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Abstract

We apply an operator-theoretic viewpoint to a class of non-smooth dynamical systems that are ex-
posed to event-triggered state resets. The considered benchmark problem is that of a pendulum which
receives a downward kick under certain fixed angles. The pendulum is modeled as a hybrid automaton
and is analyzed from both a geometric perspective and the formalism carried out by Koopman operator
theory. A connection is drawn between these two interpretations of a dynamical system by means of
establishing a link between the spectral properties of the Koopman operator and the geometric properties
in the state-space.

1 Introduction

A considerable number of dynamical systems in engineering practice are essentially hybrid in nature. These
systems typically model non-smooth phenomena such as impact, collision, and switching between several
discrete modes. Under the hybrid automaton framework, these discontinuities are often expressed in terms
of guard conditions, state resets, and switching between several “system modes”. The imposition of such
conditions result in so-called piecewise-smooth dynamical systems of which the orbits are characterized by
smooth evolutions, interrupted by discrete jumps.

With the possibility of discontinuous orbits, it may not always be convenient to characterize the state-
space geometry of a hybrid system in terms of its trajectories. A more general viewpoint to take is to consider
the evolution of ensembles of initial conditions, or sets being propagated under the flow. In this paper, we
embrace this philosophy by viewing a special class of hybrid systems from an operator-theoretic point of view.
In this approach, instead of focusing on trajectories, the evolution of functions defined on the state-space is
considered. Our analysis is based-on the machinery of Koopman operator theory and looks at the so-called
dynamics of observables. A remarkable feature to this approach is that the dynamics can be interpreted as
linear in the space of observables, irrespective of the underlying properties of the dynamical system in the
state-space. The Koopman (semi-)group is a one-parameter family of infinite-dimensional linear operators,
and this allows one to exploit the tools of spectral operator theory. Analysis of nonlinear flow fields through
the spectral properties of the Koopman operator has already been carried out under various settings [1].
From an applied context, these approaches have been particularly useful in describing dynamically relevant
modes in fluid flows [10,14], coherency in power systems [15], and energy efficiency in buildings [2].

The purpose of this paper is to illustrate how Koopman analysis can also be applied to certain classes of
hybrid systems which consist of a single discrete mode, but are subjected to guard conditions and state resets.
The emphasis will be on a specific benchmark pendulum system that is subjected to downward “kicks” under
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fixed angles. For this particular example, we show how certain important geometric structures, pertinent
to the underlying flow field, are recovered from the spectral properties of the operator. Overall, two cases
are considered: (i) the undamped case where the continuous part of the system is Hamiltonian, and (ii) a
damped case where the pendulum is exposed to viscous damping.

The paper is organized as follows. Section 2 reviews the essentials of Koopman operator theory and
introduces the specifics on the hybrid pendulum. Section 3 analyzes the undamped case from a geometric
perspective. Section 4 then views the undamped system from the Koopman operator perspective. In sec-
tions 5 and 6, the same are done respectively for the damped case. A reflection on the obtained results is
covered in the conclusions. Proofs of certain theorems are included in the appendix.

2 Preliminaries: Koopman operator theory and the “hybrid pen-
dulum”

In section 2.1 we review certain basics of Koopman operator theory [1, 9]. The details on the “hybrid
pendulum” are covered in section 2.2.

2.1 Koopman operator theory

Let X ⊂ RN denote the state-space and St : X 7→ X a flow map satisfying the (semi-)group properties:
St ◦ Ss(x) = St+s(x), S0(x) = x. Now consider an observable g : X 7→ C, for some fixed t ∈ R, the
Koopman operator is defined by, [

U tg
]

(x) := g ◦ St(x) (1)

(1) permits an alternative representation of a dynamical system in which one looks at the dynamics of
observables, i.e. the original system expressed by the tuple (X,St, t) can be alternatively represented by
(G,U t, t), where G denotes the space of observables. A remarkable aspect to this representation (G,U t, t)
is that U t is always a linear operator, irrespective of the original properties in the state-space. This linear
description of a nonlinear, and possibly, non-smooth system is obtained through “lifting” the dynamics on
the state-space to a higher, infinite-dimensional space of functions.

Koopman eigenfunctions/-distributions

The linearity of U t allows one to exploit the machinery from spectral operator theory. In particular we may
define eigenfunctions for these operators. A nonzero function φλ ∈ G is called a Koopman eigenfunction if it
satisfies, [

U tφλ
]

(x) = eλtφλ(x) (2)

for some eigenvalue λ ∈ C. We remark that, depending on what norm and measure is used on X, the
expression φλ 6= 0 must be interpreted in an almost everywhere sense, e.g. for square-integrable functions
with respect to measure µ, we have the condition: ‖φλ‖2,µ 6= 0, where ‖v‖2,µ := (

∫
X
|v(x)|2dµ)

1
2 .

Given the infinite-dimensional nature of the operator, U t may also contain continuous spectrum. In
that case, one can extend the notion of eigenfunctions in an appropriate weak sense using the concept of
distributions. These generalized objects, referred to as eigendistributions, satisfy the relation:∫

X

[
U tφλ

]
(x)w(x)dµ = eλt

∫
X

φλ(x)w(x)dµ (3)

where w(x) is some arbitrary test function on X. Indeed, it follows that all eigenfunctions are eigendistri-
butions, but the converse does not hold true.

Eigenfunctions/-distributions are preserved under conjugacy. If St : X 7→ X, Rt : Y 7→ Y are two
topologically conjugate dynamical systems under the homeomorphism h : X 7→ Y , i.e. h◦St(x) = Rt◦h(x),
and if φλ is an eigenfunction/eigendistribution of U tR, then so should φλ ◦h be an eigenfunction/-distribution
of U tS [1].

Koopman eigenfunctions are directly related to the geometric state-space description of a dynamical
system in the following sense. Let:

Ψc
φλ

:= {x ∈ X : φλ(x) = c}

2



−θ∗ θ∗

θ, ω

ω −∆ωω + ∆ω

1 2ẋ = f(x)(θ = −θ∗) ∧ (ω < 0)

x := (−θ∗, ω + ∆ω) (θ = θ∗) ∧ (ω > 0)

x := (θ∗, ω −∆ω)

θ

ω

θ = θ∗

θ = −θ∗

Figure 1: The hybrid pendulum: (left) upon passing the angle ±θ∗ from below the pendulum experiences a
change in angular velocity by ∆ω, (center) the corresponding hybrid automaton representation, (right) the
state-space of the system.

denote a specific level-set of an eigenfunction. Then the mapping of the set Ψc
φλ

forward under the flow
yields the relation:

St
(
Ψc
φλ

)
= Ψ

c exp(λt)
φλ

(4)

The interpretation of (4) is that the level-sets of φλ characterize how specific ensembles of initial conditions
are propogated under the flow. It is exactly this specific property which allow us to analyze the geometric
properties of the state-space from an operator theoretic context.

Projection operators

Given an observable g, one may obtain the projection of this observable onto the fixed space (i.e. eigenspace
at eigenvalue λ = 0)through evaluating the infinite time averages of observable-traces:

g∗(x) = lim
t→∞

1

t

∫ t

0

[
U tg

]
(x)dt (5)

By Birkhoff’s ergodic theorem [12], the integral (5) is known to converge a.e. for integrable functions with
respect to the invariant measure of the system. Through adding a weighting term, one may obtain also
projections of g onto eigenspaces other than zero. In general, we define a projection operator:

[
Pλg

]
(x) = lim

t→∞

1

t

∫ t

0

e−λτ [Uτg] (x)dτ (6)

where the right-hand side of (6) is generally known as the Laplace average of g [1]. One can verify through
substitution that Pλg is indeed an eigenfunction of Koopman at eigenvalue λ, provided the improper integral
converges.

2.2 The hybrid pendulum

Consider a mathematical pendulum with length l and mass m. In the absence of damping or external forcing,
the equations of motion for this system are formed by defining x := (θ, ω) ∈ S1 × R =: X and f : X 7→ R2

such that:

ẋ = f(x) =

[
ω

−(g/l) sin θ

]
.

Now suppose that the pendulum experiences an instantaneous backwards “kick” when passing through the
given angles ±θ∗. This kick is modeled by an instantaneous change in angular velocity ∆ω > 0. In the
hybrid automaton notation, the kick is included in the model as a reset map R : X 7→ X defined by,

R(θ, ω) =

{
(−θ∗, ω + ∆ω) if (θ = −θ∗) ∧ (ω < 0)

(θ∗, ω −∆ω) if (θ = θ∗) ∧ (ω > 0)
,

where, for ease of notation, we have incorporated the guard conditions as well. Note that the reset only occurs
upon passing through ±θ∗ from below, so that the kick is always directed towards the stable equilibrium point

3



of the pendulum. We also remark that according to this formulation, no reset occurs when the pendulum
only grazes the “kicking surfaces” at ±θ∗. The situation is illustrated in Fig. 1, where we also show the
corresponding hybrid automaton representation and the state-space.

Normalized equations

To simplify our analysis, it is convenient to normalize the state x by dividing the angular velocity ω by the
kick strength ∆ω, i.e. [

θ̇
ṗ

]
=

[
µ1p

−
(
µ2

2/µ1

)
sin θ

]
. (7)

and

R(θ, p) =

{
(−θ∗, p+ 1) if (θ = −θ∗) ∧ (p < 0)

(θ∗, p− 1) if (θ = θ∗) ∨ (p > 0)
, (8)

where p = ω/∆ω denotes the normalized momentum. The equations (7), (8), are parametrized in terms
of µ1 := ∆ω > 0 (the kick strength) and µ2 := ωn :=

√
g/l > 0 (the natural frequency of the linearized

pendulum). Note that the continuous part of the (undamped) hybrid pendulum is Hamiltonian. One can
verify that the function:

H(θ, p) :=
1

2

(
µ1

µ2
p

)2

+ 1− cos θ (9)

constitute an invariant for the flow of (7). This particularly implies that, in between state resets, the
trajectories of the pendulum are confined to level sets of (9).

The damped case

We will also look into the effects of weak viscous damping on the system. The continuous part of the hybrid
system in that case is replaced by [

θ̇
ṗ

]
=

[
µ1p

−
(
µ2

2/µ1

)
sin θ − kp

]
(10)

where k > 0 is the viscous damping coefficient.

3 The undamped hybrid pendulum: classical geometric analysis

In this section, the state-space of the undamped hybrid pendulum is described from a geometric perspective.

3.1 The Poincaré map

The trajectories of the freely oscillating pendulum are confined to the level sets of (9). Through this
observation, it is clear that for initial conditions belonging to the set

A1 := {(θ, p) ∈ X : H(θ, p) < H(θ∗, 0)} (11)

the behavior of the hybrid pendulum is exactly identical to that of the freely oscillating pendulum.
The more distinctive behavior can be found only in the region: H(θ, p) ≥ H(θ∗, 0). In this part of the

state-space, the pendulum gets “kicked” at least once in its orbit for almost any initial condition. The only
initial conditions that never get kicked here are those that lie exactly on the homoclinic orbit of the unstable
fixed point, and additionally satisfy θ > θ∗, p > 0 or θ < −θ∗, p < 0.

The dynamics of the kicked region can be fully understood from a discrete map defined on the kicking
surfaces. Given that the orbits between two consecutive impacts are uniquely determined by the momentum
at ±θ∗, a map can be defined to describe the (normalized) momentum p

∣∣
θ=±θ∗ of the pendulum right before

the next impact. To do this thoroughly, we first describe those points on the kicking surfaces that directly
get mapped into the homoclinic orbit. Let:

pcr :=
µ2

µ1

√
2 + 2 cos θ∗ (12)
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denote the critical momentum required to be on the homoclinic orbit and assign the variable γ to be the
state of the pendulum at the unstable fixed point. The Poincaré map T : {R ∪ γ} 7→ {R ∪ γ} is defined by

T (p) =



p+ 1 p < −(pcr + 1)

|p+ 1| −(pcr + 1) < p ≤ 0

0 p = 0

−|p− 1| 0 < p < pcr + 1

p− 1 pcr + 1 < p

γ p = γ or p = ±(pcr + 1)

(13)

3.2 Asymptotic dynamics of the hybrid pendulum

To fully describe the asymptotic dynamics of the pendulum in the region: H(θ, p) ≥ H(θ∗, 0), we first state
the following result about the map (13).

Lemma 1. The map T : {R ∪ γ} 7→ {R ∪ γ} defined by (13) has the following asymptotic properties:

(i) If p ∈ D := {p ∈ R : p = γ ∧ p = ±(pcr + k), k ∈ N}, then there exists M > 0, such that:

Tn(p) = γ, ∀n > M

(ii) If p /∈ D, then there exists a M > 0, such that:

Tn(p) ∈ [−1, 1] , ∀n > M

Proof. (i) can be established by computing the pre-images T−k({γ}) for k ∈ N. To show that (ii) is true,
observe at first that T ([−1, 1]) = (−1, 1), which shows that [−1, 1] is a positively invariant set. Now consider
any p /∈ D with |p| > 1, then |T (p)| = |p| − 1. Using induction, we may show that:

|Tn(p)| = |p| − n, |p| > n

from where it follows that Tn(p) enters the interval [−1, 1] in a finite number of iterations.

Lemma 1 states that the interval [−1, 1] is an attracting set for (13). Furthermore, it states that the
trajectories enter the interval [−1, 1] in a finite number of iterations. The interior of the attracting set is
composed of:

(i) a fixed point at p = 0.

(ii) an uncountable family of period-2 cycles of the form:

{p1, p1 − 1}, p1 ∈ (0, 1) (14)

These results on the map (13) are related to the actual hybrid system in the following way. The interval
[−1, 1] from Lemma 1 corresponds to the set

A2 := {(θ, p) ∈ X : H− ≤ H(θ, p) ≤ H+, |θ| ≤ θ∗} (15)

where:
H− := H (θ∗, 0) , H+ := H (θ∗, 1) . (16)

This set is foliated by an uncountable family of limit cycles. In correspondence with the period-2 cycles of
the map (13), the limit cycles can as well be parametrized by {p1, p1− 1}, p1 ∈ (0, 1). We have the following
relationship between the original coordinates and the limit cycle in which the system is on:

p1(θ, p) =

{
µ2

µ1

√
2(H(θ, p)− 1 + cos θ∗) p ≥ 0

1− µ2

µ1

√
2(H(θ, p)− 1 + cos θ∗) p < 0

(17)

where (θ, p) ∈ A2. In summary, we have the following result.
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Figure 2: Basin of attraction for the limit cycle with p1 = 0.7.

Theorem 1. The trajectories of the hybrid pendulum, starting from almost everywhere in the region’:
H(θ, p) ≥ H(θ∗, 0), enter into a discontinuous periodic orbit in finite time.

Proof. Trajectories in the interior of the set (15) are already in a discontinuous periodic orbit. From lemma
1 it follows that almost all other trajectories eventually enter one of these periodic orbits. A measure zero
set of trajectories get kicked into the homoclinic orbit, hence the statement almost everywhere.

3.3 Basin of attraction

The basin of a specific limit cycle p1 can be found by repeatedly computing the pre-images of the map (13).
From this construction, we observe that the basin of every limit cycle is a measure zero set. Fig. 2 shows
the basin of the limit cycle at p1 = 0.7 for three different values of pcr.

3.4 Action-angle coordinates

If the pendulum is released at θ = −θ∗ with an initial momentum p1 ∈ (0, 1), then the time required to
reach a certain θ ∈ [−θ∗, θ∗] is determined by the elliptic integral:

Γ[θ, p1] =

∫ θ

−θ∗

1

µ2

[
2

(
1

2

(
µ1

µ2
p1

)2

− cos θ∗ + cos ξ

)]− 1
2

dξ

The function Γ[θ, p1] permits us to define action-angle coordinates for the set (15).
The period of a specific limit cycle {p1, p1 − 1} is given by the formula:

P [p1] = Γ[θ∗, p1] + Γ[θ∗, 1− p1] (18)

On every limit cycle {p1, p1 − 1}, we can assign a phase coordinate ψ ∈ [0, 2π) such that: ψ = 0 at
(θ, p) = (−θ∗, p1). This is done as follows: let o(p1) denote the orbit of a specific limit cycle, i.e.

o(p1) :=
{

(θ, p) ∈ X : St(−θ∗, p1) = (θ, p) for some t ≥ 0
}

6



Then, the phase on o(p1) can be defined as:

ψ =
1

P [p1]

{
Γ[θ, p1] p > 0

Γ[θ∗, p1] + Γ[θ∗ − θ, 1− p1] p < 0
(19)

where (θ, p) ∈ o(p1).
The formulas (19) together with (17) define action-angle coordinates for the interior of the set (15). That

is, under the coordinate transformation (I, ψ) = h(θ, p), where:

h1(θ, p) = p1(θ, p) (20a)

h2(θ, p) =

1

P [p1(θ, p)]

{
Γ[θ, p1(θ, p)] p > 0

Γ[θ∗, p1(θ, p)] + Γ[θ∗ − θ, 1− p1(θ, p)] p < 0
(20b)

the set A2 is mapped onto the set
Y := (0, 1)× S1 (21)

under which the flow is simply
Rt(I, ψ) = (I, (Ω[I]t+ ψ) mod 2π) (22)

where Ω[I] := 2π/P [I].
The kicked pendulum has an invariant measure whose support is restricted to the set A2. In fact, under

the bijection (20) the dynamics on the set A2 is conjugate to the Lebesgue measure-preserving system in
(22). Hence, if µY denotes the Lebesgue measure for the domain (21), then

µA2
= µY ◦ h (23)

is an invariant measure for the hybrid system on (15).

4 The undamped hybrid pendulum: Koopman analysis

In this section, the undamped hybrid pendulum is analyzed from the Koopman operator theory perspective.

4.1 Eigenspace of Koopman at λ = 0

As it was observed from (4), the level sets of Koopman eigenfunctions at λ = 0 partition the state-space
into invariant sets. In fact, the characterization of the eigenspace at λ = 0 is directly related to the ergodic
partition [7, 11].

To describe this partition for the hybrid pendulum, consider at first the dynamics on the invariant set
(15). From section 3, we know that this set is foliated by an uncountable family of limit cycles. Given this
property, one can verify that

φ0(θ, p) = δ(h1(θ, p)− I0), I0 ∈ (0, 1) (24)

with δ denoting the Dirac delta function, form a collection of eigendistributions at λ = 0, where h1 specifically
refers to (20a). In a certain sense, these distributions are the building blocks of all eigenfunctions at λ = 0.
That is, if c : (0, 1) 7→ C denotes any (Riemann) integrable function, then the convolution:

φ0(θ, p) =

∫ 1

0

c(I)δ(h1(θ, p)− I)dI ≡ c(h1(θ, p))

is an eigenfunction at λ = 0.
The definition of φ0 can be extended to outside of A2 if all initial conditions belonging to the basin of a

particular limit cycle {p1, p1 − 1} are assigned the value c(p1). Clearly, if c is a bijection, the level sets of φ0

separates the basins of every limit cycle.
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Figure 3: Projections of observables onto the eigenspace of Koopman at λ = 0. The boundaries of the set of
limit cycles (15) is demarcated in black, µ1 = 1 rad/s, µ2 = 1 rad/s, and θ∗ = π

3 rad. The top two figures
are the results obtained with the Hamiltonian function (9), whereas the bottom two are those obtained with
the signed Hamiltonian function (25). The figures on the right show a close up of the results into the region
[0,2] x [0,2].

.

A method to find eigenfunctions directly from the time-histories of observables involves computing their
infinite-time averages (5). These averages are projections of observables (6) onto the eigenspace at λ = 0,
and for observables that are integrable on the set A2, these averages are well-defined almost everywhere in
the kicked region (follows directly from theorem 1).

The top two figures in Fig. 3 depict a high-resolution contour plot of a projection P0g, when g is set
equal to the Hamiltonian function (9). In the figures, states that have the same color belong to the same
level set, and hence, fall under the same equivalence class of long-term dynamical behavior. Note that
for this particular eigenfunction, these equivalence classes are not the actual limit cycles themselves, since
trajectories that end up in the limit cycles:

{p1, p1 − 1} and {1− p1,−p1}, p1 ∈ (0, 1/2)

have exactly the same time-average.
To obtain more refined partition, one generally needs to consider the product partition of multiple

projections conjointly [8]. For the pendulum however, we may also determine the time-average of the
observable:

g(θ, p) = sign(p)H(θ, p) (25)

which gives the Hamiltonian a sign, depending on the direction in which the pendulum is moving. This
observable is capable of separating the limit cycles {p1, p1 − 1} and {1 − p1,−p1} from each other. The

8



bottom two figures of Fig 3 show contour plots of the projections obtained with this observable.

4.2 Spectral decomposition on the set of limit cycles

We have pointed out that the hybrid pendulum is measure-preserving on the set (15), and an invariant
measure is given by (23). A consequence of this property is that the Koopman operator is unitary in
L2(A2, µA2

) and observables belonging to this space of functions admit a spectral decomposition with purely
imaginary spectrum [3,13].

The derivation of the spectral decomposition is most conveniently obtained by first deriving the decompo-
sition for the conjugate system (22) and then applying the conjugacy property of section 2.1. The evolution
of a square-integrable function g(I, ψ) ∈ L2(Y, µY ) under the action of the Koopman operator is given by,[

U tg
]

(I, ψ) = g(I, ψ + Ω[I]t mod 2π).

By expanding the observables in a Fourier series we obtain:

[
U tg

]
(I, ψ) = U t

∑
j∈Z

gj(I)eijψ


=

∑
j∈Z

gj(I)eijΩ(I)teijψ

=

∫ 1

0

g0(I)δ(s− I)ds+∑
j∈Z,j 6=0

∫
R
eijρtgj(I)eijψδ(jΩ(I)− ρ)dρ

The spectral expansion can be written in the form:[
U tg

]
(I, ψ) = g∗(I) +

∫
R
eiρtdE(ρ)g(I, ψ) (26)

where the time average g∗ only has dependence on I and where the projection-valued measure dE(ρ) has
the explicit expression:

dE(ρ)g(I, ψ) =
∑

j∈Z,j 6=0

gj(I)eijψδ(jΩ(I)− ρ)dρ

Substitution of (20) into (26) will yield the spectral expansion in the original coordinates. Note that the
spectrum of the operator turns out to be continuous.

5 The damped hybrid pendulum: classical geometric analysis

In this section, the damped hybrid pendulum is studied from the geometric perspective.

5.1 Poincaré map for the damped system

The asymptotic properties of the hybrid pendulum under viscous damping can again be analyzed through
the study of some discrete map. Because of dissipation, all trajectories that start at H(θ, p) ≥ H(θ∗, 0)
must eventually enter the set (15). Given that all trajectories in A1 spiral into the stable fixed point of the
pendulum, the analysis of what happens in A2 is critical to determining the global properties of the system
overall.

The analysis is pursued by viewing the system in terms of its energy state H, which has a one-to-one
correspondence with the normalized momentum p if we exploit the inherent symmetry in the system. The
discrete map that characterizes the dynamics inside A2 is defined in reference to the value of the energy at
the condition (±θ∗, p), where 0 ≤ p ≤ 1. In the most general sense, the map takes the form:

H ′ = u (H) := f ◦ d(H) (27)

9



Here, u is a composition of two separate functions: d, which represents the energy dissipated due to damping
as the pendulum traverses from ±θ∗ to ∓θ∗, and f , which represents the energy change related to the kicking
of the pendulum at ±θ∗. By knowing the change in momentum that occurs after a kick, and given (9), one
can derive that:

f(H) = H −
(
µ1

µ2

)2

p(H) +
1

2

(
µ1

µ2

)2

(28)

where:
p(H) =

µ2

µ1

√
2(H + cos θ∗ − 1)

The dissipation function d, on the other hand, must be a monotonically increasing function and takes the
form d (H) = r (H)H with 0 < r (H) < 1 for all H > 0. Based on some numerical simulations (see figure 4),
we make a specific assumption that the dissipation function is linear:

d(H) = rH, 0 < r < 1

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

H

g(
H

)

 

 
k = 0.02 k = 0.04 k = 0.08 k = 0.16

Figure 4: The dissipation function d computed for different viscous damping coefficients. The kick angle θ∗

is set to π/3 rad, µ1 = 1 rad/s, and µ2 = 1 rad/s.

5.2 Main result

In the undamped case, the map (27) is defined on the domain [H−, H+] (see (16)) and has a neutrally stable
fixed point at Hfp,0 = H(θ∗, 1/2). Furthermore, it has an uncountable family of neutrally stable period-2
cycles , since f2 := f ◦f = Id. The introduction of damping restricts the domain of the map (27) to [H0, H+],
where H0 := H−/r. The range of (27) equals u([H0, H+]) = [H−, H+], hence a subset of initial conditions
will eventually get mapped outside the domain of u. The next theorem shows that this subset is, in fact,
the entire domain except for one specific point corresponding to the unstable fixed point of u.

Theorem 2. Consider the map (27) and assume that the dissipation function is linear. Furthermore, denote
r = 1− δ, with δ > 0 sufficiently small. Then:

(i) there exists a unique fixed point Hfp(δ) > Hfp,0 which is unstable.
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(ii) the map u := f ◦ d, defined by (27), has no period 2-cycles.

(iii) ∀H 6= Hfp(δ), ∃n > 0 s.t. un(H) /∈ [H0, H+]

Proof. For notational convenience, let us denote η := µ1

µ2
. To show that the fixed point Hfp moves to the

right and observe that it must belong to the graph of the implicit function:

s(H; δ) := δH − η2p((1− δ)H) +
1

2
η2 = 0

Since,

∂

∂δ
s(H; δ)

∣∣∣∣
δ=0,H=Hfp,0

= Hfp,0

(
1 +

1

p(Hfp,0)

)
= 3Hfp,0

> 0

the implicit function theorem guarantees that we may express Hfp = Hfp(δ), such that s(Hfp(δ); δ) = 0 for
a sufficiently small neighborhood around δ = 0. Furthermore,

Hfp(δ) = Hfp,0 + 3Hfp,0δ +O(|δ|2)

which shows that the fixed point moves to the right for δ > 0. The fixed point Hfp(δ), δ > 0 is unstable.
To show this, take note that u(H) = u(H; δ), and:

u′(H; δ) = (1− δ)
(

1− 1

p((1− δ)H)

)
Consider u′(Hfp(δ); δ), the fixed point is unstable if, and only if, |u′(Hfp(δ); δ)| > 1. Given that u′(Hfp(0); 0) =
−1, we need to show the following:

u′(Hfp(δ); δ) < u′(Hfp(0); 0) = −1

Since,

d

dδ
u′(Hfp(δ), δ)

∣∣∣∣
δ=0

=
8

η2
(cos θ∗ − 1)

< 0, if θ∗ 6= 0

this is indeed the case, which completes the proof for (i).
To prove (ii), consider u2(H) := u ◦ u(H), we will show that for a sufficiently small δ > 0,

d

dH
u2(H) = u′(u(H))u′(H) ≥ 1

Since u2(Hfp) = Hfp with d
dH u

2(Hfp) > 1, the above inequality would imply that u2(H) has no other fixed
points, which proves the non-existence of period-2 cycles. To show (??) holds true, observe at first that
u′(H) = u′(H; δ) and that u′(u(H)) = u′(u(H; δ); δ). Furthermore,

u′(H; δ) = u′(H; 0) +
∂

∂δ
u′(H; δ)

∣∣∣∣
δ=0

δ +O(|δ|2)

u′(u(H; δ); δ) =
1

u′(H; 0)
+

∂

∂δ
u′(u(H; δ); δ)

∣∣∣∣
δ=0

δ +O(|δ|2)

So that for δ > 0. sufficiently small, we have:

d

dH
u2(H) = 1 +

(
∂

∂δ
u′(H; δ)

∣∣∣∣
δ=0

δ

)(
1

u′(H; 0)

)
+

(
∂

∂δ
u′(u(H; δ); δ)

∣∣∣∣
δ=0

δ

)
u′(H; 0) +O(|δ|2)
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Hence, if it can be shown that:

k(H) :=
∂

∂δ
u′(H; δ)

∣∣∣∣
δ=0

· 1

u′(H; 0)
+

∂

∂δ
u′(u(H; δ); δ)

∣∣∣∣
δ=0

u′(H; 0) ≥ 0

then d
dH u

2(H) ≥ 1. And indeed,

∂

∂δ
u′(H; δ)

∣∣∣∣
δ=0

= −u′(H; 0)− ηH

(ηp(H))3

∂

∂δ
u′(u(H; δ); δ)

∣∣∣∣
δ=0

= − 1

u′(H; 0)
− ηu(H; 0)

(η(1− p(H)))3

and after some algebraic manipulations, we obtain:

k(H) = −2 +
1
2η

2p(H)(1− p(H)) + 1− cos θ∗

η2p(H)2(1− p(H))2

≥ −2 +
1

2

1

p(H)(1− p(H))

≥ −2 +
1

2
min

0<p<1

1

p(1− p)
= 0

which completes the proof for (ii).
The proof of (iii) follows directly from d

dH u
2(H) ≥ 1.

Corollary 1. For δ > 0 sufficiently small, the trajectories of the hybrid pendulum, starting from almost
everywhere, asymptotically reach the fixed at θ = 0.

6 The damped hybrid pendulum: Koopman analysis

In this section, the damped hybrid pendulum is analyzed from the Koopman operator theory perspective.

6.1 Eigenspace of Koopman at λ = 0

From corollary 1, it follows that almost all trajectories end up at the stable equilibrium of the pendulum
as time approaches infinity. This has specific implications to the eigenspace at λ = 0 if one restrict the
Koopman operator to those functions1 which are continuous at (θ, p) = (0, 0) The introduction of damping,
in that case, would severely simplify the eigenspace at λ = 0, given that the only permissible eigenfunctions
are now those which are constant almost everywhere in X.

6.2 Point spectrum of the operator

The addition of viscous damping turns the fixed point at θ = 0 into a spiral sink. In terms of the Koopman
operator, these changes give rise to point spectrum in the left-half complex plane. The point spectra are
products of the eigenvalues2 of the linearized pendulum:

ẏ = Ay, A =

[
0 1
−1 −k

]
(29)

where y =
[
θ p

]T
and whose eigenvalues are given by λ/λ̄ = −σ ± iη, with σ = 1

2k, η =
√

1− 1
4k

2.

1Note that for the damped hybrid pendulum, this space of functions is an invariant subspace of the operator.
2This follows from the property Ug1g2 = (Ug1) (Ug2), see [1] for details.
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−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4

p

̸
φ
λ
(−

θ
∗
,
p
)

(b) The phase ∠φλ(x)

Figure 5: The Koopman eigenfunction φλ(x) of theorem 3 shown for the regions (11) and (15). The figures
on the right display the eigenfunction at a cut: θ = −θ∗, p ∈ (−1, 1). The viscous damping coefficient is set
to k = 0.03.

Following the concepts discussed in [4,6], one can show that an eigenfunction at λ and λ̄ can be computed
from the observables:

g1(θ, p) :=
1√
2

∥∥∥∥[v v̄
]−1

[
θ
p

]∥∥∥∥
2

, (30)

g2(y) :=

[
1 0

] [
v v̄

]−1
[
θ
p

]
g1(θ, p)

(31)

where v, v̄ are the right eigenvectors of A.

Theorem 3. Consider the damped hybrid pendulum defined by (8), (10). Then,

φλ/λ̄(θ, p) = |φλ(p, θ)|e±i∠φλ(θ,p) (32)

with:

|φλ(θ, p)| := lim
t→∞

1

t

∫ t

0

eστ [Uτg1] (θ, p)dτ (33a)

e±i∠φλ(θ,p) := lim
t→∞

1

t

∫ t

0

e±iητ [Uτg2] (θ, p)dτ (33b)
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are Koopman eigenfunctions at eigenvalues λ/λ̄ = −σ ± iη.

Proof. The claim follows by showing that the integrals (33) converge (to a non-zero value) for all initial
conditions on the basin. If (θ, p) ∈ A1, the dynamics are identical to that of the conventional pendulum,
and therefore by Theorem 2.3 in [4], there exists a C1-diffeomorphism h : A1 7→ Y ⊂ R2 between the flows
St and Rt. For all other initial conditions on the basin, we infer from theorem 2 and corollary 1 that there
exists a T ∗ > 0 such that:

St(θ, p) ∈ A1, ∀t > T ∗

A change of variables may be used to prove convergence of the integrals in that case.

Figure 5 shows a contour plot of the eigenfunction in theorem 3. The functions |φλ(θ, p)| and ei∠φλ(θ,p)

have the following geometric interpretation. The level sets of |φλ(θ, p)| define the so-called isostables [6]
and describe the set of points that have the same asymptotic convergence toward the fixed point. We
see particularly that the isostables blow up in the region that corresponds to the unstable periodic orbit
(associated with the fixed point in theorem 2). The level sets of ei∠φλ(θ,p) (or equivalently those of ∠φλ((θ, p)),
on the other hand, describe the set of points that simultaneously move in phase around the fixed point.

A close examination of the contour plots suggests that merging of trajectories indeed occur for certain
initial conditions in (15). Additionally, the phase plots indicate that the kicking of the pendulum introduces
a high level of phase sensitivity [5] close to the unstable periodic orbit.

Overall, the eigenfunctions of theorem 3 can be used to describe a semi-conjugacy with a linear system.
Specifically, the modulus and phase form a map (θ, p) 7→ (|φλ(θ, p)|,∠φλ(θ, p)), such that under the new
coordinates we have the simplified dynamics:

d

dt
|φλ(θ, p)| = −σ|φλ(θ, p)|

d

dt
∠φλ(θ, p) = η

7 Conclusions

The spectral properties of the Koopman operator are closely related to the geometric properties of the
state-space, and in this paper, we have discussed in detail how these relationships exactly manifest for the
hybrid pendulum. The connections between level sets of Koopman eigenfunctions and the corresponding
flow field were useful for visualizing certain geometric properties of the state-space. In the undamped case,
the ergodic partition, obtained by projecting of observables onto the eigenspace at zero, yielded a method
to visualize the basins of attraction of the limit cycles. In the damped case, the eigenfunctions associated
with the spectra in the left-half complex-plane, provided a set of coordinates to establish a semi-conjugacy
with a linear system.
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