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Distributed Dynamic State Estimation Over a Lossy
Communication Network with an Application to

Smart Grids

Abstract—In contrast to the traditional centralised power
system state estimation methods, this paper investigates the
interconnected optimal filtering problem for distributed dynamic
state estimation considering packet losses. Specifically, the power
system incorporating microgrids is modelled as a state-space lin-
ear equation where sensors are deployed to obtain measurements.
Basically, the sensing information is transmitted to the energy
management system (EMS) through a lossy communication net-
work where measurements are lost. This can seriously deteriorate
the system monitoring performance and even lose network
stability. Secondly, as the system states are unavailable, so the
estimation is essential to know the overall operating conditions of
the electricity network. Availability of the system states provides
designers an accurate picture of the power network, so a suitable
control strategy can be applied to avoid massive blackouts due
to lose network stability. Particularly, the proposed estimator is
based on the mean squared error between the actual state and
its estimate. To obtain the distributed estimation, the optimal
local and neighbouring gains are computed to reach a consensus
estimation after exchanging their information with the neighbour-
ing estimators. Then the convergence of the developed algorithm
is theoretically proved. Afterwards, a distributed controller is
designed based on the semidefinite programming approach.
Simulation results demonstrate the accuracy of the developed
approaches under the condition of missing measurements.

Index Terms—Distributed controller, distributed dynamic esti-
mation, energy management system, packet losses, linear matrix
inequality.

I. INTRODUCTION

Generally speaking, the industrial domain application be-
comes more and more distributed due to advanced information
and communication technology [1], [2]. In other words, the
automation system is mostly designed based on the distributed
architecture and its signal processing algorithms. As the
measurements are locally processed, it can accurately handle
more data, offer flexible communication infrastructure, deliver
required functionality and services in sustainable and efficient
ways, for example, monitoring and controlling the power
system incorporating microgrids in a distributed way. The
main reasons of incorporating microgrid including distributed
energy resources (DERs) into the grid are due to the low green
house gas emissions, reduced transmission losses and cost [3],
[4], [5]. Unfortunately, their intermittent nature of the power
generation pattern brings critical challenges for power system
operation and stability [6].

As the power substations and energy management system
(EMS) are generally far away, so the measurements are nor-
mally lost in the communication channel [7], [8]. It is therefore

imperative to estimate the power system states and apply a
suitable control strategy, so the system can operate properly
[9]. In other words, the power network intrinsically requires to
expect stability over a lossy communication channel between
the microgrid and EMS. This can only be archived if the EMS
knows the microgrid states as its states are generally unavail-
able and affected by uncertainties [10]. For instance, in a smart
grid the sensing devices such as sensors may be geographically
far away from the estimator and controller which inevitable
leads to packet dropouts in the communication network. To
illustrate, the communication infrastructure with an estimator
and a controller at EMS are illustrated in Fig. 1. It can be seen
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Fig. 1. Regulated power system with communication infrastructure [11].

that the sensing measurements are affected by communication
impairments when it transmits through an unreliable commu-
nication network [12]. That is, the controller performance and
system stability are affected by the impairments [11], [13],
[14]. Basically, deregulation of the power network and the
advent of smart grid technologies are making EMS feasible
and attractive from the customers and utility point of views
[15]. These stimulate to present a renewable microgrid model
and its distributed estimation with a feedback control strategy
under the condition of communication impairments.

A. Related literature

There is a wealth of research relating to the power sys-
tem state estimation. To begin with, a distributed weighted
least square state estimation method using additive Schwarz
domain decomposition technique is proposed in [16]. This
decomposition divides the data set into several subsets to
reduce the execution time. Unfortunately, it is assumed that
the communication is perfect with no measurement losses.
A Kalman filter (KF) based state estimation via wireless



sensor networks over fading channels is presented in [17].
This kind of centralized estimation technique is generally
not only in need of huge amount of communication and
computation resources but also vulnerable to the central point
failures which may lead to massive blackouts. To deal with
the communication impairments, a distributed fusion based KF
algorithm for sensor networks is developed in [18], [19]. The
fusion centre linearly combines the local estimators through
a set of designed weighting factors. In order to obtain a
suitable weighting factor, a weighted density function based
recursive algorithm is purposed under the condition of reliable
communication channels [20]. In order to accommodate the
effects of random delay in measurements, an extended KF
based power system state estimation method is proposed in
[21]. All of the aforementioned papers consider the centralised
estimation or reliable communication channel.

There are many different feedback control techniques avail-
able for the power system stability in the literature. First of
all, a linear quadratic Gaussian control strategy under the
condition of packet losses is presented in [9]. This networked
control system is suitable for the centralized state estimation
and its stability analysis. Recently, the time-delay switch attack
based on the simple proportional integral derivative (PID)
centralized controller is adapted in the context of smart grids
[22]. It is considered that delays can be introduced in the
sensing loop or control lines so the packet may be lost. Each
controller only communicates information with its neighbours
in the distributed control strategy [23], [24]. It is therefore very
effective for performing the wide-area distributed computation,
specifically in the emerging smart grid. Recently, a unified
distributed control strategy for the DC microgrid is proposed in
[6]. It shows that the standard distributed PI voltage controllers
are no longer able to regulate the average DC microgrid bus
voltage, so the distributed voltage controllers are replaced by
double integrator controllers. Usually, the partial system state
information is only available, so the estimation with controller
design remain an open question in the signal processing,
control and smart grid communities. Authors in [25] developed
a novel distributed observer over a lossless channel where the
controller is designed at each local area. However, after esti-
mating the system states in a distributed way, the distributed
controller generally allows a sparse communication to reduce
communication and computation resources while maintaining
the system stability. Inspiring by the above discussions and
analysis, this paper designs a distributed state estimation and
distributed controller under the condition of packet losses.

B. Key contributions

The main contributions of this research are the following:
• Based on the mean squared error principle, the optimal

local and neighbouring gains are determined to obtain
a distributed dynamic state estimation in the context of
smart grids. Each estimator exchanges information with
the neighbouring estimators for reaching a consensus
estimation even though there are unmeasurable states and
packet losses.

• The convergence of the developed approach is theo-
retically proved based on the continuous-time domain
analysis due to its mathematical simplicity. It shows
that the error function is gradually decreased over time,
therefore the estimated states converge to the actual states.

• For proper operation and maintaining the stability of
the microgrid, a distributed controller is proposed based
on the semidefinite programming (SDP) approach. The
designed sparse feedback gain is calculated by iterative
optimization process which is less conservative as it
effectively and efficiently computes the Lyapunov matrix
P with no structure constraints on P.

Notation: Bold face upper and lower case letters are used
to represent matrices and vectors respectively. Superscripts
x′ denotes the transpose of x, diag(x) denotes the diagonal
matrix, E(·) denotes the expectation operator and I denotes
the identity matrix.

II. SYSTEM AND PACKET LOSS MODELS

There is a strong drive in power industry to design, create
and analyze the system in distributed ways considering flexible
communication infrastructure. In order to develop a distributed
estimator and controller, consider the following discrete-time
system:

xk+1 = Adxk + Bduk + nk, (1)

where xk is the system state at time instant k, uk is the control
effort and nk is process noise whose covariance matrix is Qk.
The system measurements are obtained by a set of sensors as
follows:

zik = Cixk + wi
k, (2)

where zik is the observation information by the i-th estimator
at time instant k and wi

k is the measurement noise whose co-
variance matrix is Ri

k. Realistically, the sensing measurements
transmit through a lossy communication network which causes
packet dropouts. This is due to the fact that the power network
and EMS are far way from each other. Taking into account the
packet loss, (2) can be written as follows:

yi
k = αi

kCixk + αi
kwi

k, (3)

where yik is the received measurements under the condition
of packet losses, and αi

k = diag[αi
k(1), . . . , αi

k(ri)], ri is
the dimension of yik and αi

k(.) ∈ {0, 1} is the Bernoulli
distribution modelled as follows [8]:

αi
k(j) =

{
1, with probability of λi(j) ,
0, with probability of 1− λi(j) ,

where λi(j) is the packet arrival rate reaching at the estimator.
For the sake of mathematical simplicity, it is assumed that
observation matrices and packet loss distribution are identical
each other [26], [27]. Here, we assume Ci = C, αi

k = α
and λi(j) = λ(j). The assumptions are probable due to the
fact that the distributed estimators are not far way from the
power substations but as usual information transmits through



an unreliable network. Secondly, the sensors have limited
power and processing capability.

III. PROPOSED DISTRIBUTED DYNAMIC STATE
ESTIMATION ALGORITHM

Generally speaking, the filtering infrastructure is intercon-
nected to each other to know the operating conditions of
the distribution power network. For instance, the proposed
interconnected filtering scheme is depicted in Fig. 2. Consid-
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Fig. 2. Proposed interconnected filtering scheme.

ering the packet losses the proposed distributed dynamic state
estimator is written as follows:

x̂i
k|k = x̂ik|k−1 + Ki

k[yik −αCx̂i
k|k−1]+

Li
k

∑
j∈Ni

k

[yj
k −αCx̂ik|k−1]. (4)

Here, x̂i
k|k is the updated state estimation at the i-th estimator,

x̂ik|k−1 is the predicted states estimate, Ki
k is the local gain,

Li
k is the neighbouring gain and N i

k denotes the set of neigh-
bouring estimators. The second term in (4) is used for local
estimation while third term is used to exchange information
with neighboring estimators to reach a consensus estimation.
Based on the aforementioned modelling structure, our first
problem is to design the optimal gains Ki

k and Li
k, so that

the estimated state converges to the actual system state.
Let ei denotes the estimation error between actual state and

estimated state of the i-th estimator, which can be expressed
as follows:

eik|k−1 = xk − x̂ik|k−1, (5)

eik|k = xk − x̂ik|k. (6)

Let nik = nik(N i
k) represents the cardinality of N i

k. Now
substituting (4) into (6), and using (3) one can obtain the

following expression:

eik|k = xk − x̂ik|k−1 −Ki
k[yik −αCx̂ik|k−1]−

Li
k

∑
l∈Ni

k

[ylk −αCx̂i
k|k−1]

= [I−αKi
kC− nikαLi

kC][xk − x̂ik|k−1]−

αKi
kwi

k −αLi
k

∑
l∈Ni

k

wl
k

= [I−αKi
kC− nikαLi

kC]eik|k−1 −αKi
kwi

k−

αLi
k

∑
l∈Ni

k

wl
k. (7)

Now the estimation error covariance matrix Pi
k|k is defined by:

Pi
k|k = E[eik|ke′ik|k], (8)

where E(·) is the expectation operator. Substituting (7) into
(8), one can obtain:

Pi
k|k = λ[I−Ki

kC− nikLi
kC]Pi

k|k−1[I−Ki
kC− nikLi

kC]′

+ (I− λ)Pi
k|k−1 + λKi

kRi
kK

′i
k + λLi

k

∑
l∈Ni

k

Rl
kL

′i
k . (9)

Here, Pi
k|k−1 = E[eik|k−1e

′i
k|k−1]. The following partial deriva-

tives are used to obtain the optimal expression of Ki
k and

Li
k. For any two compatible matrices X and Y, the following

partial derivatives holds:

∂tr(YX)

∂X
= Y′, (10)

∂tr(XYX′)
∂X

= X(Y + Y′), (11)

where tr(·) is the trace operator. In order to find the optimal
gain Ki

k, taking the partial derivative of Pi
k|k in (9) with respect

to Ki
k and applying (10) and (11) yields:

∂[trPi
k|k]

∂Ki
k

= −2λ(I− nikLi
kC)Pi

k|k−1C′+

2λKi
k(CPi

k|k−1C′ + Ri
k). (12)

Now putting
∂[trPi

k|k]

∂Ki
k

= 0 in (12), the optimal local gain Ki
k

is given by:

Ki
k = [Pi

k|k−1C′ − nikLi
kCPi

k|k−1C′]
[CPi

k|k−1C′ + Ri
k]−1. (13)

Similarly, take the partial derivative of (9) with respect to Li
k

and apply (10) and (11) to obtain:

∂[trPi
k|k]

∂Li
k

= −2nikλ(I−Ki
kC)′Pi

k|k−1C+

2(nik)2λLi
kCPi

k|k−1C′ + 2λLi
k

∑
l∈Ni

k

Rl
k. (14)



Setting
∂[trPi

k|k]

∂Li
k

= 0 in (14), Li
k is derived as follows:

Li
k = [nikPi

k|k−1C′ − nikKi
kCPi

k|k−1C′]

[(nik)2CPi
k|k−1C′ +

∑
l∈Ni

k

Rl
k]−1. (15)

For simplicity, define Hi
k = CPi

k|k−1C′, Fi
k = (Hi

k + Ri
k)−1,

and Gi
k = [(nik)2Hi

k +
∑

l∈Ni
k

Rl
k]−1. Then (13) and (15) can

be rewritten as follows:

Ki
k = [Pi

k|k−1C′ − nikLi
kCPi

k|k−1C′]Fi
k

= Pi
k|k−1C′Fi

k − nikLi
kHi

kFi
k. (16)

Li
k = [nikPi

k|k−1C′ − nikKi
kCPi

k|k−1C′]Gi
k

= nikPi
k|k−1C′Gi

k − nikKi
kHi

kGi
k. (17)

In order to obtain the optimal gain Ki
k, substituting (17) into

(16) leads to:

Ki
k =Pi

k|k−1C
′Fi

k−nik[nikPi
k|k−1C′Gi

k−nikKi
kHi

kGi
k]Hi

kFi
k

= Pi
k|k−1C′Fi

k − (nik)2Pi
k|k−1C′Gi

kHi
kFi

k

+ (nik)2Ki
kHi

kGi
kHi

kFi
k

⇒ Ki
k = [Pi

k|k−1C′Fi
k − (nik)2Pi

k|k−1C′Gi
kHi

kFi
k]

[I− (nik)2Hi
kGi

kHi
kFi

k]−1. (18)

Similarly,

Li
k = [nikPi

k|k−1C′Gi
k − nikPi

k|k−1C′Fi
kHi

kGi
k]

[I− (nik)2Hi
kFi

kHi
kGi

k]−1. (19)

In summary, after initialization the system parameters such
as Pi

k|k−1 and x̂ik|k−1 through KF based prediction step, each
estimator computes the optimal local and neighbouring gains
by (18) and (19). x̂i

k+1|k and Pi
k+1|k are given by:

x̂ik+1|k = Adx̂ik|k + Bduk, (20)

Pi
k+1|k = AdPi

k|kA′d + Qk. (21)

Afterwards, each estimator computes the state estimation and
its update covariance matrix by (4) and (9). Now our next prob-
lem is to guarantee the consensus of the proposed distributed
state estimation method, so that the developed approach can
also apply to other real-time applications.

IV. CONSENSUS ANALYSIS

From the engineering perspective, the discrete-time system
is easy to implement in the digital platforms, while the con-
tinuous system is easy to analyze from the mathematical point
of view [28]. Motivated by this realistic dilemma and similar
to [29], the consensus analysis of the proposed algorithm is
completed based on the consensus analysis of the continuous
system. Similar to the discrete-time case, the estimator applies
the following step:

˙̂xi =Ax̂i+Bu+Ki[yi−αCx̂i]+Li
∑
j∈Ni

[yj−αCx̂i]. (22)

The estimation error ei can be expressed as follows:

ei = x− x̂i. (23)

By direct differentiation of (23), the estimation error dynamics
is in the following form:

ėi = ẋ− ˙̂xi

= ẋ−Ax̂i−Bu−Ki[yi−αCx̂i]−Li
∑
j∈Ni

[yj−αCx̂i]

= Ax + Bu + n− Ax̂i − Bu−αKi[Cx + wi − Cx̂i]−

Li
∑
j∈Ni

[yj −αCx̂i]

= (A−αKiC− niαLiC)x− (A−αKiC− niαLiC)x̂i+

n−αKiwi −αLi
∑
l∈Ni

wl

=(A−αKiC−niαLiC)(x−x̂i)+n−αKiwi−αLi
∑
l∈Ni

wl

=(A−αKiCi− niαLiC)ei+n−αiKiwi−αiLi
∑
l∈Ni

wl.

(24)

The error covariance matrix is written as follows:

Ṗi =(A−λKiC− niλLiC)Pi+Pi(A−λKiC− niλLiC)′+

Q+λKiRiK′i +λLi
∑
l∈Ni

RlL′i

=APi+PiA′+Q−λKiCPi−λPiC′K′i+λKiRiK′i

− niλLiCPi− niλPiC′L′i+λLi
∑
l∈Ni

RlL′i. (25)

Taking the partial derivative of (25) with respect to Ki and
applying (10) and (11) yields:

∂[trṖ
i
]

∂Ki
= −2λPiC′ + 2λKiRi. (26)

Setting ∂[trṖi
]

∂Ki = 0 in (26), then the gain matrix is given by:

Ki = PiC′(Ri)−1. (27)

Taking the partial derivative of (25) with respect to Li and
applying (10) and (11) leads to:

∂[trṖ
i
]

∂Li
= −2niλPiC′ + 2λLi

∑
l∈Ni

Rl. (28)

Putting ∂[trṖi
]

∂Li = 0 in (28), then the gain matrix is obtained
as follows:

Li = niPiC′(
∑
l∈Ni

Rl)−1. (29)



Substituting (27) and (29) into (25), one can obtain:

Ṗi = APi + PiA′ + Q− λPiC′(Ri)−1CPi−
λPiC′(Ri)−1CPi + λPiC′(Ri)−1CPi−

niλPiC′(
∑
l∈Ni

Rl)−1CPi − niλPiC′(
∑
l∈Ni

Rl)−1CPi+

(ni)2λPiC′(
∑
l∈Ni

Rl)−1CPi

= APi + PiA′ + Q− λPiC′(Ri)−1CPi+

[(ni)2 − 2ni]λPiC′(
∑
l∈Ni

Rl)−1CPi. (30)

In order to analyze the stability of the developed approach,
define ēi = E(ei), and take the expectation on both sides of
(24) to obtain:

˙̄ei = (A− λiKiCi − niλLiC)ēi. (31)

Consider the following Lyapunov function:

V =

M∑
i=1

ē
′i(Pi)−1ēi. (32)

Now taking the partial derivative and expectation of (32), and
using (27), (29), (30) and (31), we have:

V̇ =

M∑
i=1

{ ˙̄e
′i(Pi)−1ēi + ē

′i(Pi)−1 ˙̄ei− ē
′i(Pi)−1Ṗ

i
(Pi)−1ēi}

=

M∑
i=1

ē
′i[(A−λKiC− niλLiC)′(Pi)−1+(Pi)−1(A−λKiC

− niλLiC)−(Pi)−1A−A′(Pi)−1−(Pi)−1Q(Pi)−1

+λC′(Ri)−1C− [(ni)2 − 2ni]λC′(
∑
l∈Ni

Rl)−1C]ēi

=

M∑
i=1

ē
′i[−λ(Pi)−1KiC− λC′K′i(Pi)−1−

niλ(Pi)−1LiC− niλC′L′i(Pi)−1−
(Pi)−1Q(Pi)−1 + λC′(Ri)−1C

− [(ni)2 − 2ni]λC′(
∑
l∈Ni

Rl)−1C]ēi

=

M∑
i=1

ē
′i[−λC′(Ri)−1C− λC′(Ri)−1C−

niλC′(
∑
l∈Ni

Rl)−1C− niλC′(
∑
l∈Ni

Rl)−1C−

(Pi)−1Q(Pi)−1 + λC′(Ri)−1C

− [(ni)2 − 2ni]λC′(
∑
l∈Ni

Rl)−1C]ēi

=−
M∑
i=1

ē
′i[λC′(Ri)−1C + (Pi)−1Q(Pi)−1

+ (ni)2λC′(
∑
l∈Ni

Rl)−1C]ēi <0. (33)

Consequently, the estimated state x̂i converges to the actual
system state x. After estimating the system states, the designer
needs to apply a suitable distributed control technique for
maintaining the stability of the network.

V. PROPOSED DISTRIBUTED CONTROL STRATEGY

Generally, computing machines have finite memory and
temporal resolution [22], so the distributed controller is ob-
viously preferred from the engineering aspects. The feedback
controller is employed to regulate the microgrid states, which
is given by:

uk = Fx̂k|k. (34)

Here, F is the distributed feedback gain matrix to be designed.
If there is no connection between subsystem/estimator and
controller then the corresponding element of F is zero. For
instance, from the Fig. 2 the designed gain matrix F belongs
to the following structure set (assuming1 M = 4):

F◦ = {F | F =


F11 F12 0 0
0 F22 F23 0
F31 0 F33 F34

0 0 0 F44

}. (35)

Here, the feedback element FNM is the connection between
subsystem sensor N and controller M. This type of dis-
tributed feedback gain structure offers sparse communication
between the grid and EMS [6]. Consequently, sensors can
share information with their neighbouring controllers only,
which reduces communication overheads and offers flexible
controlling infrastructure over centralised control strategies.

According to the separation principle [30, p. 427], we can
implement the control law uk = Fxk [9]. Using uk, (1) can
be written as follows:

xk+1 = Ãdxk + nk, (36)

where Ãd = Ad +BdF is the closed loop state matrix. If there
exists a stablizing gain matrix F ∈ F◦, then the following LMI
holds:

Ã′dPÃd − P < 0
(Ad + BdF)′P(Ad + BdF)− P < 0. (37)

In order to obtain a feasible solution so that the distributed
feedback can be applied, P is computed as follows:

(βAd)′P(βAd)− P < 0, (38)

where β = 1/[γ max {eig(Ad)}], γ > 1 is a free parameter
and max {eig(Ad)} is the maximum eigen values of Ad. The
quantity γ ensures eigenvalues of the scaled close loop system
strictly less than one. Now according to the standard Schur’s
complement, (38) can be transformed into the following LMI
form: [

−P βA′dP
βPAd −P

]
< 0. (39)

1The proposed work can be easily extended to the generic case.



After computing P in (39) and with the help of (37), one
can obtain F ∈ F◦ by considering the following optimization
problem:

minimise ζ

subject to (Ad + BdF)′P(Ad + BdF)− P + ζI < 0.
(40)

where ζ is the semidefinite programming variable. Given P,
applying the Schur’s complement to (40) yields:[

−P + ζI (Ad + BdF)′P
P(Ad + BdF) −P

]
< 0. (41)

Finally, one can formulate the proposed optimization problem
as follows:

minimise ζ

subject to Hold (41),F ∈ F◦.
(42)

In summary, the proposed feedback gain is designed by solving
(42). As the feedback structure offers sparse communication,
the developed approach reduces computation costs.

VI. APPLICATION TO THE DISTRIBUTION POWER SYSTEM
AND SIMULATION RESULTS

In this section, the proposed algorithm is applied to the
microgrid state estimation and control in the context of smart
grids.

A. Distribution power system incorporating microgrid

Due to the climate change and limited energy resources,
the renewable microgrid incorporating DERs is integrated into
the main grid at the point common couplings (PCC). As their
power generation pattern are generally intermittent in nature,
so it needs to monitor the PCC voltages and keep it at a
reference value by applying a suitable control technique [31].
Generally speaking, the microgrid may also be install in the
remote and mountain areas, so its monitoring and stability
should be managed in a distributed way. Driven by these
motivations, the considered N micro-sources are connected
to the main grid. It is assumed that N=4 solar panels are
connected through the IEEE-4 bus distribution system shown
in Fig. 3 [31], [32]. Here, the input voltages are defined by

DER 1

vp1

Lc1

v1

vp2

Lc2

v2

vp3

Lc3

v3

vpN

LcN

vN

Network

DER 2 DER NDER 3

PCC PCC PCC PCC

InputInputInputInput

Fig. 3. Solar panels are connected to the distribution power network [31].

vp = (vp1 vp2 vp3 vp4)′, where vpi is the i-th DER input
voltage. It can be seen that the considered four micro-sources
are connected to the power network at the corresponding PCCs
whose voltages are defined by vs = (v1 v2 v3 v4)′, where vi

is the i-th PCC voltage. Note that the system in Fig. 3 is
not restrictive, and can be more general cases; the methods
proposed in this paper is independent of the type and size of
microgrids.

The nodal voltage equation is obtained by applying the
Laplace transformations as follows:

Y(s)vs(s) =
1

s
L−1c vp(s), (43)

where Lc = diag(Lc1 , Lc2 , Lc3 , Lc4) and Y(s) is the
admittance matrix of the entire power network incorporating
four mico-sources. Based on the standard specifications of the
IEEE 4-bus system [31], the admittance matrix is given in (44).
Now we can convert the transfer function into the following
form [31]:

ẋt = Axt + But + nt. (45)

Here, the system state xt = vs − vref is the PCC voltage
deviation, vref is the PCC reference voltage, ut = vp−vpref is
the DER control effort deviation, vpref is the reference control
effort, nt is the process noise whose covariance matrix is Qt,
the system state matrix A, and input matrix B are given by:

A =


175.9 176.8 511 103.6
−350 0 0 0
−544.2 −474.8 −408.8 −828.8
−119.7 −554.6 −968.8 −1077.5

 , (46)

B =


0.8 334.2 525.1 −103.6
−350 0 0 0
−69.3 −66.1 −420.1 −828.8
−434.9 −414.2 −108.7 −1077.5

 . (47)

Now the system model (45) is expressed as a discrete-time
state-space linear equation (1) where system state matrix
Ad = I + A∆t, I is the identity matrix, ∆t is the sampling
period and Bd = B∆t and nd = nt∆t with covariance matrix
Q = Qt∆t

2. Based on the aforementioned algorithm and
power network, the simulation is carried out for validity of
the theoretical analysis.

B. Numerical results

The simulation is conducted through Matlab and YALMIP
and the parameters are shown in Table I.

TABLE I
THE PARAMETERS FOR THE SIMULATION USING MATLAB.

Parameters Values Parameters Values
Q 0.0000001 ∗ I4 R1 0.000001 ∗ I4
R2 0.000002 ∗ I4 R3 0.000003 ∗ I4
R4 0.000004 ∗ I4 λ 0.95
γ 2 ∆t 0.0001

From the simulation, the system state versus time step
results are demonstrated in Figs. 4–7. It can be observed
that the packet loss significantly affects the system states but
the proposed algorithm can well estimate the system states.
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Fig. 4. State trajectory of ∆v1 and its estimate.
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Fig. 5. State trajectory of ∆v2 and its estimate.

This is due to the fact that the proposed algorithm can find
the optimal gains to extract the system state information from
adversaries. It can also be seen that it requires only 0.015
seconds (k×∆t) to estimate the system states which are much
less than the standard estimation time frame of 1 second [33].
Note that the small fluctuation comes from the packet losses
and random noises.

Basically, it can be seen that the actual PCC state deviations
increase dramatically over time, which is very dangerous in
terms of power network stability and microgrid operation.
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Fig. 6. State trajectory of ∆v3 and its estimate.
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Fig. 7. State trajectory of ∆v4 and its estimate.

Thus, it is intrinsically essential to apply a suitable control
technique, so that the PCC voltage deviations are driven to zero
in a fairly short time. After applying the proposed distributed
control method, it can be seen from Fig. 8 that the proposed
controller is able to keep the voltage deviations to zero in
approximately 0.01 seconds (k×∆t), which acts as a precursor
for stability and microgrid operations. Technically, it means
that the developed approach requires much less time to keep
the voltage as a reference value compared with the standard
stability time frame 1− 5 seconds [33].
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VII. CONCLUSION

This paper presents a distributed state estimation and control
method considering packet losses. The developed distributed
consensus estimator is based on the mean squared error, so
it can accurately compute the optimal gains to extract the
actual system states. Finally, in order to regulate the system
states, this study proposes a semidefinite programming based
distributed controller in the context of smart grid commu-
nication. The proposed distributed control framework could
properly determine the sparse gain such that the system states
will be stabilized in a fairly short time. These approaches can
help to design the future smart EMS under the condition of
uncertainties. It is worth pointing out that the aforementioned
problems are not trivial in the smart grid community as the
communication impairments have significant impact in the grid
stability and the distributed strategies can reduce communica-
tion burdens and offer sparse communication network.
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