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Stabilization of nonlinear systems using state-feedback periodic
event-triggered controllers

W. Wang, R. Postoyan, D. Nešić and W.P.M.H. Heemels

Abstract— We investigate the scenario where a controller
communicates with a plant at discrete time instants generated
by an event-triggering mechanism. In particular, the latter
collects sampled data from the plant and the controller at
each sampling instant, and then decides whether the control
input needs to be updated, leading to periodic event-triggered
control (PETC). In this paper, we propose a systematic design
procedure for PETC that stabilize general nonlinear systems.
The design is based on the existence of a continuous-time state-
feedback controller, which stabilizes the system in the absence
of communication constraints. We then take into account the
sampling and we design an event-triggering condition, which
is only updated at some of the sampling instants, to preserve
stability. An explicit bound on the maximum sampling period
with which the triggering rule is evaluated is provided. We show
that there exists a trade-off between the latter and a parameter
used to define the triggering condition. The results are applied
to a van de Pol oscillator as an illustration.

I. INTRODUCTION

Major advancements over the last decades in wired and
wireless communication networks gave rise to networked
control systems (NCS). These are systems in which the
sensors and the actuators communicate with the controller via
a shared digital channel. A major challenge in this context
is to design control strategies which do not “overuse” the
network, to limit the transmission delays and the occurence
of packet losses, which may destroy the desired closed-
loop system properties. An attractive solution consists in
adapting the transmissions to the current state of the plant,
we talk of event-triggered control, see [5] and the references
therein. This paradigm consists in continuously evaluating a
state/output-dependent condition and, when the latter is sat-
isfied, a transmission is triggered. Many works have shown
that event-triggered control is able to significantly reduce the
number of transmissions compared to the traditional periodic
sampling, see [9], [10], [13], [21] for instance. Nevertheless,
the continuous evaluation of the triggering condition is
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not possible when the implementation platform is digital.
Instead, the triggering criterion can only be evaluated at some
sampling instants, leading to the periodic event-triggered
control (PETC), see [3], [4], [6] and the references therein.

Results on the design of PETC for linear systems are
presented, for instance, in [3], [4]. In [6], a methodology is
proposed for nonlinear systems. The idea is to start from a
given event-triggered controller and to redesign it to obtain
a periodic event-triggered controller, based on a condition
on the successive Lie derivatives of the original triggering
condition. A bound on the sampling period is provided,
which is based on the minimum inter-transmission time of
the event-triggered controller, which is often difficult to pre-
cisely estimate. On the other hand, the generic results in [18]
on the sampling of hybrid controllers show that, if an event-
triggered controller ensures a uniform global asymptotic
stability property, the latter is preserved semiglobally and
practically when emulating the controller with sufficiently
fast sampling.

In this paper, we design periodic event-triggered con-
trollers for nonlinear systems using a different approach
compared to [6], [18]. We start from a continuous-time con-
troller which stabilizes the plant in the absence of network
(and not an event-triggered controller as in [6], [18]). We
then take into account the communication network and we
design a triggering condition, which is only evaluated at
given sampling instants. The stability of the overall system
is guaranteed provided that the maximum sampling period,
with which the triggering rule is evaluated, is less than
a given bound. We model for that purpose the overall
system as a hybrid system using the formalism of [2] and
the analysis relies on the construction of a novel hybrid
Lyapunov function. The results are applied to a van de Pol
oscillator as an illustration.

Compared to [6], the bound on the sampling period does
not rely on the estimation of the minimum inter-transmission
time of a predesigned event-triggered controller, and is there-
fore easier to compute. Furthermore, the triggering condition
we propose is easy to construct as we only need to verify
an input-to-state stability property, as opposed to a local
condition on the Lie derivatives of the triggering rule of
the original event-triggered controller in [6]. In addition, our
results clearly show that there is a trade-off between the
parameter of the triggering condition and the maximum time
between two sampling instants. Also, the sampling instants
at which the triggering rule is evaluated are not necessarily
periodic. On the other hand, we cope with a more specific
type of triggering rules than in [6]. In contrast with [18],



we provide an explicit bound on the sampling period and
we ensure uniform global asymptotic stability properties, as
opposed to uniform semiglobal practical stability.

The paper is organized as follows. The notation and
preliminaries on hybrid systems are given in Section II. We
state the problem and present the model in Section III. The
main results are stated in Section IV. Simulation results and
conclusions are respectively provided in Sections V and VI.
The proofs are given in the appendix.

II. PRELIMINARIES

Let Z>0 := {1, 2, · · · }, Z≥0 := {0, 1, 2, · · · } and R≥0 :=
[0,∞). Let |x| denote the Euclidean norm of the vector
x ∈ Rn. For (x, y) ∈ Rn+m, (x, y) stands for [xT , yT ]T .
Given a set A ⊂ Rn and x ∈ Rn, we define the distance
of x to A as |x|A := infy∈A |x− y|. A set-valued mapping
M : Rm ⇒ Rn is locally bounded if, for any x ∈ Rm,
there exists a neighborhood Ux of x such that M(Ux) is
a bounded set. A set-valued mapping M : Rm ⇒ Rn is
outer semi-continuous when its graph {(y, z) ∈ Rm+n :
z ∈ M(y)} is closed, see Lemma 5.10 in [2]. A function
γ : R≥0 → R≥0 is of class-K, if it is continuous, zero
at zero and strictly increasing and it is of class-K∞ if, in
addition, it is unbounded. A function γ : R2

≥0 → R≥0 is of
class-KL, if it is continuous, for each r ∈ R≥0, γ(·, r) is
of class-K, and, for each s ∈ R≥0, γ(s, ·) is decreasing to
zero. For x, v ∈ Rn and locally Lipschitz U : Rn → R, let
U◦(x; v) be the Clarke derivative of the function U at x in the
direction v, i.e. U◦(x; v) := lim supy→x,λ↓0

U(y+λv)−U(y)
λ .

This notion will be useful as we will be working with locally
Lipschitz Lyapunov functions, which are not differentiable
everywhere.

Consider the following hybrid system [2]

q̇ = F(q) q ∈ C
q+ ∈ G(q) q ∈ D (1)

with state q ∈ Rn and where C,D ⊂ Rn are respectively
the flow and the jump sets. We assume that: the sets C and
D are closed; F : Rn → Rn is a continuous function; G :
Rn ⇒ Rn is outer semi-continuous and locally bounded; and
G(q) is nonempty for each q ∈ D.

We now recall some definitions from [2]. A set S ⊂
R≥0 × Z≥0 is called a compact hybrid time domain if
S =

⋃J−1
j=0 ([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ . The set S is a hybrid time
domain if for all (T, J) ∈ S, S ∩ ([0, T ] × {0, 1, · · · , J})
is a compact hybrid time domain. A function q : S → Rn
is a hybrid arc if S is a hybrid time domain and q(·, j)
is locally absolutely continuous for each j. A hybrid arc
q : dom q → Rn is a solution to (1) if q(0, 0) ∈ C ∪D and

1) for all j ∈ Z≥0 and almost all t such that (t, j) ∈ dom q,
q(t, j) ∈ C and q̇(t, j) = F(q(t, j));

2) for all (t, j) ∈ dom q such that (t, j + 1) ∈ dom q,
q(t, j) ∈ D and q(t, j + 1) ∈ G(q(t, j)).

A solution is maximal if it cannot be extended and it is
complete when dom q is unbounded. We also recall the
following set stability definition.

Definition 1: The closed set A ⊂ Rn is called uniformly
globally asymptotically stable (UGAS) for system (1) if there
exists β ∈ KL such that all solutions q to system (1) satisfy

|q(t, j)|A ≤ β(|q(0, 0)|A, t+ j) ∀(t, j) ∈ dom q (2)

and all maximal solutions to system (1) are complete. �
We will need the following result, which corresponds to

Lemma II.1 in [8].
Lemma 1: Consider two functions U1 : Rn → R and

U2 : Rn → R that have well-defined Clarke derivatives
for all x ∈ Rn and v ∈ Rn. Introduce three sets A :=
{x : U1(x) > U2(x)}, B := {x : U1(x) < U2(x)}, Γ :=
{x : U1(x) = U2(x)}. Then, for any v ∈ Rn, the function
U(x) := max{U1(x), U2(x)} satisfies U◦(x; v) = U◦1 (x; v)
for all x ∈ A, U◦(x; v) = U◦2 (x; v) for all x ∈ B, and
U◦(x; v) ≤ max{U◦1 (x; v), U◦2 (x; v)} for all x ∈ Γ. �

III. PETC MODEL

We consider the plant model

ẋp = fp(xp, u), (3)

where xp ∈ Rnp is the state and u ∈ Rnu is the control input.
We assume that the full state vector xp is measured. Suppose
that the following state-feedback controller is designed to
stabilize the origin of (3)

ẋc = fc(xc, xp)

u = gc(xc, xp),
(4)

where xc ∈ Rnc is the state of the controller. When the
controller is static, (4) becomes u = gc(xp) and there is no
need to introduce the state xc.

Controller xp(ti)

u(ti) Plant xp(si)

Event-triggering
mechanism

(xc(si), u(si))

Fig. 1: PETC schematic.

We consider the scenario where plant (3) and controller (4)
communicate with each other via a network, see Figure 1. An
event-triggering mechanism is used to define the sequence of
transmission instants in the following manner. A triggering
condition is evaluated at each sampling instant si, i ∈ Z≥0,
where

ε ≤ si+1 − si ≤ T, i ∈ Z≥0, (5)

where T > 0 is the upper bound on the sampling period
and ε ∈ (0, T ] is the minimum time between two successive
evaluations of the triggering condition. When the triggering
condition is satisfied, the plant state measurement xp and



the control input u are respectively sent to the controller and
to the plant. Consequently, the sequence of transmission in-
stants, which we denote {ti}i∈I , I ⊆ Z≥0, is a subsequence
of {si}i∈Z≥0

, and two successive transmissions are spaced
by at least ε units of time in view of (5), thereby avoiding the
Zeno phenomenon. Parameter ε reflects the minimum achiev-
able transmission interval given by the hardware constraints.
We assume that the transmission delays and the quantization
effects are negligible. For the sake of generality, we allow
the triggering condition to depend on xp, xc, u at the current
transmission time. While this may be difficult to implement
in practice, this formulation encompasses the practically
relevant cases where the controller is directly connected to
the actuators and only the plant state is transmitted over
the network, or vice versa when the controller is directly
connected to the sensors and only the control input is sent
over the channel.

Because of the communication network, plant (3) no
longer has access to u, but only to its networked version,
which we denote by û. Similarly, controller (4) has access
to x̂p, the networked version of xp. Between two successive
transmission instants, x̂p and û are governed by

˙̂xp = f̂p(xp, xc, x̂p, û)

˙̂u = f̂c(xp, xc, x̂p, û)

}
t ∈ (ti, ti+1), (6)

where f̂p and f̂c are the holding functions. Zero-order-hold
devices correspond to f̂p = 0 and f̂c = 0 for instance, but
other holding functions can be envisioned as well, see [15]
for example.

Before modeling the dynamics of x̂p and û at each
sampling instant si, we introduce the vector x := (xp, xc) ∈
Rnx , which is the concatenation of the plant and the con-
troller state, and the vector of network-induced errors e :=
(ep, eu) ∈ Rne , where ep := x̂p−xp is the network-induced
error on the state measurement xp, eu := û − u is the
network-induced error on the control input, nx := np + nc
and ne := np + nu. At each sampling instant si, i ∈ Z≥0,
the update of x̂p and û satisfy

(
x̂p(s

+
i )

û(s+i )

)
∈



{(
xp(si)
u(si)

)}
when Υ(e(si), x(si)) > 0{(

x̂p(si)
û(si)

)}
when Υ(e(si), x(si)) < 0{(

x̂p(si)
û(si)

)
,

(
xp(si)
u(si)

)}
when Υ(e(si), x(si)) = 0,

(7)

where Υ describes the triggering condition, which is evalu-
ated at each sampling instant by the event-triggering mech-
anism. We explain later how to construct Υ (see Section IV-
B). In view of (7), when Υ(e(si), x(si)) > 0, a transmission
occurs at si, and x̂p and û are reset to the actual value
of xp and u, respectively. When Υ(e(si), x(si)) < 0, no
transmission occurs and x̂p and û remain unchanged. When
Υ(e(si), x(si)) = 0, the model allows two possibilities:

either a transmission occurs or not, our results apply in
both cases. This construction ensures that the jump map
in (7) is outer semi-continuous, which is essential for the
hybrid model presented below to be (nominally) well-posed,
see Chapter 6 in [2] for more details. As a result, (7)
generates non-unique solutions, which is not an issue for
the forthcoming results.

We deduce from (7) that the variable e has the following
dynamics at jumps

e(s+i ) ∈ h(e(si), x(si)), (8)

where

h(e, x) :=
(
1− Γ(e, x)

)
e (9)

and Γ : Rne+nx ⇒ {0, 1} is the function that indicates if
a transmission occurs or not. In particular, Γ(e, x) = {1}
when Υ(e, x) > 0, which corresponds to a transmission.
When Υ(e, x) < 0, Γ(e, x) = {0} and this corresponds to no
transmission and h(e, x) = e in this case. When Υ(e, x) = 0,
Γ(e, x) = {0, 1} covers the above two possibilities. In
agreement with [11], we call (8) the protocol equation. We
note that h depends on the state x contrary to [7], [11],
[12], which will have important consequences on the stability
property of the protocol equation compared to the latter
references (see Remark 1 in Section IV-B).

We introduce the variable τ ∈ R≥0 to keep track of
the time elapsed since the last evaluation of the triggering
criterium on, which has the following dynamics

τ̇ = 1 when τ ∈ [0, T ]

τ+ = 0 when τ ∈ [ε, T ].

We then model the complete system as

q̇ = F (q) q ∈ C
q+ ∈ G(q) q ∈ D, (10)

where q := (x, e, τ),

C := Rnx+ne × [0, T ]

D := Rnx+ne × [ε, T ].
(11)

The mapping F in (10) is defined as, for q ∈ Rnx × Rne ×
R≥0,

F (q) := (f(x, e), g(x, e), 1) , (12)

where f and g can be calculated from (3) and (4), and the
set-valued mapping G is defined as

G(q) :=
(
x, h(e, x), 0

)
(13)

with h coming from (9).
Our objective is to design the triggering condition Υ in

(7) and to provide an explicit bound on the sampling period
T to ensure asymptotic stability properties for system (10).

IV. MAIN RESULTS

In this section, we first state the assumption we make on
system (10), based on which we then construct the triggering
condition Υ and the bound on T . We finally present the main
stability result.



A. Assumption

We assume that system (10) verifies the following prop-
erties.

Assumption 1: There exist locally Lipschitz functions V :
Rnx → R≥0 and W : Rne → R≥0, αV , αV , αW , αW ∈ K∞,
aV , LW > 0 and LV ≥ 0 such that the following holds.

(i) For all x ∈ Rnx , αV (|x|) ≤ V (x) ≤ αV (|x|).
(ii) For almost all x ∈ Rnx and all e ∈ Rne ,
〈∇V (x), f(x, e)〉 ≤ −aV V (x) + γ2W 2(e).

(iii) For any e ∈ Rne , αW (|e|) ≤W (e) ≤ αW (|e|).
(iv) For any x ∈ Rnx and almost all e ∈ Rne ,
〈∇W (e), g(x, e)〉 ≤ LWW (e) + LV

√
V (x). �

Items (i)-(iii) in Assumption 1 imply that the system
ẋ = f(x, e) is input-to-state stable (ISS) with respect to
e. The fact that the Lyapunov function V has an exponential
decay rate in item (ii) of Assumption 1 is not restrictive as
any input-to-state stable Lyapunov function can be modified
accordingly in view of [17]. Item (iii) says that W is
positive definite and radially unbounded. Item (iv) is an
exponential growth condition of the e-system between two
consecutive sampling instants, like in [14], [16]. A nonlinear
physical example, which satisfies Assumption 1, is provided
in Section V.

B. Triggering mechanism

We define Υ in (7) by, for any e ∈ Rne and x ∈ Rnx ,

Υ(e, x) = W 2(e)− λV (x), (14)

where λ ≥ 0 is a design parameter. We select λ such that
λ < λ∗ with

λ∗ :=
aV
γ2
, (15)

where aV and γ > 0 come from Assumption 1.
Remark 1: The definition of Υ in (14) guarantees that

the corresponding protocol (8) is input-to-state stable (see
Definition 5.3 in [19]). In particular, W (e) ≥

√
(λ+ ν)V (x)

implies W (h(e, x)) = 0 for any (x, e) ∈ Rnx+ne and ν > 0.
�

For each λ ∈ [0, λ∗), we select T in (11) such that T <
TMASP, where TMASP is the maximum allowable sampling
period defined as

TMASP :=
2

LW
arctanh

 LW

(√
aV − γ

√
λ
)

(LW
√
λ+ 2LV )γ + LW

√
aV

 ,

(16)

where LV ≥ 0, LW , aV , γ > 0 come from Assumption 1.
The numerator LW (

√
aV − γ

√
λ) in (16) is non-negative in

view of (15).
The bound in (16) is decreasing in λ. In other words,

the larger the λ, which leads to a later triggering instant as
ensured by (14), the smaller TMASP. Loosely speaking, this
suggest that there is a trade-off between the maximum sam-
pling period and T the number of transmissions generated by
the event-triggering condition, typically fast sampling would

lead to less frequent transmissions but to more computation
and vice-versa.

Remark 2: When λ = 0, the triggering condition Υ is
always non-negative, and consequently transmissions can
occur at every sampling instants according to (7). Hence,
in this case we recover the time-triggered control scenario
investigated in [12]. The bound on the MASP in (16) is then

TMASP =
2

LW
arctanh

(
LW
√
aV

2LV γ + LW
√
aV

)
, (17)

which differs from the one in [12] because the assumptions
and the analysis are different. We cannot therefore assess
whether one is more conservative than the other in general.

�

C. Stability guarantee

We show that Assumption 1 with a proper selection of λ
and T ensure the stability of system (10), as formalized in
Theorem 1.

Theorem 1: Consider system (10) and suppose the follow-
ing hold.

1) Assumption 1 is verified.
2) λ < λ∗ with λ∗ defined in (15).
3) T < TMASP with TMASP defined in (16).

Then, the compact set A := {q ∈ Rnx × Rne × R≥0 : x =
0, e = 0, τ ∈ [0, T ]} is UGAS. �

Remark 3: The stability property ensured in Theorem 1
is robust to ρ-perturbations as the attractor A is compact
and system (10) satisfies the hybrid basic conditions, which
implies that it is well-posed, see Chapter 7 in [2]. �

V. ILLUSTRATIVE EXAMPLE

We consider the following van der Pol oscillator

ẋ1 = x2

ẋ2 = (1− x21)x2 − x1 + u,
(18)

where x1, x2 ∈ R, whose origin is exponentially stabilized
by the controller

u = −x2 − (1− x21)x2.

We consider the case where sensors and actuators are
collated via a communication network and the control signal
u is submitted to the network and received as û. Suppose
zero-order-hold devices are used to implement the controller,
which gives f̂c = 0 for f̂c in (6). Then, with e := û−u being
the networked-induced error (there is no need to introduce
x̂p − xp since the controller is static), we obtain the system
in (10) withf(x, e) :=

(
x2

−x1 − x2 + e

)
g(x, e) := (2− x21)(−x1 − x2 + e)− 2x1x

2
2.

(19)

Assumption 1 is satisfied with1 V (x) = 3.1783x61 +
3.4385x1x

5
2 + 7.1644x41x

2
2 + 2.9377x31x

3
2 + 4.6209x21x

4
2 +

6.8622x1x2 − 0.2499x1x
5
2 + 3.8468x1x2 + 1.8511x62 +

1We have obtained V , W , γ, aV , LV , LW using SOSTOOLS [1].



Fig. 2: Triggering parameter λ vs TMASP .

5.3824x22, W (e) = |e|, γ = 8, aV = 0.001, LW = LV =
0.00071 for (x, e) ∈ R3. We then calculate λ∗ using (15)
which gives λ∗ = 1.2475 × 10−4, and for each λ ∈ [0, λ∗)
we deduce TMASP from (16). The dependency of TMASP on
λ is illustrated in Figure 2.

Fig. 3: A solution to system (10) when T = 0.01 and λ =
1.246× 10−4.

We choose λ = 1.246 × 10−4, which gives TMASP =
0.0105 and we take T = 0.01 which satisfies T < TMASP.
Figure 3 illustrates the convergence of the plant state to the
origin. On the other hand, the convergence no longer occurs
when we increase λ to 2 × 10−4 or when we increase T
to 0.1 (which both violate the conditions of Theorem 1).
This suggests that the bounds on T and on λ are not very
conservative for this example.

VI. CONCLUSIONS

We have addressed the design of periodic event-triggered
controllers for a class of nonlinear systems. We have fol-
lowed an emulation approach for this purpose, in the sense
that we start from a given state-feedback controller which
stabilizes the origin of the continuous-time plant, and we then
explain how to derive a periodic event-triggered condition
to preserve stability in the presence of a network. The
triggering condition is of the same type as in [20] where
continuous event-triggered control was addressed. An easily
computable bound on the sampling period used to evaluate
the triggering condition is provided. The analysis reveals a
trade-off between the parameter of the triggering criterion
and the considered sampling period.
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APPENDIX

Proof of Theorem 1. Let λ ∈ (0, λ∗) with λ∗ defined as in
(15). Let T ∈ (0, TMASP) and TMASP be determined by (16).



We define, for any q ∈ C ∪D,

U(q) := max
{
V (x), φ(τ)W 2(e)

}
, (20)

where W and V come from Assumption 1, and φ :
[0, TMASP] →

[
µ, µ

]
is defined in the next lemma, whose

proof is omitted due to space limitations.
Lemma 2: There exist µ > µ > 0 such that

µ∗ < µ < µ < µ∗, (21)

where µ∗ := γ2

aV
and µ∗ := 1

λ , and the function φ defined
by the solution to

φ̇ = −2LV φ
3
2 − 2(LW + µ)φ, φ(0) = µ (22)

satisfies φ(t) ∈
[
µ, µ

]
for all t ∈ [0, T ]. �

We first show that the following properties hold for system
(10). There exist ν > 0, αU and αU ∈ K∞ such that:
1) U is locally Lipschitz in x, e and τ , and, for all q ∈ C∪D,

αU (|q|A) ≤ U(q) ≤ αU (|q|A);
2) for all q ∈ C, U◦(q;F (q)) ≤ −νU(q);
3) for all q ∈ D and g ∈ G(q), U

(
g
)
≤ U(q).

It follows from Assumption 1 and the definition of φ in
Lemma 2 that the Lipschitz property of U in item 1) is
satisfied. In view of Lemma 2, φ(τ) ∈

[
µ, µ

]
for all τ ∈

[0, T ]. It follows from (21) that item 1) holds with αU , αU ∈
K∞ given by, for all s ≥ 0,

αU (s) = min

{
αV

(s
2

)
,
γ2

aV
α2
W

(s
2

)}
αU (s) = 2 max

{
αV (s),

1

λ
α2
W (s)

}
.

(23)

We now consider item 2). Let U1(q) := V (x) and
U2(q) := φ(τ)W 2(e) for any q ∈ C ∪ D. Let q ∈ C. We
distinguish three cases according to Lemma 1.

Case 1: q ∈ C and U1(q) > U2(q).
In this case, φ(τ)W (e)2 ≤ V (x), hence W (e)2 ≤ 1

µV (x)

according to Lemma 2. Since µ > γ2

aV
as given in Lemma

2, 1
µ = σ aVγ2 for some σ ∈ (0, 1). As a result, W 2(e) ≤

σ aVγ2 V (x). Consequently, in view of Lemma 1 and item (ii)
of Assumption 1,

U◦(q;F (q)) = U◦1 (q;F (q))

≤ −aV V (x) + γ2W 2(e)

≤ −aV V (x) + σγ2
aV
γ2
V (x)

= −(1− σ)aV V (x) = −(1− σ)aV U(q). (24)

Case 2: q ∈ C and U1(q) < U2(q).
In this case, U(q) = U2(q) = φ(τ)W 2(e). Hence√

V (x) < φ1/2(τ)W (e). (25)

We omit below the dependency of φ on τ for the sake of
convenience. In view of item (iv) in Assumption 1, (22), (25)

and the fact that φ(τ) ≥ µ for all τ ∈ [0, T ],

U◦(q;F (q)) = U◦2 (q;F (q))

≤
(
−2LV φ

3/2 − (2LW + µ)φ
)
W 2(e)

+ 2φW (e)
(
LWW (e) + LV

√
V (x)

)
≤
(
−2LV φ

3/2 − (2LW + µ)φ
)
W 2(e)

+ 2LWφW
2(e) + 2LV φ

3/2W 2(e)

= −µφW 2(e) ≤ −µµW 2(e). (26)

Since U(q) = φ(τ)W 2(e) ≤ µW 2(e) in this case, (26) gives
that

U◦(q;F (q)) ≤ −
µµ

µ
U(q). (27)

Case 3: q ∈ C and U1(q) = U2(q).
In view of Lemma 1, (24) and (27), we have that

U◦(q;F (q)) ≤ max{U◦1 (q;F (q)), U◦2 (q;F (q))}

= max

{
−(1− σ)aV ,−

µµ

µ

}
U(q).

Combining (24) and (27) leads to item 2) with ν :=

min
{

(1− σ)aV ,
µµ

µ

}
for all q ∈ C.

We now investigate the evolution of U at jumps, i.e.,
item 3). Let q ∈ D. We distinguish two cases depending
on whether a transmission occurs or not. When a trans-
mission occurs, the corresponding g ∈ G(q) is such that
W 2(h(e, x)) = 0 and thus, since W is positive definite in
view of item (iii) of Assumption 1,

U(g) = max
{
V (x), φ(0)W 2(h(e, x))

}
= V (x) ≤ U(q). (28)

When no transmission occurs, it follows from (9) and (14)
that W 2(h(e, x)) = W 2(e) ≤ λV (x). Since φ(0) = µ and
µ < 1/λ according to Lemma 2,

U(g) = max
{
V (x), φ(0)W 2(h(e, x))

}
≤ max {V (x), µλV (x)}

≤ max

{
V (x),

1

λ
λV (x)

}
= V (x) ≤ U(q) (29)

for all g ∈ G(q) satisfying h(e, x) = e. This with (28)
ensures that item 3) holds for all q ∈ D. The satisfaction
of items 1)-3) imply that items (i)-(iii) of Theorem 1 in [15]
hold and item (iv) of Theorem 1 also holds with noting (11).
We then invoke Theorem 1 in [15] and have that system (10)
is uniformly globally pre-asymptotically stable (UGpAS).

Note that condition (VC) of Proposition 6.10 in [2] holds
for system (10). Moreover, we can exclude item (b) of
Proposition 6.10 in [2] in view of items 1)-3), and item (c)
of this proposition is also excluded as G(q) ⊂ C for any
q ∈ D in view of (10)-(13). Then, in view of Proposition
6.10 in [2] and the fact that tj+1 − tj ≥ ε holds for any
t, j ∈ dom q, all maximal solutions q of system (10) are
complete in t direction, i.e., supt domq = ∞. As a result,
the set A is UGAS for system (10). �


