which the rational observation field of
that component stops increasing forever. The value of these
indices depends on the ordering of the output components.

It follows from [1, Prop. 5.7] that if a rational system is
algebraically observable then its observation field is finitely
generated hence the rational system is finitely algebraically
observable. In the case of a polynomial system it is not
known whether algebraic observability implies that this poly-
nomial system is finitely algebraically observable. Therefore
the finite algebraic observability will be assumed.

Finite algebraic observability of a rational or of a poly-
nomial system does not imply the existence of an inverse
of s with m ≥ ⌈n/my⌉. Example VII.1 of a polynomial
system shows that the polynomial observability index can be
strictly higher than the state-space dimension of the system,
or, equivalently, withmy = 1, no > n.

Proposition V.2 Algebraic characterization of the existence
of a rational or of a polynomial inverse of the state-
space transformation.Consider a polynomial systemΣ =
(X,Y, f, h, x0), the functions{si, i ∈ Z+}, and the family
of observation algebras{Aobs,m(Σ), m ∈ Z+}.

∃ m ∈ Z+ ∃ r1, r2, . . . , rn ∈ R[S1, . . . , Sm],

and lets = (s1, . . . , sm),

such that, xi = ri(s(x)), ∀ i ∈ Zn;

hence,x = r(s(x)) ∈ Aobs,m(Σ)n and s−1 = r;

if and only if,

∃ m ∈ Z+ such thatAobs,m(Σ) = R[x].

Note that if there exists anr as above, thens is invertible
with the polynomial inverses−1 = r.

A corresponding result holds for the existence of a rational
inverses−1 of s in terms of the observation fieldQobs,m(Σ).

Proof. ⇐ BecauseR[x] ⊆ Aobs,m(Σ), for any i ∈ Zn there
exists a polynomialri(s(x)) ∈ R[x1, . . . , xn] such thatxi =
ri(s(x)). Definer = (r1, . . . , rn). Then,

x = r(s(x)) =







r1(s(x))
...
rn(s(x))






∈ (Aobs,m(Σ))n.

From this follows thats−1 = r ∈ R[S1, . . . , Sm] and thus
that the inverses−1 of s exists and that it has polynomial
components.
⇒ If an inverse functionr in the indicated set exists then
xi = ri(s(x)) ∈ Aobs,m(Σ) for all i ∈ Zn. ThusR[x] ⊆
Aobs,m(Σ) ⊆ R[x] where the last inclusion relation is by
definition ofAobs,m(Σ). Hence equality holds. �

Theorem V.3 Existence of an output-based realization. Con-
sider a rational or a polynomial system. If the system is
finitely algebraically observable then there exists an output-
based realization which is rational or polynomial respec-
tively. Thus,Σor = (Xor, Y, for, hor, xor,0), as specified
in Procedure IV.7, is a rational or a polynomial system
respectively.

Proof. The case of a rational system is considered, the case
of a polynomial system is similar. The definition of the
state vectorx̂ as a function of the outputy and several
of its derivatives makes clear that the realization is output
based. Note that finite algebraic observability of the system
implies that there exists a finite numbermo ∈ Z+ such that
Qobs,mo

(Σ) = R(x). From Proposition V.2 then follows that
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the functions : R
n → R

no has an inverse functions−1

which is also rational. From the formulas of Procedure IV.7
Step 3, then follows that the functions(for, hor) are rational.
In more detail, the inverse functions−1 is a rational function,
for(x̂) = (∂s(x)/∂x)f(x)|x=s−1(x̂), and the class of rational
functions is closed with respect to substitution, thusfor is
a rational function. Hence the output-based realization isa
rational system. �

The existence of a polynomial inverse of a polynomial map
has been characterized for which purpose we quote the
following results from [29].

Let k be an arbitrary field of characteristic zero (note that
for our problemk = R meets this condition). A necessary
condition for a polynomial mapF ∈ k[X1, . . . , Xn] to
be invertible is thatF satisfies theJacobi condition, that
det(JF ) ∈ k∗, wherek∗ denotes the units ofk. In general,
the Jacobi condition is not sufficient. In casen = 1, one can
prove the sufficiency. Forn ≥ 2 the problem whetherF ∈
R[X1, . . . , Xn] satisfying the Jacobi condition is invertible
is known as theJacobi conjecture.

By adding additional assumptions on polynomial maps
satisfying the Jacobi condition, one can obtain sufficient
conditions of the following form.

Theorem V.4 [29, Th. 2.2.16, p. 53]. Let F ∈
R[X1, . . . , Xn] be such thatdet(JF ) ∈ k∗. If k[X ] is
integral overk[F ] or if the field extension ofk(F ) ⊂ k(X)
is Galois, thenF is invertible.

For polynomial mapsF ∈ R[X1, . . . , Xn] with k being an
arbitrary field, A. van den Essen derived a criterion based on
the theory of Gröbner bases which not only decides whether
F is invertible but also provides a procedure to calculate the
inverse if it exists. For the respective theorem (more general
than quoted here), see [29, Theorem 3.2.1, p.64] or [30].

Note that forn = 1 the invertible polynomialsF ∈ k[X ]
are only the affine ones, for exampleF (x) = ax + b. For
n = 2 every invertible polynomialsF : k2 → k2 is tame,
meaning that it can be written as a finite composition of
elementary maps(X1+a,X2) and(X1, X2+ b). Forn = 3
it is an open problem to determine whether every invertible
polynomialF ∈ k[X1, . . . , Xn] is tame. The general belief
is that they are not.

VI. PERFORMANCE ISSUES

The performance objectives of observer synthesis are: (1)
asymptotic stability of the difference of the output of the
system and the output of the observer; and (2) a good
transient response in reaction to realistic initial conditions
of the observer. In control theory it is known that it is best
for the functioning of the observer if the convergence of
the predicted output of the observer to the observed output
is slightly faster than the dynamics of the system. It is
well known from other subareas of control theory that for
the analysis of the performance of an observer one has to
consider the performance system with as state(x, xo).

The approach to investigate the global asymptotic stability
of the observer includes the steps: (1) Investigate local sta-
bility at zero error. (2) Approximate the domain of attraction
by analysis and simulation. See [31] for a procedure to
approximate the domain of attraction by rational Lyapunov
functions.

Definition VI.1 Define theperformance systemof the ob-
server as the control system,

xe(t) =

(

x(t)
xo(t)

)

, xe(0) =

(

x0

xo,0

)

,

dxe(t)

dt
= fe(xe(t)) =

(

f(x(t))
fo(xo(t), Cx(t))

)

,

ey(t) = y(t)− ho(xo(t)) = h(x(t)) − ho(xo(t))

= he(xe(t)).

Note that the dimensions of the vectorsx and xo are in
general different hence it is mathematically not possible to
subtract these vectors.

Problem VI.2 Can an observer be synthesized such that for
any initial conditionxe(0) one has that,

lim
t→∞

ey(t) = 0?

Equivalently, is the observable part of the performance
system such that the outputey is asymptotically stable for
all initial conditions of the performance system?

The problem above is briefly analyzed for linear systems.

Definition VI.3 Performance system of a linear observer.

dx(t)

dt
= Ax(t), x(0) = x0, y(t) = Cx(t).

dxo(t)

dt
= Axo(t) +K[y(t)− Cxo(t)], xo(0) = xo,0.

xe(t) =
(

x(t) xo(t)
)T

,

dxe(t)

dt
=

(

A 0
−KC A−KC

)

xe(t),

ey(t) = y(t)− Cxo(t),

xet(t) =
(

x(t) x(t)− xo(t)
)T

= Lexe(t),

dxet(t)

dt
=

(

A 0
0 A−KC

)

xet(t),

ey(t) = y(t)− Cxo(t) =
(

0 C
)

xet(t).

As is well known in control theory, if the tuple(A,C)
is an observable pair then there exists a gain matrixK
such that the observable part of the performance system is
globally asymptotically stable. Note the nonobservability of
the performance system with respect toey!

Example VI.4 This is a continuation of Example IV.11. If
k1 < −a22 and if k2 < 0 then the observable part of the
performance system is locally stable atx − xo = 0. The
system itself is such that its linearized system atx = 0 has
one eigenvalue at zero. The global asymptotic stability is not
yet established.
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VII. EXAMPLES

Example VII.1 A polynomial system with a polynomial
observer of higher state-space dimension than the system.
There follows an example of an observer for a system in
which the state-space dimension of the observer is strictly
larger than that of the system.

Consider the polynomial system and derive its observer
according to the steps,

dx(t)

dt
=

(

f1(x(t))
−a21x2(t) + a22

)

,

x(0) = x0,

y(t) = x1(t) = Cx(t) =
(

1 0
)

x(t),

f1(x) = 2a21x1 − a12(x2 − a13)(x2 − a14),

a12, a13, a14, a21, a22 ∈ (0,∞),

a13 <
a22
a21

< a14, a13 + a14 6= 2
a22
a21

.

s1(x) = h(x) = Cx = x1,

s2(x) =
∂h(x)

∂x
f(x) = f1(x),

x̂1 = s1(x) = x1, x1 = x̂1,

x̂2 = s2(x) = 2a21x1 − a12(x2 − a13)(x2 − a14)

= 2a21x̂1 − a12(x2 − a13)(x2 − a14).

The conclusion is that based on the state-space transforma-
tion s = (s1, s2) there does not exist an unique solution for
the inverse function, in particular not a solution forx2 given
x̂1, x̂2 of the equation

a12(x2 − a13)(x2 − a14) = −x̂2 + 2a21x̂1.

Therefore the construction of the state-space transformation
is increased by another derivation.

s3(x) =
∂s2(x)

∂x
f(x) = c11x1 + c12x2 + c14,

c11 = 4a221,

c12 = a12a21(a13 + a14)− 2a12a22,

c14 = a12a22(a13 + a14)− 2a12a21a13a14.

x̂3 = s3(x),

x2 = −
c11
c12

x̂1 +
1

c12
x̂3 −

c14
c12

,

(x1, x2) = s−1(x̂) = (x̂1, −
c11
c12

x̂1 +
1

c12
x̂3 −

c14
c12

),

dx̂(t)

dt
= Aorx̂(t) + bor(x̂(t)), x̂(t), xo(t) ∈ R

3.

Note thats−1 is a linear map. Then,

s4(x) = 2a21c11x1 − a21c12x2 +

−a12c11(x2 − a13)(x2 − a14) + a22c12,

bor,3(x̂) = s4(x)|x=s−1(x̂)

= 3a21c11x̂1 − a21x̂3 + a21c14 + a22c12 +

−
a12c11
c212

×

×[x̂3 − c11x̂1 − (c14 + a13c12)]×

×[x̂3 − c11x̂1 − (c14 + a14c12)],

ko,3(x̂) =
∂bor,3(x̂)

∂x̂1
= 3a21c11 +

a12c
2
11

c212
×

×

[

+2x̂3 − 2c11x̂1+
−(2c14 + c12(a13 + a14))

]

.

The observer is then described by the system representation,

dxo(t)

dt
= Aoxo(t) + bo(xo(t)) +

+[ko(xo(t)) +K][y(t)− Coxo(t)]

=





x̂2(t)
x̂3(t)
bo,3(x̂(t))



 +

+





k1
k2
k3 + ko,3(x̂(t))



 [y(t)− Cox̂(t)],

yo(t) = Coxo(t), Co =
(

1 0 0
)

.

Example VII.2 Rational system – rational observer. Con-
sider the observable rational system, fora13 6= 0.

dx(t)

dt
=

(

−a11x1(t)
1+a12x1(t)

+ a13x2(t)
1+a14x2(t)

−a21x2(t)
1+a22x2(t)

+ a23

)

,

y(t) = Cx(t) =
(

1 0
)

x(t) = x1(t).

Construct an output-based realization according to Procedure
IV.1.

dx̂(t)

dt
= Aorx̂(t) + bor(x̂(t))

=

(

0 1
0 0

)

x̂(t) +

(

0
bor,2(x̂(t))

)

,

y(t) = Cx̂(t),

bor,2(x) =
a211x1

(1 + a12x1)2
−

a11a13x2

(1 + a12x1)2(1 + a14x2)
+

−
a13a21x2

(1 + a14x2)2(1 + a22x2)
+

a13a23
(1 + a14x2)2

.

The rational observer follows.

dxo(t)

dt
= Aoxo(t) + bo(xo(t)) +

+[ko(xo(t)) +K][y(t)− Cxo(t)],

Ao = Aor,

bo(xo) = bor(xo) =

(

0
bor,2(xo)

)

,

ko,2(xo) =
∂bor,2(xo)

∂xo,1

=
a211

(1 + a12xo,1)3
−

3a11a12xo,1

(1 + a12xo,1)4
+

+
2a12

(1 + a12xo,1)3
a11a13xo,2

(1 + a14xo,2)
+

−
a13a14xo,2

(1 + a14xo,2)2(1 + a22xo,2)
.

Example VII.3 Consider a rational system which is a model
for either a compartmental system with two compartments
or a biochemical reaction system with two chemical species.
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The output is only of the second compartment or species.
The system is actually a family of rational systems.

dx1(t)

dt
= r1(x1(t))− r2(x1(t), x2(t)), x1(0) = x1,0,

dx2(t)

dt
= r2(x1(t), x2(t))− r3(x2(t)), x2(0) = x2,0,

y(t) = Cx(t) = x2(t), r1, r2, r3 ∈ QX .

Assume thatr2(0, x2) = 0 andr3(0) = 0 for all x2 ∈ [0,∞)
and thatx0 = (x0,1, x0,2) ∈ R

2
+. From those assumptions

follows that the positive orthantR2
+ = [0,∞)2 is an invariant

set to be denoted as the state setX = R
2
+. A special case

of the above is with

r1(x1) = a1, r2(x1, x2) =
a2x1x2

1 + a3x2
2

,

r3(x2) = a4x2, a1, a2, a3, a4 ∈ (0,∞).

The state-space transformation and its inverse are then

x̂1 = s1(x) = h(x) = Cx = x2,

x̂2 = s2(x) =
∂s1(x)

∂x
= f2(x) = r2(x1, x2)− r3(x),

x2 = x̂1, x1 =
(x̂2 − a4x̂1)(1 + a3x̂

2
1)

a2x̂1
.

The output-based realization is then,

dx̂(t)

dt
=

(

x̂2(t)
b2(x̂(t))

)

, ŷ(t) = Cx̂(t),

bo,2(x̂) = po,2(xo)/[a2xo,1(1 + a3x
2
o,1)],

po,2(xo) = −2a2x
2
o,1 + a24xo,1(1 + a3x

2
o,1)

2 +

+(1 + a3x
2
o,1)[a2xo,1(a1 − 2a4xo,1) +

+2(xo,2 + a4xo,1) +

−2a1x
4
o,1(xo,2 + a4xo,1)

2].

The observer is then,

dxo(t)

dt
=

(

xo,2(t)
bo(xo(t))

)

+

+[ko(xo(t)) +K](y(t)− Coxo(t)).

VIII. CONCLUDING REMARKS

The main contribution of the paper is an observer synthesis
procedure for rational observers of rational systems.

Further research into the subject of this paper includes:
Synthesis of observers for rational systems with inputs (first
for systems affine in the input). The role of universal inputs
has to be explored. A stability analysis of rational observers.
Observers for Nash systems [3] have been constructed but
are not discussed in this paper due to space limitations.
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