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Abstract—Physical Flow Networks are different infrastructure
networks that allow the flow of physical commodities through
edges between its constituent nodes. These include power grid,
natural gas transmission network, water pipelines etc. In such
networks, the flow on each edge is characterized by a function
of the nodal potentials on either side of the edge. Further the
net flow in and out of each node is conserved. Learning the
structure and state of physical networks is necessary for optimal
control as well as to quantify its privacy needs. We consider
radial flow networks and study the problem of learning the
operational network from a loopy graph of candidate edges
using statistics of nodal potentials. Based on the monotonic
properties of the flow functions, the key result in this paper shows
that if variance of the difference of nodal potentials is used to
weight candidate edges, the operational edges form the minimum
spanning tree in the loopy graph. Under realistic conditions on
the statistics of nodal injection (consumption or production),
we provide a greedy structure learning algorithm with quasi-
linear computational complexity in the number of candidate
edges in the network. Our learning framework is very general
due to two significant attributes. First it is independent of the
specific marginal distributions of nodal potentials and only uses
order properties in their second moments. Second, the learning
algorithm is agnostic to exact flow functions that relate edge
flows to corresponding potential differences and is applicable
for a broad class of networks with monotonic flow functions. We
demonstrate the efficacy of our work through realistic simulations
on diverse physical flow networks and discuss possible extensions
of our work to other regimes.

Index Terms—Physical flow networks, monotonic flow, positive
quadrant dependence, Spanning Tree, Graphical Models, Missing
data, Computational Complexity

I. INTRODUCTION

Physical flow networks [1] form strategic components of
modern society’s activities and help in the mass transport
of energy and daily utilities from far off-generation points
to end users through pipes/edges. Example of such networks
include the power grid (flow of electricity), gas transmission
network (delivery of gas for household usage and energy
production), water pipelines (for drinking and industrial water)
etc. Further, in the continuum domain (fluid approximation),
discrete particular network like vehicular traffic can also
be considered as a physical flow network. Over time, such
networks have grown in size and become vital for the smooth
functioning of most, if not all, activities - be it industry or
household related. Efficient control and fast monitoring of the
state of such flow networks is crucial for their real-time usage.
Further, the advancement in smart active devices (energy
meters, smart thermostats/heaters etc.) has led to efforts in

distributed but optimal control of flow networks. Fast topology
(set of inconnections in the flow network) and usage (steady
state of current vehicular traffic, statistics of power, gas, water
consumption etc.) estimation are necessary tools to ensure
the optimal application of decentralized schemes. Finally the
assimilation of online communication tools for monitoring
and signaling exchange in flow networks puts them at risk
of cyber adversaries and disruptive agents. Low overhead
algorithms to learn the topology and state of the network
can help quantify the cyber risk associated with compromised
set of measurements and help guide preventive measures and
placement of secure devices.

Due to the diversity of transported commodities, flow net-
works vary in the analytical flow models. However such flow
models often satisfy common laws. One, net flow at each
node is conserved, i.e., the total flow injected into each node
is equal to the sum outward flow on all edges connected to
that node. Second, the flow on each edge is guided by the
difference between potentials at the two nodes on either side
of the edge. Examples of such potential include voltages in
power networks, pressure in gas and water networks. Similarly,
one can think of virtual potentials in traffic network fluid
models. In most flow networks, the potential difference across
an edge is expressed as a monotonic function of the flow on
it, implying that the flow increases when the difference in
potentials increases and vice versa. Note that the monotonic
function may be non-linear. In this paper, we discuss topology
learning algorithms for radial flow networks with monotonic
flow functions. We focus specifically on radially structured
networks as they appear frequently in different contexts. For
example, electricity distribution grids [2] are known to operate
in a radial topology due to economic and operational reasons
[3]. Similarly, gas transmission networks [4], [5] and some
water networks [6] have a tree-like operational configuration.
However, the set of all permissible edges in the network
(operational and open) form an underlying loopy graph with
cycles. The radial operational configuration is achieved by
restricting the flow to a subset of the permissible edges in
the network as shown in Fig. 1. In certain networks like the
electricity distribution grid, this radial configuration can be
changed over a few hours by switching on and off edges
(transmission line breakers) and needs to be estimated for
control applications. Real-time meters on edges that relay
information on current flow and operational status are often
sparsely present. Even if the radial structure is static, third-
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party applications may be interested in learning the topol-
ogy using indirect (non-edge based) measurements as access
to network structure information is often restricted. Hence,
we analyze the problem of estimating the true operational
structure using only empirical nodal potential measurements.
Specifically, we show that second moments of nodal potentials
are sufficient to reconstruct the operational radial topology by
a greedy algorithm. Surprising, our learning scheme does not
depend on the exact flow function (linear or non-linear) for
the network as long as the flow function is monotonic. Thus,
it has wide applicability for a variety of networks as men-
tioned in detail in subsequent sections. Note that brute force
approaches to learn the topology is computationally prohibitive
due to the exponential number of radial topologies that can be
constructed from a dense loopy graph of permissible edges.

A. Prior Work

Past work in learning the structure of flow networks have
generally focussed on specific applications. In particular, nodal
measurement based structure estimation of power distribution
networks is an area of active research. Researchers have
used Markov random fields [7], signs in inverse covariance
matrix of voltages (potentials) [8], envelope comparison based
reconstruction methods [9]–[11] etc. Limited power flow mea-
surements have been used to estimate the topology using
maximum likelihood tests in [12]. In our prior work [3], [13],
[14], iterative greedy learning schemes based on a linear power
flow model have been used to determine the operating power
grid, even in the presence of missing/unobserved nodes.

We are not aware of prior work in learning the structure of
gas or water networks using information of nodal potentials.
However there exist several efforts on different optimization
(stochastic, robust etc.) and control (optimal, distributed etc.)
schemes for these networks that depend on information of
network structure and use nodal potentials as variables. These
include geometric programming based optimization schemes
specifically for radial gas [5] and water networks [6]. Recent
work [15] has demonstrated the tractability of several robust
optimization schemes in gas networks due to the monotonic
nature of the function that relates edge flows to nodal potential
differences. The learning algorithm in this paper shows that
the monotonicity of the flow function makes structure learning
using nodal potentials tractable as well. These algorithms can
in turn enable optimization problems to be tackled without the
prior knowledge of the underlying flow network as that can
be easily estimated.

Aside from the mentioned work in flow networks, the
Chow-Liu algorithm [16] uses a spanning tree algorithm for
learning tree-structured graphical models that is based on the
pairwise-factorization of the systems’s mutual information.
This is generalized in [17] to tree-structured graphical models
with hidden/latent variables through the use of information
distances as edge weights.

B. Contribution of This Work

Most of the previous work in learning structure of physical
flow networks are limited to specific cases, in particular power
grids. Further they assume linear flow function relating edge
flow and nodal potentials. The fundamental contribution of this
paper is to develop learning algorithms that are applicable for
physical flow networks with monotonic flow functions that can
be nonlinear and even distinct for each edge in the system. We
show that under independent nodal injections, the variance of
potential differences in such networks show provable trends
that can guide greedy algorithms for structure learning. Our
main algorithm uses variance in difference of nodal potentials
as edge weight and identifies the operational structure by
a spanning tree algorithm. In particular, the algorithm does
not need any information of the flow function involved or
nodal injection statistics. If the flow functions are known,
the algorithm can be used to estimate the statistics of nodal
injections. In essence, this work generalizes prior work [14]
on linear power flow models to general radial networks with
monotonic flow functions that are distinct and non-linear.
The worst-case computational complexity of our algorithm
is quasi-linear in the number of permissible edges in the
network, which is efficient to learn the structure of large
networks. We are not aware of any existing work that estimates
the structure of general flow networks with non-linear flow
functions. We demonstrate the performance of our algorithms
through experiments on two test networks, one pertaining to
power grid and the other to gas grid.

The rest of the manuscript is organized as follows. Section
II introduces nomenclature and relations between injections,
flows and potentials in physical flow networks through detailed
example networks. We present key properties and trends in
nodal potentials for flow networks in Section III. Design of
the spanning tree based learning algorithm is given in Section
IV. We also include a part on extensions of our work in Section
IV. Simulation results of our learning algorithm on different
example networks are presented in Section V. Finally, Section
VI contains conclusions, extensions and discussion of future
work.

II. FLOW MODELS FOR FLOW NETWORKS

We first provide the notation for the topology of the flow
network.

Radial Structure: Mathematically, the overall physical flow
network is represented as a loopy graph G= (V,E), where V

is the set of nodes and E is the set of all permissible edges.
Nodes are denoted by alphabets (a,b,...) and edge between two
nodes a, b by node pair (ab). The ‘radial’ structure composed
of operational edges is denoted by tree T with nodes VT and
operational edge set ET ⊂ E. We restrict our discussion to one
operational tree as shown in Fig. 1 though our results hold
for the case with multiple disjoint trees. Next, we list the flow
equations for the network.

Flow Models: The flow network is characterized by three
sets of variables: nodal injections, edge flows and nodal poten-
tials. At each node a, flow is conserved and Pa =∑b:(ab)∈ET fab



Fig. 1. A radial flow network with operational edges colored solid black.
Dotted grey lines represent non-operational edges. The red node denotes the
‘reference’ node.

where Pa is the injection at a and fab is the flow from a to b
on edge (ab). In vector form, we write

P = MT f (1)

Here M is the node to edge incidence matrix in tree T. Each
edge (ab) in the network is represented by a row equal to
(eT

a −eT
b ) in M. Here ea denotes the standard basis vector with

1 at the ath position. Note that 1T P = 1T PMT f = 0 where 1
is the vector of all ones. Thus the network is ‘lossless’ and
total flow is conserved. Next, the flow f(ab) on edge (ab) and
potentials πa and πb at nodes a and b satisfy

πa−πb = gab( fab) (2)

where gab is the monotonic flow function for edge (ab) and
can be distinct for each edge. Further, the flows and injections
are unchanged if all nodal potentials are increased/decreased
by the same amount. Following standard practice [5], [18], one
node’s potential can be considered as reference and potentials
are measures relative to that of the reference node. The
substation or node with largest production of power or gas
is generally considered as the reference node. We give the
following examples of lossless flow networks.

Power Distribution Grid: Distribution grid [2] is the final
tier of the power grid that extends from the distribution
substation to the end-users. Flows in the radial distribution
grid are composed of active and reactive power flows that
are related to nodal voltages according to Kirchoff’s laws.
During stable operations, the line flows can be expressed
by the following lossless approximation commonly termed as
LinDistFlow model [19]–[21]:

Pa = ∑
(ab)∈ET

b6=a

f p
ab,Qa = ∑

(ab)∈ET

b6=a

f q
ab (3)

v2
a− v2

b = 2
(
rab f p

ab + xab f q
ab

)
∀(ab) ∈ ET (4)

Here Pa (Qa) is the nodal active (reactive) power injection at
node a while va is the voltage magnitude. f p

ab ( f q
ab) is the active

(reactive) flow on edge (ab) and rab (xab) is the line resistance
(reactance). From Eq. (4), it is clear that squares of voltage
magnitudes (v2) represent potentials here and the flow function
that relates potentials to line flow is linear. Similar linear flow
functions in this area include linear coupled (LC) AC power

flow model [3], [22] with complex voltages as potentials and
resistive DC power flow models [18] with phase angles as
potentials.

Natural Gas Transmission Network: In gas grids, natural
gas is driven from generators to consumers (households, gas
turbines) through pipelines [4], [5]. During steady state, gas
flow is governed by the following relation:

Pa = ∑
(ab)∈ET

fab (5)

φ
2
a−φ

2
b = αab fab| fab|+βab∀(ab) ∈ ET (6)

Here Pa denotes the nodal injection. fab is the gas flux (flow
per unit length) from node a to b. φa is the pressure at node
a and its second power represents the potential. The quantity
βab is the pressure boost provided by the compressor on edge
(ab) and is constant over short time intervals where changes in
flow are driven by difference in nodal potentials. Further, αab
represents a constant factor that depends on friction, length
and diameter of the pipe (edge (ab)) as well as temperature,
universal gas constant and gas compressibility [5]. Note that
the flow function here is second-order but monotonic.

Radial Water Network: Water networks consists of pipes
where nodal ‘head pressures’ at their ends control the direction
and quantity of flow in them [6], [23]. The flow equations are
non-linear and similar to Eqs. (5),(6) for gas networks, but with
a different exponent ( > 1) for flow. We omit describing them
mathematically for brevity. Similarly, radial traffic networks
also satisfy conservation of flow at each node and can be
modelled in a similar way [24].

We use µg(X) and Ωg(X) to denote the mean and variance of
function g defined over random variable X . Similarly, Ωg(X)h(Y )
denotes the covariance (centered second moment) of functions
g and h defined over random variables X and Y respectively.
Here X and Y may be correlated. Thus

µg(X) = E[g(X)], Ωg(X) = E[(g(X)−µg(X))
2],

Ωg(X)h(Y ) = E[(g(X)−µg(X))(h(X)−µh(X))] (7)

In the next Section, we derive algebraic properties of second
moments of nodal potentials in radial networks using the
flow functions. These properties will help derive our learning
algorithms.

III. TRENDS IN SECOND MOMENT OF POTENTIALS IN
RADIAL NETWORKS

Let tree T denote the operational radial flow network with
edge set ET . Without a loss of generality, we assume that
all edges are directed towards the reference node. We denote
the unique path (sequence of edges) from any node a to the
reference node in tree T by PT

a . The set of all nodes b such that
path PT

b passes through node a is called the ‘descendant’ set
DT

a of node a. By definition, a∈DT
a . If b∈DT

a and (ba)∈ET),
we term a as parent and b as its child. See Fig. 2 for an
illustrative example.

Eqs. (1,2) represent the relation between injections (P),
flows ( f ) and potentials (π) in the network. As stated in the



previous section, the potential at the reference node is fixed,
while its injection is given by negative sum of all other nodal
injections (due to lossless property). The number of degrees
of freedom in the injection or potential vector is thus one less
than the number of nodes in the system. Following standard
practice, we analyze the ‘reduced’ network of only non-
reference nodes with nodal potentials measured relative to that
of the reference node. We remove the column corresponding
to the reference node from the incidence matrix M and omit
its injection and potential terms from the vectors P and π

respectively. Abusing notation, we use M, P and π to refer
to the reduced versions of their respective definitions in the
remaining part of this paper. Note that the reduced incidence
matrix M has full rank. As all edges are directed towards the
reference node, the inverse M−1 has the following specific
analytical structure [25](also see Fig. 2):

M−1(a,r) =

{
1 if edge r ∈ PT

a

0 if edge r 6∈ PT
a

(8)

c 

1 

b 

2 3 

a 

d 

𝐷𝑏
𝑇 

(a)

 nodes:     a     b     c     d    edges 

1 

2 

3 

-1     1     0     0  

0      -1    1     0 

0      -1    0     1 
M  = 

(b)

          edges:    1     2     3       nodes 

b 

c 

d 

        1     0     0  

        1     1     0 

    1     0     1 

M -1 = 

(c)
Fig. 2. (a) Radial network with four nodes (a,b,c,d) and three edges (1,2,3)
directed toward the reference node a. PT

c = {(cb),(ba)}. DT
b = {b,c,d}. b is

the parent and c,d are its children nodes. (b) Reduced incidence matrix M
derived by removing column corresponding to node a. (c) M−1 as per Eq. (8).

Using Eq. 1 with Eq. (8), the flow on edge (ab) with node
a and its parent b satisfies:

fab = ∑
c∈DT

a

Pc (9)

Observe the flow relation in Eq. (2). Let k1,k2, ..kr be the
sequence of r intermediate nodes between a node k and its
descendant a. Using a telescopic sum for nodal potentials, we
have

πk−πa = πk−πk1 +πk1 −πk2 + ...+πkr −πa = ∑
(cd)∈PT

a −PT
k

gcd( fcd)

where PT
a −PT

k consists of edges that lie in path from node
a to k. For any two nodes a and b, we can find some node
k on the path from a to b such that a,b are both descendants
of k and PT

b ∩PT
a = PT

k . Here k may not be distinct from
a or b. Note that PT

b −PT
a = PT

b −PT
k . Writing πa − πb =

(πk−πb)− (πk−πa) and using a telescopic sum, we get the
following result.

Lemma 1. For two nodes a and b in the flow network

πa−πb = ∑
(cd)∈PT

b −PT
a

gcd( fcd)− ∑
(cd)∈PT

a −PT
b

gcd( fcd) (10)

Before further analysis, we make the following assumption
on probability distributions of different nodal injections as
reported in literature [8], [13].

Assumption 1: Nodal injections at non-reference nodes in
the network are independent.

Over short time intervals, this assumption is valid as in-
jections are affected by changes/fluctuations in user behavior
that are independent. In a subsequent section, we discuss
extensions/scenarios where this assumption is relaxed. We now
give the following definition for dependence between random
variables that is well-studied in literature [26], [27].

Definition 1 [26], [27]: Two random variables are termed
Positive Quadrant Dependent (PQD) if their probability dis-
tributions satisfies: P(X ≤ x,Y ≤ y) ≥ P(X ≤ x)P(Y ≤ y) for
all x and y.

In other words, X and Y are PQD if larger (smaller) values
of X are associated probabilistically with larger (smaller) val-
ues of Y . PQD for probability distributions of random variables
can thus be thought as analogous to positive correlation for
their second moments. Note that two independent random
variables are PQD by definition. Further the following lemma
holds:

Lemma 2. If X and Y are two independent random variables,
then X and X +Y are PQD.

The proof is listed in the appendix. Next, we state the
following result without proof:

Lemma 3. [26, Theorem 2.4] Monotonic Functions of PQD
random variables are positively correlated.

Using this we deduce the following result.

Theorem 1. Let V1 ⊂ V2 be nonempty sets of nodes in T.
Let PV1 = ∑a∈V1 Pa and PV2 = ∑a∈V2 Pa. Then for any two
flow functions gi and g j, gi(PV1) and g j(PV2) are positively
correlated.

Proof: PV1 and PV2−PV1 are independent as V1 and V2−
V1 are disjoint sets and nodal injections are independent. Using
Lemma 2, PV1 and PV2 = PV1 +(PV2 −PV1) are PQD. The
result follows from Lemma 3 as flow functions are monotonic.

We now analyze trends in second moments of nodal po-
tentials using the preceding result. Denote the variance of
potential difference πa−πb as φab. Using Eq. (7) and Lemma
1, we write φab as follows:

φab = E[πa−πb− (µπa −µπb)]
2

= ∑
( jk),(st)∈PT

b −PT
a

Ωg jk( f jk)gst ( fst )+ ∑
( jk),(st)∈PT

a −PT
b

Ωg jk( f jk)gst ( fst )

−2∑
( jk)∈PT

b −PT
a ,(st)∈PT

a −PT
b

Ωg jk( f jk)gst ( fst ) (11)

If a is a descendant of b, PT
b ⊂ PT

a . Thus, PT
b −PT

a is empty
and Eq. (11) reduces to

φab = ∑
( jk),(st)∈PT

a −PT
b

Ωg jk( f jk)gst ( fst ) (12)

Note that using Eq. (9), we can express flows on the right
side of Eq. (12) and Eq. (11) in terms of the injections at
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(c)

Fig. 3. Permissible configurations for nodes a, b and c when the path from
a to c passes through b.

descendant nodes. The following theorem states a key trend
that is observed in φab for a radial flow network.

Theorem 2. Consider three nodes a 6= b 6= c in the radial flow
network such that the path from a to c passes through b. The
variance of potential differences φ satisfies φab < φac.

Proof: As the path from a to c passes through b, there
are three possible configurations for nodes a, b and c.

1) a is a descendant of node b, b is a descendant of c (see
Fig. 3(a)).

2) c is a descendant of node b, b is a descendant of a (see
Fig. 3(b)).

3) a and c are descendants of node b (see Fig. 3(c)).
To prove the theorem, we consider each case separately and
prove the inequality φab < φac.

Case 1: Note that PT
c ⊂ PT

b ⊂ PT
a . Thus,

PT
a −PT

b ⊂ PT
a −PT

c

. Using this in expression for φab and φac in Eq. (12) gives

φac−φab = ∑
( jk),(st)∈PT

b −PT
c

Ωg jk( f jk)gst ( fst )+2∑
( jk)∈PT

a −PT
b

(st)∈PT
b −P

T
c

Ωg jk( f jk)gst ( fst ) (13)

Using Eq. (9), f jk = ∑r∈DT
j

Pr and fst = ∑r∈DT
s

Pr. Note that

for any two edges (jk) and (st) in PT
a −PT

c , DT
j ⊂ DT

s or
DT

s ⊂DT
j depending on which node is topologically nearer to

a. If ( jk) ∈ PT
a −PT

b , (st) ∈ PT
b −PT

c then DT
s ⊂DT

j . In either
case, using Theorem 1, we have Ωg jk( f jk)gst ( fst ) > 0. Thus, all
terms in Eq. (13) are positive. Thus φab < φac.

Case 2: In this case, PT
a ⊂PT

b ⊂PT
c . Following the analysis

of Case 1, the expression of φac−φab here becomes

φac−φab = ∑
( jk),(st)∈PT

c −PT
b

Ωg jk( f jk)gst ( fst )+2∑
( jk)∈PT

c −PT
b

(st)∈PT
b −P

T
a

Ωg jk( f jk)gst ( fst )

Using the same logic as Case 1, all covariance terms are
positive valued and hence φab < φac.

Case 3: From Fig. 3(c) it is clear that the common edges
on paths from nodes a and c to the reference node are the
ones on the path from node b to the reference node. Thus

PT
a −PT

b =PT
a −PT

c and PT
c −PT

a =PT
c −PT

b . Further, for any
edge ( jk) in PT

a −PT
b and (st) in PT

c −PT
b , their respective

descendant sets DT
j and DT

s are disjoint. By Eq. (9), flows f jk
and fst are independent. The expression for φac using Eq. (11)
reduces to

φac = ∑
( jk),(st)∈PT

a −PT
b

Ωg jk( f jk)gst ( fst )+∑
( jk),(st)∈PT

c −PT
b

Ωg jk( f jk)gst ( fst ) = φab +φcb (14)

where Eq. (14) follows from Eq. (12). As φcb > 0 , φab < φac.
Thus, the statement holds as it is true for all configurations of
a,b and c in the network.

In the next section, we use Theorem 2 to design our
structure learning algorithm.

IV. STRUCTURE LEARNING WITH FULL OBSERVATION

The following theorem follows naturally from Theorem 2

Theorem 3. The set of operational edges in the radial flow
network T is given by the minimum spanning tree for the loopy
graph of all permissible edges where each permissible edge
(ab) is given weight φab = E[πa−πb− (µπa −µπb)]

2.

Proof: For each node a, the path to all nodes in the
operational tree passes through one of its nearest neighbors
(parent and children nodes). Using Theorem 2, weight φab
is, thus, minimum at the nearest neighbors in the tree. The
spanning tree constructed using the operational edges thus has
the minimum weight among all spanning trees formed from
the set of permissible edges.

Algorithm 1: The algorithm for constructing the operational
network is now straight forward. Using measurements for
nodal potentials, permissible edges (ab) are given weights
φab and a spanning tree is constructed greedily by picking
edges in the increasing order of their edge weights, while
avoiding cycles. This is known as Krushkal’s algorithm [28],
[29]. If no information on permissible edges is available, then
all potential node pairs are considered as permissible and the
spanning tree is constructed from the complete graph (every
node pair is connected). Note that no information on flow
function or nature of probability distribution for individual
nodal injections are necessary in Algorithm 1.

Algorithm 1 Structure Learning using Potential Measurements
Input: m potential measurements π for all nodes, set of all
permissible edges E (optional).
Output: Operational Edge set ET .

1: Compute φab = E[(πa−µπa)− (πb−µπb)]
2 for all permis-

sible edges
2: Find minimum weight spanning tree from E with φab as

edge weights.
3: ET ← spanning tree edges

Algorithm Complexity: Kruskal’s Algorithm learns the
minimum spanning tree in quasi-linear time in the number
of permissible edges in the system. The computational com-
plexity of learning the operational tree is O(|E| log |E|) where
E is the set of all permissible edges. If no information on



set E is available, then the complexity (worst-case) becomes
O(|V|2 log |V|) which is quasi-quadratic in |V|, the number of
nodes in the network.

We now discuss a few extensions of our algorithm to
generalized cases.

Extension to Multiple Trees: Our learning algorithm and
analysis can be immediately extended to networks with mul-
tiple operational trees. In each tree, one can denote one refer-
ence node and compute potentials relative to that. Potentials at
multiple trees will be uncorrelated and can be separated into
different groups before running Algorithm 1.

Learning Flow Functions/Statistics of Nodal Injection:
Note that in our algorithm, no information on flow functions
or nodal consumption statistics is necessary. However, if either
one of them is known (flow function or statistics of injection)
in addition to potential measurements, the other one can be
estimated. To obtain this, Algorithm 1 is first used to learn
the structure of the grid and then Eqs. (2), (9) can be used to
recursively estimate the flow function or the injection statistics
from the leaves up to the reference node.

Learning with Missing Nodes: This refers to the regime
where a section of the nodes are measured and potential mea-
surements for others are not available. To learn the structure in
the presence of missing nodes, we need additional information
pertaining to permissible flow functions and nodal injection
statistics. In that case, a modification of Algorithm 1 can be
proposed, where the available measurements of potentials are
used to generate a spanning tree without the missing nodes. At
the next level, Eqs. (11) and Eqs. (12) can be used recursively
to identify the presence of missing nodes. We plan to expand
on this aspect in a future work.

V. EXPERIMENTS

In this section, we discuss the performance of Algorithm 1
in learning the operational radial structure of flow networks
using nodal potential measurements as input. To demonstrate
the general nature of our work, we present simulation results
on two radial networks: a power distribution grid with linear
flow function (Fig. 4(a)), and a gas transmission grid with
quadratic flow function (Fig. 4(b)). The power distribution grid
[30], [31] consists of 30 nodes, while the gas grid [32] consists
of 25 nodes. One node is denoted as the reference node with
constant potential.

To conduct a simulation on either grid, we first generate
injection samples at each non-reference node using a uncorre-
lated multivariate Gaussian distribution. Then flow equations
(LinDisFlow Eqs. (3,4) for power grid and Eqs. (5,6) for gas
grid) are used to derive input nodal potential measurements
(squares of voltage magnitude for power grid and squares of
pressures for gas grid). Further, fictitious edges (numbering
30 for power grid and 25 for gas grid) are introduced into
the loopy set of permissible edges E along with the true
operational edges. This is done to observe the performance of
structure estimation in Algorithm 1. The potential measure-
ments and set E are sent as input to Algorithm 1.
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(b)Fig. 4. Layouts of the grids tested: (a) power distribution grid [30], [31] (b)
gas transmission grid [32]. The red and blue circles denote the reference and
non-reference nodes respectively in either grid. Operational edges are colored
solid black while some of the fictitious non-operational edges are denoted by
dotted green lines.

We measure average errors produced in determining the
true structure and express them relative to the number of
operational edges. To demonstrate the performance for either
grid, we plot the trend in average relative errors in Algorithm
1 versus the number of nodal potential samples available as
input. We first consider the case with no measurement noise in
Fig. 5(a). Notice that the performance is excellent and errors
quickly decay to zero for both grids. In fact perfect recovery is
observed for samples sizes greater than 100. All errors here are
induced by finite sample sizes that lead to imperfect empirical
estimation of φab.

Next, we present performance of Algorithm 1 when poten-
tial samples are corrupted with additive noise. We consider the
potential samples at each node to suffer from additive Gaussian
noise of mean 0 and variance of value expressed as a fraction
of the average variance of nodal potentials. In either grid, we
consider three fractions (8x10−2,5x10−2,10−1) to represent
different levels of noise that are commensurate with noise
suffered in off-the shelf measurement devices. Fig. 5(b) and
Fig. 5(c) shows the performance with noise for the power and
gas grids respectively. Note that the average fractional errors
recorded for either grid go down with increase in the number
of samples, though the decay is much slower than in Fig. 5(a)
with no noise. Further, as expected, the errors increase with
an increase in the noise variance. It can be observed that the
error performance in power grid is significantly better than
that in gas networks. This can be explained on the basis of
quadratic flow functions in the latter which induce greater
errors in empirical approximation of φ as compared to linear
flow functions in the power distribution grid. We plan to
theoretically analyze the error performance in detail in future
work.



0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

Number of potential samples

A
ve

ra
ge

 re
la

tiv
e 

er
ro

r
 in

 s
tru

ct
ur

e 
le

ar
ni

ng

 

 

Power distribution grid, no noise

Gas transmission grid, no noise

(a)

400 600 800 1000 1200 1400
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Number of potential samples, in power distribution grid

A
ve

ra
g
e
 r

e
la

tiv
e
 e

rr
o
r

 in
 s

tr
u
ct

u
re

 le
a
rn

in
g

 

 

σ2

n
 =.05 σ2

π

σ2

n
 =.08 σ2

π

σ2

n
 =.1σ2

π

(b)

400 600 800 1000 1200 1400
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

Number of potential samples, in gas transmission grid 

A
ve

ra
ge

 r
el

at
iv

e 
er

ro
r

 in
 s

tr
uc

tu
re

 le
ar

ni
ng

 

 

σ2
n
 =.05 σ2

π

σ2
n
 =.08 σ2

π

σ2
n
 =.1 σ2

π

(c)
Fig. 5. Average fractional errors vs number of samples used in Algorithm 1
for (a) Power distribution and gas transmission networks with no measurement
noise (b) Power distribution network with Gaussian noise (c) Gas transmission
network with Gaussian noise. Different noise variances σn are taken as
fractions (.05, .08, .1) relative to variance σπ in nodal potential.

VI. CONCLUSIONS

Flow networks represent several key infrastructure including
power grid, gas grid, water and residential heating networks.

Despite the diversity of network traffic, the flow in each
network is driven by nodal potentials that are related to the
edge flows by a class of nonlinear monotonic flow functions.
This paper addresses the problem of estimating the structure of
radial flow networks using measurements of nodal potentials.
Using properties of positive quadrant dependent functions, we
show that the variance of potential differences has provable
ordering properties along the network edges. Based on this, a
spanning tree based learning algorithm is proposed that can
learn the network using only nodal potential statistics. The
significant aspect of this algorithm is that it does not require
any knowledge of the edge flow functions or specific marginal
distributions of nodal injections. This work thus presents the
first approach to learning general radial networks with nonlin-
ear flows. The performance of our algorithms are demonstrated
through simulations on test radial networks pertaining to a
power system and a gas grid. We discuss extensions of our
framework, including that with missing/unobserved nodes.
Efficient learning of the network structure using potential
measurements has application in control and optimization
applications as well as in identifying the estimation capability
of third parties possessed with limited information. In addition
to the extensions mentioned in the paper, potential areas of
future work include expanding the learning framework to
lossy flows and loopy networks and understanding the sample
complexity associated with learning in the presence of noisy
measurements.

APPENDIX

Proof of Lemma 2: To prove X and X +Y are PQD, we
need to show

P(X +Y ≤ b,X ≤ a)≥ P(X ≤ a)P(X +Y ≤ b)∀a,b
⇒ P(X +Y ≤ b|X ≤ a)≥ P(X +Y ≤ b) (15)

Since we are dealing with physical random variables (power
injection etc.), we assume that their probability distribution
functions exist. Let ρX and ρY denote the probability distri-
bution functions (p.d.f.s) for X and Y respectively. The p.d.f.
for X +Y conditioned on X ≤ a is given by:

ρX+Y |X≤a(z) =
∫ a

−∞

ρX+Y |X=x(z)ρX |X≤a(x)dx (16)

=

∫ a
−∞

ρY (z− x)ρX (x)dx∫ a
−∞

ρX (x)dx
(17)

⇒ P(X +Y ≤ b|X ≤ a) =
∫ b
−∞

∫ a
−∞

ρY (z− x)ρX (x)dxdz∫ a
−∞

ρX (x)dx

=

∫ a
−∞

P(Y ≤ b− x)ρX (x)dx∫ a
−∞

ρX (x)dx
(18)

Here, Eq. (16) follows from the chain rule of conditional
probability. Eq. (17) uses the fact that the p.d.f. for X +Y
conditioned on X = a is given by ρX+Y |X=a(z) = ρY (z−a) as
X and Y are independent. Eq. (18) follows from changing the
order of variables x and z under the integration. The right
hand side of Eq. (18) represents the weighted average of



P(Y ≤ b−x) with weight ρX (x)∫ a
−∞ ρX (x)dx in (∞,a] and 0 otherwise.

The derivative of P(X +Y ≤ b|X ≤ a) with a is non-positive
as shown below:

d
da

∫ a
−∞

P(Y ≤ b− x)ρX (x)dx∫ a
−∞

ρX (x)dx

∝ P(X ≤ a)P(Y ≤ b−a)−
∫ a

−∞

P(Y ≤ b− x)ρX (x)dx

≤ P(X ≤ a)P(Y ≤ b−a)−P(Y ≤ b−a)
∫ a

−∞

ρX (x)dx≤ 0

(19)

The inequality holds as P(Y ≤ b−x) is a decreasing function
of x.

Thus P(X +Y ≤ b|X ≤ a) is non-increasing in a and hence
proved that

P(X+Y ≤ b|X ≤ a)≤ lim
a→∞

P(X+Y ≤ b|X ≤ a)=P(X+Y ≤ b).
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