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Rational Observers of Rational Systems

Jana Némcova and Mihaly Petreczky and Jan H. van Schuppen

Abstract— Rational observers are to be constructed for ratio- The outline of the paper follows. The next section provides
nal systems while polynomial observers are to be construale g problem description and motivation. Section Ill defines
for polynomial systems. An observer synthesis procedure is ya4ion3| systems and shows how to check their observability

formulated. First an output-based rational realization is synthe- Section[TV ides th d f b thesi
sized for the considered rational system. Then a perturbatin ection provides the procedure Tor observer Syntnesis.

technique creates an observer. Finite algebraic observaity ~ The theory on which the procedure is based is provided in
of the rational system impies the existence of a output-bade Section[Y. The performance of the observer is discussed in

rational realization. Several examples of rational obserers are  Sectiorl V). Sectiof VIl shows several examples of observers
provided including a polynomial system of which the state-

space dimension of the polynomial observer is strictly higér Il. PROBLEM FORMULATION
than that of the corresponding system. o .
The motivations for the synthesis of an observer of a

. INTRODUCTION system are primarily: (1) the interest in estimation of ttaes
The aim of this paper is to show how, for a rationalf the observer for example if the state is the concentration

system, a rational observer can be synthesized. The symthéd @ chemical species or if it is a concentration of a
procedure is illustrated by several examples. physiological model of a human being; (2) the starting point
In control theory there is a need for observers of systemfr prediction of a time series for example prediction of
Observers are used to produce estimates or predictions {Effic flow in a road network, [5], or prediction of produced
values of the output of a system. photo-voltaic power of solar panels; (3) control based on
There is a large body of literature on observers of nonlinRartial observations, [6]; and (4) the use of observers in
ear systems. The reader is referred to the next section foP¥Stem identification, [7].
brief literature review. There is an extensive literature on observers of control
The focus of this paper is on rational systems which aris%yStemS- The foundation is the publication of the Kalman
in biochemical reaction systems, in physiological system&lter, [8], followed by the papers of D. Luenberger on
and in engineering. These systems have been investigafdy Observer of a linear system, [9], [10]. By now there
by the authors in various papers, [1], [2], [3]. The scope df an extensive literature on observers of several classes
the investigation is restricted by imposing the conditibatt Of nonlinear systems, [11]. Recent books exclusively on
for a rational system one wants a rational observer while f@PServers include [12], [13] while major papers include]{14
a polynomial system one wants a polynomial observer. Thid>]: [16]. o s
is a self-imposed restriction but it makes sense consigerin What is the definition of an observer? Several definitions
the algebraic framework of rational systems. for an observer have been proposed. In this paper an observer
A procedure for observer synthesis is proposed. Thill be based on an output-based realization of a nonlinear
procedure consists of several steps of which the first one §Stém. meaning a realization of which the state is a functio
the construction of an output-based realization follonateri  ©f the output and of the output's derivatives. From such
on by an output injection step. That observers are basicaffy reallzgnon one can dlrectI)_/ construct the observer. The
output-based realizations of the system generating theuout VIEW point of an observer being based on an output-based

is due to R.E. Kalman, [4], and to the subsequent researff@lization of the system, is inspired by the publicatiofis o
on stochastic realization. Kalman on the stochastic realization theory of Kalman flter

In general a rational or a polynomial observer may havée® [4. _
a higher state-space dimension than the dimension of the restriction is imposed on the algebraic form of the
system. ExamplEVII1 of a polynomial system provides Qbservers. For a polynomial system the search is restrioted
polynomial observer of a strictly higher state-space dimer? polynomial observer and for a rational system the search

sion than the system. is restricted to a rational observer. It should be clear that
this is a self-imposed restriction, there may exists olesrv
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and its derivatives which derivatives are often not disectl Definition 1.1 By arational systen® (without inputs) we
available. Therefore, there is a convergence issue in casfer to a control system as understood in system theory,
the observer is started in an initial state which is différen25], with the notation,

from that of an output-based realization. Stability aniglys

of observers is difficult and one has to prove that the p ¥ o= (XY S h o),
. . t
prediction of the ob.server for the output converges to the x(t) = f(z(t)), (0) =0 € X, 1)
observed output. This performance criterion is discussgd b dt
not completely treated in this short conference paper. y(t) = h(x(t)), (2)

where the state-spack is an irreducible variety ilR™, Y =
Problem 1.1 Observer Synthesi€onsider a rational sys- R™v with m, € Z,, and the components ¢f : X — R"

tem without inputs, andh : X — R™ are rational maps onX defined atz.
da(t) Polynomial systems are defined analogically with the com-
il f(z(@), z(0) =z €R", ponents off and h being polynomial maps oiX .

y(t) = h(z(t).

Example 11.2 Rational systems are widely used, among

Synthesize an observer of the form, others, for mathematical description of biological pherom
d (¢ ena. One such example is the following rational systém
%() = folzo(t),y(t)), x0(0) = x0,0 € R™, which describes an enzyme catalyzed change of a substrate

to a product. The structure df is derived by considering
Yo(t) = ho(xo(t)), such that, the corresponding single reversible reaction to be modeled
0 = Sgralo[y(s) — Yo(s)], and, by Michaelis-Menten kinetics. Let; denote the substrate
concentration and lets; denote the product concentration,

« if the system is a rational systenf @nd / rational  heny: is described by the equations,
maps), then the observer is a rational systefn é4nd

h, are rational maps); and day(t) —am(t) + cxy(t) + bai(t) 51(0) =1
. if the system is a polynomial systeni é&nd h are dt i (t)+d ’
polynomial maps), then the observer is a polynomial dxzy(t) ewi(t) 0 =1
system, {, and h, are polynomial maps). dt Ton()+d 22(0) =1,
y(t) = x2(),

Realization theory of discrete-time polynomial systems wa

formulated by E.D. Sontag in his Ph.D. thesis, [17], andvhere the considered state-spaceequalsR2, the concen-
generalized by Z. Bartosiewicz to continuous-time polynotration x» of the product is assumed to be observed, the
mial systems, [18]. Realization theory of continuous-timénitial conditions are chosen to be positive, and constant
nonlinear and rational systems was initiated in [19], [20parameters, b, c, d, e have specific biological meaning. Let
and further developed by by J. Némcova, [1], [2]. us, for simplicity, assume =b=c=e¢ =1 andd = 2.

I1l. RATIONAL SYSTEMS In the remainder of the paper the concept of observability

) ) _.of a rational system is needed which is thus borrowed from
The concepts of rational systems and their observablhm] 2].

recalled in this section are adopted from [18], [1], [2].
To state the proper definitions, let us first provide a shoB
overview of necessary terms from commutative algebra a
algebraic geometry. For more details see e.qg. [21], [28],[2

finition 111.3 Consider a rational systemY® =
Y, f,h,zo). Define theobservation algebral,;s(3) of
Y as the algebra over the real numbers generated by the

[2‘2' RIX X denote the algebra of bol ial components of and closed with respect to Lie derivatives
y R[X, ..., X,] we denote the algebra of polynomia Salong the vector fieldf. Thus,

in n variables with coefficients in the real numbers. A subset
X C R" is called avariety if it is a set of points ofR” Aops(X) = R{L5hi |i=1,...,m, k=0,1,...}], (3)

which satisfy finitely many polynomial equalities. We say

it is irreducible if it cannot be written as a union of two Where LGh; = hi, Lth; = Lyh; = 307, f(x)55-hs, and

disjoint varieties. Let/ (X') denote the ideal of polynomials L’;hi = Lf(L’;flhi) fork=2,3...,i=1,...,m. Because
of R[Xy,...,X,] vanishing onX. Then the elements of X was an irreducible variety, one can define thteservation
R[X1,...,X,]/I(X) are referred to apolynomialson X. field Q.s(X) of ¥ as the field of fractions ofl,,s(2), i.e.

The ring of all such polynomials is denoted by . Since

X is irreducible and thusl y is an integral domain, one can Qovs(X) = {p/al p, q € Aops(X), q # 0}. 4)

defineQx, the field ofrational functionson X, as a field

¢ The rational systenx is calledalgebraically observablé
of fractions of Ax.

its observation field equals the field of all rational functso
on the state-spacé&)x = Qops(X).



The polynomial systert is called algebraically observ- Procedure V.3 Step 1. Construction of a state-space trans-
able if its observation algebra equals the algebra of allformation Define,
polynomials on the state-spacéyx = Aps(X).

si(z) = h(x), s1: X = R™, y(t) = h(z(t)),
Example 11l.4 Consider the rational system defined in Ex- ~ dy(t) _  dh(z(t)) _ ah(ff)|  da(t)
ample[IIL.2. Let us refer to it as t& = (X,Y, f, h, o). dt (dt) or T=T® g
Oh(x
Then, = F(@) ey = s2(2(t)),
—x7 8h(x1 ZCQ) T 8h(x1 IQ)
L:h _ ) ’ Os1(x m,
f ($1,ZC2) 1 +2 ox1 T, + 2 0xo 52(56) = %f(x)v s : X — R™v,
and h(z1,z2) = z2. Let us compute few elements of _ Osp(x) Le7
Qups(%): Sk+1() O f(z), k€Zy,
Mo € Ly, Mo =My X My,
h = x2€ Qus(X), s1(z)
€
L (z2) = € Qops (), s2()
f( 2) T+ 2 Qb() S(CL‘) — ) , s: X =R" = R",
KA —2x :
L = — obs ().
f($1+2> (z1 +2)3 € Qona() Sm, ()

Tp obtgin .further elements one can k_eep on cp_mputinghe choice of the rational observability index, € Z. is
Lie derivatives of known elements, multiply and divide thepest made in Step 2 based on the existence of the inverse of
elements and multiply them by real numbers. For exampléhe state-space transformatienn a specified set.

2ol B e Qu(Y) and i @l
(@1+2)3 2, (@142)3 obs (z1+22) T
(r1 +2)* € Qops(X). Then, Ly ((z1 +2)%) = —2m Example V.4 Polynomial systemExampleTV2 is contin-

and consequently; belong toQ.,s(X). Becauser, zs €
Qobs(X), it follows that @ ps(X) = R(x1,z2) = Qx which
implies ¥ is algebraically observable.

ued. The state-space transformation function is caladilate

si(z) = h(x)==z1, s2(2) = —anrd +aws,
T
IV. OBSERVER SYNTHESIS s(z) = (si(z), s2(x))".

The observer synthesis procedure is stated below and is
complemented in the next section by theory of the variougrocedure IV.5 Step 2. Prove the existence and construct a
steps. Below either a rational or a polynomial system jgational inverse or a polynomial inverse of the state-space
considered. A polynomial system is taken along in th&ansformation
exposition to illustrate the various steps.

. dy(t amo-tym \"
Procedure IV.1 Observer Synthesis Procedure Z:T — R,
1) Construct a state-space transformation 2t) = s(z(t), s€ Qops(X)™.

s: X = X.

2) Prove the existence of an inverse function' of s  Construct an inverse functiosr ! of the state-space trans-
of the state-space transformation in the subclass dbrmation s such that ifs is a rational, thens=! will be
rational or of polynomial functions depending on thea rational while if s is a polynomial, thens—! will be a

case. polynomial.
3) Derive an output-based realization. It is proven in the next section that observability of the
4) Derive the observer. rational or polynomial system implies the existence of the

5) Choose an observer gain to meet performance objetverse in the required class of algebraic objects.
tives, including stability.

Example V.6 Polynomial systemExample[1V.4 is contin-

Example 1V.2 Polynomial systemConsider the observable ued. The state-space transformatioadmits a polynomial

polynomial system for which an observer is wanted.

inverse,
dx(t) —a1171(t)® + arp22(t)
S = (Tan o oo onmmm
y(t) = o) =Ce)=(1 0)a(t), f2 = sl = e b
a1, aze € (0,00), a2 € R, a;z # 0. L&) = . = il - - .
s (:E) o ﬁl'? + a_isz



Procedure IV.7 Step 3. Derivation of the output-based realProcedure 1V.10 Step 4. Derivation of the observer by
ization Next the output-based realization can be calculatedyutput injection Define the observer as the system,

o(t) = sH(E(1)), d%(t) = Aumo(t) + bolzo(t)) +
%@ = forla(®)), ko (2o (1)) + K][y(t) — Coo(t)],
y(t) = hor(j(t)) = Co,f(t) = jl:my (t)a Io(tO) = To,0 € R", K € I;K:noxmy’
s(x kolzo) = (0 0 ... kom,(zo R7o XMy
ful®) = 2Dy, @) = mel@) ) €
8:0 k (.I' ) _ o,mo(xo) c Rmyxmy
C, = ( Imy 0o ... 0 ) 0,mo,\Lo 73x071 .

o _ _ An explanation of the derivation of the observer follows for
Definition 1V.8 Special case of single outpuBelow atten- the casem, = 1. Apply a Taylor expansion to the output-

tion is restricted to a system with a one-dimensional outpubased realization, and retain only the first-order term].[26
hencem, = 1. Thenn, = m,. Note that then,

&
T il Jor((t)), 2(0) = &9 € R™
) = ay(t) amo—ty(n) dt )
“”-(y@ gL L ) y(t) = horli(t).
d d d—ly d . A N N R T
Zhl) = g ) ;jtgt) = Zin (1), B(t) = (@) 22(t) @s(t) &n, () ; )
7 = 17 2’ R 17 T(t) = ( y(t) i.Q(t) j.3(t) j.no (t) ) B
d Coddrelyt)  dreyt) for((1))
E?g__ﬁdwl__w“_%w@w' = Lo @0) + for(#(0) = for @)
0 = For(a(0) = Ailt) + (a0, ~ fulm)+ 22l -7 0)
010 ...0 Ofor B
001 0 = for(T(t)) + J;I(lx)lz:m)[y(t) — CoT(1))],
A, = : . : , dx,(t
S Wol) — fofao®) + holaol) + KJiy(t) — Coro(t)].
o0 o0 ... 1
000 0 O The choice for a gain matriX € R"*" made above
bo(Z) =0, except that, is expected to guarantee local stability for specific values
Osn, (2) Further research is required on the global asymptoticlgtabi
bon, () = sn,41(s” (7)) = —ay  J@la=s1@)-  of the performance system, see Section VI, to allow the

formulation of nonlinear gain functions.
The same structure holds in the multi-output case, with

m, > 1 though then the matrixi, and the vectob, have Example IV.11 Polynomial systerrExampleé V.9 is contin-
multivariable components. ued.

dl’o(t) xo,Q(t) +
Example 1V.9 Polynomial systemExample[TV.6 is contin- dt fo2(zo(t),y(t))

ued. The output-based realization is, +ko(z0 (1) + K][y(t) — Cxyo(t)]
N N t)
di(t) (1) ) _ (%ﬂ )
T = (P ) 70 = s, oason ~ Souia e ~ Guited
for,z(cﬁ) = _0/1}@22!@? — 3(111:%%:%2 — ag2%2, + ( k; B 3a11a22x§71 ~ 6a11T01T02 ) X
y(t) = Cor@(t) = 21(t). x[y(t) — Cx,(t)],
In an output-based realization, the output is a component of Yo(t) = Cuoft).

the state vector of the realization. What is needed is that
the output of the system becomes an input of the observ
This can be achieved by replacing the first component
the output-based realization by an abstract variable and
injecting the output into the first component. Due to the fa
that in the output-based realization the output function is V. THEORY OF OBSERVER SYNTHESIS
linear, the injection of the output in the observer is witke th
linear functiony(t) — Cox,(t).

ggocedure IV.12 Step 5. Choose the oberver ga®hoose
dlre gain matrix such that the performance system of Def.

meets the performance objective of stability and good
dransient response.

This section provides concepts and results which show
that the synthesis procedure of the previous section pesiuc
indeed a rational or a polynomial observer.



Consider a rational system. Ddf._TlI.3 defined first the Finite algebraic observability of a rational or of a poly-
observation algebra of a rational system as the algebra mémial system does not imply the existence of an inverse
rational functions generated by the infinite sequence of Lief s with m > [n/m,]. Example[VIL1 of a polynomial
derivatives of the system for the output components argy/stem shows that the polynomial observability index can be
subsequently the observation field as the field of fractidns atrictly higher than the state-space dimension of the syste
this observation algebra. Below a corresponding concept @, equivalently, withm, = 1, n, > n.
defined for a finite sequence of these Lie derivatives of dutpu
components. Note that the finite set of the zero-th upto tHeroposition V.2 Algebraic characterization of the existence
mth Lie derivative of the components of the output functiorof a rational or of a polynomial inverse of the state-
are precisely the family ofs;, i € Z,,+1} functions. space transformatiorConsider a polynomial systefd =

The exposition below was first written for the sin-(X,Y, f, h,x0), the functions{s;,i € Z, }, and the family
gle output case, thus form, = 1. It can be read of observation algebragA,ys.»(X), m € Z}.
also for the multi-output case, fom, > 2, if the se-

. ; dmeZ, Iri,re,...,1n € R[SL,..., S
quence ofs functions and their components are renum- #3152 ER[SL - S,

bered. For the rest of the section, renumber the functions, and lets = (s1,...,5m),

51,15, 51,25+ -5 81,my 1 52,15+ -5 52,m,» S3,15 - - - as S$1,892,..., such tha,t T; = Ti(S(.CC)), Vie Y/

8. 51 = 51,1, 52 = $1,2, -1 Sm, = SlLm,» Sm,+1 = 2,1, hence,x = r(s(z)) € Aops,m(X)" and sTt=r,
if and only if,

Definition V.1 Finite algebraic observability of a rational 3 m € Zy such thatA g, m (X) = Rlz].

and of a polynomial system Note that if there exists an as above, then is invertible

(a) Consider a rational systerl = (X,Y, f,h,z9) and  ith the polynomial inverse—! = r.
let the functions{s; : R" — R,i € Z;} be as con- A corresponding result holds for the existence of a rational
structed in Procedure 1M 3. Define the-th observation jnverses—! of s in terms of the observation fietdops.m ().
algebraof rational functions and the associated-th

observation fieldor all m € Z, as respectively, Proof. < BecauseR|[z] C Aops,m(X), for anyi € Z, there
exists a polynomiat;(s(x)) € Rlx1,...,z,] such thaty; =

Aobsm(E) = R[{s1,52,...,sm}], ri(s(x)). Definer = (r1,...,r,). Then,
Qobs,m(z) = {P/Q| p,q S Aobs,m(z)a q 7é O} r (S(l’))

Call the rational systenfinitely algebraically observ- z=r(s(x)) = | : € (Agps.m ()™

able if there exists an integetn € Z; such that T (s(2) ’

Qobs,m (%) = R(x). "

Call the least-integern € Z such thatQ.s,m(X) =  From this follows thats~! = r € R[Sy,...,S,,] and thus

R(z), the rational observability indexof the rational that the inverses—! of s exists and that it has polynomial

system, denote it by:, € Z,, and letn, = m, xm, components.

(with disregard of renumbering). = If an inverse function- in the indicated set exists then
(b) Consider a polynomial system. Define correspondingly; = 7;(s(z)) € Aops,m(X) for all i € Z,. ThusR[z] C

for this polynomial system the-th observation algebra A4, ., (X) € R[z] where the last inclusion relation is by

of polynomial functionsfinite algebraic observability definition of A, .., (X). Hence equality holds. O

and thepolynomial observability index

The concept of a rational observability index and its poly-

nomial analogue are analogous to those for linear systems,rem V.3 Existence of an output-based realizatiGon-
see [27, p. 356-357]. Less useful for observers because Qfie; 4 rational or a polynomial system. If the system is
.rob.ustness reasons seems the concept of rational Kronechﬁ[tew algebraically observable then there exists an attp
indices, see [28] for those of linear systems. Each SULseq realization which is rational or polynomial respec-
index for a component of the output function is defined aﬁvely ThUS, Zor = (Xor, Y: fors hors Zoro), @S specified

. 1 or ory yJOT) or» or, L]

the least integer for which the rational observation field of, Procedure[ IV, is a rational or a polynomial system
that component stops increasing forever. The value of the?@spectively ’

indices depends on the ordering of the output components.

It follows from [1, Prop. 5.7] that if a rational system is Proof. The case of a rational system is considered, the case
algebraically observable then its observation field isdlgit of a polynomial system is similar. The definition of the
generated hence the rational system is finitely algebitgicalstate vectorz as a function of the outpuy and several
observable. In the case of a polynomial system it is naif its derivatives makes clear that the realization is outpu
known whether algebraic observability implies that thifypo based. Note that finite algebraic observability of the syste
nomial system is finitely algebraically observable. Theref implies that there exists a finite number, € Z, such that
the finite algebraic observability will be assumed. Qobs,m, (X) = R(x). From Propositiof V]2 then follows that



the functions : R* — R™ has an inverse functioa™! The approach to investigate the global asymptotic stgbilit

which is also rational. From the formulas of Procedure]lV.df the observer includes the steps: (1) Investigate lo@al st

Step 3, then follows that the functioOs,., k) are rational. bility at zero error. (2) Approximate the domain of attracti

In more detail, the inverse functiorr! is a rational function, by analysis and simulation. See [31] for a procedure to
Jor(2) = (9s(z)/0x) f (x)|=s-1(2), and the class of rational approximate the domain of attraction by rational Lyapunov
functions is closed with respect to substitution, thiys is  functions.

a rational function. Hence the output-based realizatioa is

rational system. ] Definition VI.1 Define theperformance systerof the ob-
server as the control system,
The existence of a polynomial inverse of a polynomial map z(t) xo
has been characterized for which purpose we quote the ze(t) = zo(t) ) ze(0) = To,0
following results f_rom [29]. o dr(t) o f)
Let & be an arbitrary field of characteristic zero (note that —— = Je(we(t)) = Folzo(), C2(t)) )
for our problemk = R meets this condition). A necessary N - N ) 07 o ’t 3 .
condition for a polynomial mapF' € k[Xi,...,X,] to ey(t) = y(t) = ho(wo(t)) = h(x(t)) — ho(zo(t))
be invertible is thatF satisfies theJacobi condition that = he(ze(t)).

det(Jr) € k*, wherek* denotes the units df. In general,
the Jacobi condition is not sufficient. In case= 1, one can
prove the sufficiency. Fon > 2 the problem whethefF' €
R[X4,...,X,] satisfying the Jacobi condition is invertible

is known as theJacobi conjecture Problem VI.2 Can an observer be synthesized such that for

By adding additional assumptions on polynomial mapgny initial conditionz, (0) one has that,
satisfying the Jacobi condition, one can obtain sufficient

conditions of the following form.

Note that the dimensions of the vectarsand z, are in
general different hence it is mathematically not possible t
subtract these vectors.

. PO
tlggoey(t) 07

Equivalently, is the observable part of the performance
Theorem V.4 [29, Th. 2.2.16, p. 53]. LetF € system such that the outpaj is asymptotically stable for

R[Xy,..., X,] be such thatdet(Jrp) € k*. If kK[X] is all initial conditions of the performance system?

integral overk[F] or if the field extension of(F) C k(X) . )

is Galois, thenF is invertible. The problem above is briefly analyzed for linear systems.
For polynomial maps” € R[X, ..., X,] with k being an Definition V1.3 Performance system of a linear observer.

arbitrary field, A. van den Essen derived a criterion based on dxz(t)
the theory of Grobner bases which not only decides whether ™ g;
F is invertible but also provides a procedure to calculate the dz, (¢)
inverse if it exists. For the respective theorem (more ganer g

= Ax(t), x(0) =z, y(t) = Cx(t).

= Az,(t) + K[y(t) — Czo(t)], 2o(0) = x0,0.

than quoted here), see [29, Theorem 3.2.1, p.64] or [30]. . 1) = ( o) wot) )T
Note that forn = 1 the invertible polynomiald” € k[X] ¢ ’
: B dre(t) A 0
are only the affine ones, for examplgxz) = ax + b. For = KO A-KC Te(t),
n = 2 every invertible polynomiald : k2 — k2 is tame, dt - -

meaning that it can be written as a finite composition of t) = y(t) = Cao(t),

ey(
elementary mapgX; +a, X2) and (X, X2 +b). Forn =3 Tt (

T
o ) : _ t) = (2(t) x(t)—xo(t) ) = Lewe(t),
it is an open problem to determine whether every mvertlbledxet(t) A 0
polynomial F' € k[X1,...,X,] is tame. The general belief at = ( 0 A—KC ) zer(t),
is that they are not.
| ! ey(t) = y(t) —Cuo(t)=(0 C )uelt).

Vl. PERFORMANCE ISSUES As is well known in control theory, if the tupled, C)

The performance objectives of observer synthesis are: () an observable pair then there exists a gain mathx
asymptotic stability of the difference of the output of thesuch that the observable part of the performance system is
system and the output of the observer; and (2) a goaglobally asymptotically stable. Note the nonobservapitit
transient response in reaction to realistic initial coiodié the performance system with respeciid
of the observer. In control theory it is known that it is best
for the functioning of the observer if the convergence ofxample V1.4 This is a continuation of Example TVIL1. If
the predicted output of the observer to the observed outpkit < —a22 and if k2 < 0 then the observable part of the
is slightly faster than the dynamics of the system. It ierformance system is locally stable at- z, = 0. The
well known from other subareas of control theory that fogystem itself is such that its linearized systemrat 0 has
the analysis of the performance of an observer one has @€ eigenvalue at zero. The global asymptotic stabilityois n
consider the performance system with as stater,,). yet established.



VIl. EXAMPLES

Example VII.1 A polynomial system with a polynomial
observer of higher state-space dimension than the system
There follows an example of an observer for a system in

Obor3(T 2
Bborsl®) _ 34,0y, 4 M2
011 2,

+2fi’3 - 2011f1+
—(2¢14 + c12(a13 + a14))

kos(Z) =

which the State-Space dimension of the observer is Strict'Vhe observer is then described by the System representation

larger than that of the system.

Consider the polynomial system and derive its observer M

according to the steps,

dat) _ ( lal)
dt —a2122(t) +aze )’
x(0) = xo,
y(t) = x(t)=Cx(t)=(1 0)=z(),
filz) = 2anz1 —ai2(z2 — a13)(z2 — a14),
a2, @13, G4, 21, a2 € (0,00),
a1z < 222 o a14, a13 + aq 7 2222
a21 a1
si(z) = h(z) =Cx =1,
oh
s2(2) = ai;x)f (z) = fi(2),
jl = 81(56):561, .Ilzj?l,
o = s2(x) =2a2121 — ar2(z2 — a13)(z2 — a1a)

= 2a91%1 — a12(x2 — a13) (22 — a14).

o = Aoz,(t) + bo(zo(t)) +
+lko(wo(t)) + K][y(t) — Cozo(t)]
Za(t)
= 573@) +
bo 3
kl
k3 + ko 3( f))
yo(t) = Coxo(t s 1 0 O

Example VII.2 Rational system — rational observe€on-
sider the observable rational system, Qg # 0.

—a1121(t) a1z (t
d‘r(t) _ ( 1+(11112I11§(t) + 1+113142:E(2()t) )
- —a2122(t ’
dt 1+ll2212$22(t) + a23
y(t) = Cat)=(1 0)x(t)=z(t).

The conclusion is that based on the state-space transfornéenstruct an output-based realization according to Proeed
tion s = (s1, s5) there does not exist an unique solution fol\.1l

the inverse function, in particular not a solution for given

11, o of the equation

a12(xe — a13)(x2 — a14) = —&2 + 2a21 1.

Therefore the construction of the state-space transféomat

is increased by another derivation.

0sa(x
s3(z) = 8:(0 )f(ff) = 1121 + C12%2 + C14,
e = dag,
C12 = a12a21(a13 + CL14) — 2a12a22,
Clg = a12a22(a13 + CL14) — 2a12021013014.
i‘3 = 83( )
1
vy = — g4 —gy—
C12 C12 C12
. R C11 . 1 c
(z1, ®2) = 571(17) = (&1, — i$1 + —3 — ﬁ)v
C12 C12 C12
dz(t . . .
—d(t ) = Ao Z(t) + bor(2(2)), Z(t), zo(t) € R3.

Note thats~! is a linear map. Then,

s4(x) = 2ag1c1171 — azic1222 +
—ay2c11 (T2 — a13) (T2 — aia) + azciz,
bOT,3(i') = 84(x)|m:s*1(55)
= 3azic11®1 — a21%3 + ag1c14 + azcia +
_aracn
o

x[Z3 — c11d1 — (c1a + a1zci2)] X

X[Z3 — c1181 — (c14 + a14ci12)],

dilfft) = Aor®(t) + bor (2(1))

0 1 . 0
= ( 0 0 )““* ( bora(2(t)) )

y(t) = C(t),

a3 a11a13T2
bor = 11 -
’2(1.) (1 + a12x1)2 (1 + a12:171)2(1 + CL14$2) +
a13021T2 13023

B (1 + CL14£C2)2(1 + CLQQZCQ)
The rational observer follows.

dz,(t)
dt

(1 + CL14£C2)2 )

= Azo(t) + bo(xo(t)) +

+[ko($o(t)) + K] [y(t) -
Ao = Aor7

bo(xo) = bor(xo) = ( gom(%) ) 7

abor,?(xo)
817071

Cz, (t)]u

ko,?(xo) =

aty _ 3anainto
(14 a12201)% (1 + a12w01)*
2a12 a11013%0,2
(14 a12201)2 (1 + a14%0.2)
_ (13014%0,2
(1 + a140.2)%(1 + azewo2)

Example VII.3 Consider a rational system which is a model
for either a compartmental system with two compartments
or a biochemical reaction system with two chemical species.



The output is only of the second compartment or specieq4]
The system is actually a family of rational systems.

T~ @) - @ O.50), B0 =ne. @
dl‘g(t) - .
g = r2(@(t),22(t) - rs(22(t)), 22(0) = 220, [6]
y(t) = Cux(t) =x2(t), m1, 72, 73 € Qx.

Assume that(0,22) = 0 andrs(0) = 0 for all z3 € [0, c0) [7]

and thatzg = (z0,1,%0,2) € Ri. From those assumptions
follows that the positive orthaft? = [0, c0)? is an invariant
set to be denoted as the state Zet= R?. A special case

. (8]
of the above is with

( )_ ( )_ agT1x2 [
™(T1) = ay, m2\T1,x2) = 1+a3x%7 [10]
r3(x2) = asx2, ai,a2,as, a4 € (0,00). [11]
The state-space transformation and its inverse are then 2]
':El = 81(17) = féix)(; Cx = o, [13]
By = sa(2) = —5 = = fa(2) = a1, 22) — 73(2),
vy = 1. o= (22 — a45€1)A(1 + a3i‘%). (14]
a1 [15]
The output-based realization is then, (16]
dz(t) #a(t) ) N X
_— = ~ 5 t - C t 5
i = (i ) w0 =c0 an
bo2(8) = Ppoa(wo)/lazton(1+ azx) )], (18]
Po2(wo) = —2a2173,1 +ajze (1 + a3$§,1)2 + [19]
+(1+ a3x§71)[a2x071(a1 —204%01) +
+2(x0,2 + G4T0,1) + [20]
—2a1x§,1(:c072 + a4x071)2]. 21]
The observer is then,
[22]
dIO(t) _ xo,Q(t) +
dt B bO(CCO(t))
+ko(zo(t)) + Kl (y(t) — Coxo(t)). [23]
VIIl. CONCLUDING REMARKS [24]

The main contribution of the paper is an observer synthesis
procedure for rational observers of rational systems. [25]
Further research into the subject of this paper includes:
Synthesis of observers for rational systems with inputst(fir 26

for systems affine in the input). The role of universal inputs
has to be explored. A stability analysis of rational obsesve (27
Observers for Nash systems [3] have been constructed g
are not discussed in this paper due to space limitations.
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