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Time-triggered control of nonlinear discrete-time systens

Romain Postoyan and Dragan Nesic

Abstract— We investigate the time-triggered control of non- therein. The idea is to evaluate a state-dependent criterio
linear discrete-time systems using an emulation approachVe  at each step, whenever the latter is satisfied, a transmis-
assume that we know a controller, which stabilizes the origi of o s triggered. Event-triggered control usually getesa
a discrete-time nonlinear system. We then provide condities to | ¢ . than ti tri d trol. howeker t
preserve stability when the control input is no longer updaed at €ss ra_nsmlssmns an . |me- rlgger_e. control, OW_ er
each Step’ but within N Steps from the previous upda’[e’ where eVaIUaUOﬂ Of the transmission Condltlon may be d|ff|CU|t to
N is a strictly positive integer. We consider general output implement in some applications. Iself-triggered contrql
feedback controllers and we allow for various holding straegies  transmissions also adapt to the system evolution but the nex
of the control input between two updates, such as zero-inpulr g qering instant is decided based on the value of the state

gg|1;2p%ta§%§s Jgkﬁg?rg?l;eﬁg ngv'v'ge?rtnvfomﬁgfa@?[f.e. at the last control input update (and not the current state as

N, is provided. The results are applied to linear time-invarant ~ IN event-triggered control, to avoid the frequent evabmati
systems in which case the assumptions are written as a linear of the triggering condition), see [10] and the references
matrix inequality, and a nonlinear physical example is provded  therein. The choice between these paradigms depends on

as an illustration. This study is relevant for networked cortrol the considered problem, all are relevant and deserve being
systems, as well as any system for which sparse or sporadilal ’

changing control inputs are advisable in view of the resoure investigated. . . . ) .
limitations for instance. We study nonlinear discrete-time systems in this paper.
This is justified by the fact that many processes are con-
[. INTRODUCTION veniently modeled in discrete-time because of their istan

Control strategies that generate sparse or sporadicaﬂf‘ture or because of the tools used to construct the moeel, se
varying inputs are suitable in a number of situations. Nefd°] for instance. Also, any sufficiently smooth continueus
worked control systems (NCS) are a typical example. Thedn® model can be (approximately) discretized. Results,
are systems in which the plant and the controller commuvhich relate the stability of nonlinear discretized models
nicate with each other via a digital channel, which may bée stability of the original system can be found in [19]; we
used by other tasks. In this set-up, the frequent transomissido Not address this issue in this paper and leaves it fordutur
of data between the plant and the controller, and thus ti§Tk. In the context of NCS, to work with a discrete model
frequent update of the control input, may exceed the conf?@y pe convenient as it allows considering holdlng. straeg
munication channel capacity, and leads to delays or packBtWhich the input is set to zero when no transmission has
losses, which may destroy the desired properties of trecurred to reduce the actuation cost, see [24] for instance
closed-loop system. Another example is embedded Systenﬁé{rthermpre, equidistant transmissions naturally gise to
for which the computation of the control input is limited bydlscrete-tlm_e models of the form_ c0n5|de_zred here. Results o
the available computation resources. Similar situatioimea the event-triggered control of discrete-time systems aan b
in a variety of other control applications. In medicine forfound in [5], [8], [13] for instance. Recently, many works
instance, more specifically in dynamic phototherapy [7], thave been devoted to the design of pred|ct|ve_strat_eg|es
develop sparse control policies would be beneficial for thior NCS, see e.g., [2], [4], [11], [23]. At each triggering
patients in order to reduce the pain induced by the treatmefitant, a packet containing future values of the contrplitn
[1]. is sent to the plant, and then stored in a buffer until the
Several types of such control strategies are availablesin t€Xt transmission occurs. Hence, in [3], time-triggered an

literature. The simplest option is to hold the control infart ~ S€lf-triggered policies are presented for general noafine
a fixed amount of time, leading time-triggered contrglsee discrete-time systems in order to optimize a discountet! cos

e.g., [6], [18]. An alternative consists in adapting thenta While this strategy allows reducing the usage of the network

missions according to the current state of the plant, we talk Still updates the control input value at each iteration. T

of event-triggered controlsee [10], [22] and the references®Vercome this potential issue, self-triggered contreltar
constrained nonlinear systems are proposed in [9], which
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updated at each step. We then consider the scenario where (respectively, UGAS) and(s, k) = Ce~7% with C > 0

a new control input is transmitted to the plant within every  ando > 0 for any s, k € Z>. O
N steps from the last transmission. Between two updates,
the input is held using a general type of functions, which I1l. PROBLEM STATEMENT

captures the hold-input and the zero-input [24] policies )

as particular cases. We provide conditions on the closed-Consider the system
loop system as well as an explicit bound on the maximum
allowable transmission interval (MATI), i.€V, to guarantee
stability. In particular, sufficient conditions for locglbbal,
asymptotic/exponential stability are given. These cood#
are written as a linear matrix inequality for linear time-
varying systems, and a discretized Lorenz model of a thermal
convection loop is proved to satisfy the required assumptio

The approach is inspired by the continuous-time resuli§here », € R"< is the controller state. System (2) covers
in [18]. It appears that the discrete-time nature of thgtatic controllers, in which case = g.(y) (and no variable
problem generates differences and some non-trivial teehni ;. . js needed).
difficulties compared to [18]. Indeed, we first had to modify \e study the scenario where the input to system (1)
the assumptions on the closed-loop system, and we had;{onq longer updated by (2) at each step but sporadically,
make an assumption onfg-gain contrary to [18], as will gych that there exists a maximum of steps between
be explained later. We then provide a bound on the MATlyo successive updates. The underlying idea is to transmit
which is different from the one in continuous-time. Indeied, 55 rarely as possible. Hence, denoting i € Z-o, the
contrast with [18], we do not provide an explicit formula forsequence of transmission instants,; — k; < N for any
the MATI bound but a simple algorithm for its computation,; < 7. At eachk;, the controller receives the current
which is easy to implement. Compared to the related workg; e of the plant outpuy, generates an updated control
based on model predictive ideas [3], [9], the controllerns ajnpyt v, which is immediately transmitted to the plant. We
output feedback law (we do not require to measure the fullssyme that the delays induced by the transmissions and the
state) and we do not rely on optimization techniques, whicBomputation time are negligible. For the sake of converggnc
may be important for applications with low computationalye introduce the clock variable € Zs, to count the
capacities. number of steps since the last transmission. Variables

the following dynamics

x;{ = folap, u), Y = gp(zp), 1)

with statexz, € R"», inputu € R+, and outputy € R"v.
We design the following controller to stabilize system (1)

.%'2_ = fc(xcay)a u:gc(xc,y), (2

Il. PRELIMINARIES

1 when 7€ {1,....N
Let R := (—o00,00), R>g = [0,00), and Z>o := {(transmiisiom

{0,1,2,...}. For (z,y) € R"™™ (z,y) stands for Tt = +1 when refl N1} (3)
[T, yT]T. A function x : R>q — R is of classK if 4 T(no t’réﬁ.svmissioh

it is continuous, zero at zero and strictly increasing, and i

is of classK. if, in addition, it is unbounded. A continuous | (3), when a transmission occurs, which may happen at
function x : R%, — Rxo is of classKL if for each any time in {1,..., N},  is reset tol, otherwiser is

t € R>o, x(-, ) is of classk’, and, for eachs > 0, x(s,:)  incremented byl and this may occur whefl, ..., N — 1},

is decreasing to zero. The distance of a paint R" t0 @ pyt not whenr = N as a transmission necessarily needs
setA C R" is denoted byz|4 := inf{|z —y| : y € A}. g be triggered in this case (otherwise the inter-transoriss
Let P be a real, square, and symmetric matiht..x(P)  time will be strictly bigger thanV, which is excluded). When
and Anmin(P) are respectively the largest and the smallest ¢ (1 . N—1}, a transmission may or may not occur. We
eigenvalue of°. The notatiorl stands for the identity matrix. see that system (3) generates non-unique solutions foea giv
The symbolx used in matrices denotes the symmetric blockitial condition: that is not an issue for the forthcoming

component. analysis.
We will use the following stability definition. The objective of this paper is to provide conditions to
Definition 1: Consider the system™ = F(z) with 2 €  guarantee the stability of the closed-loop system (1)4(2) i
R™. The compact sef C R" is: presence of communication constraints. In particular, iwe a

« uniformly locally asymptotically stablgJLAS) if there  at providing an easily computable bound &n We first need
exist 3 € KL and ¢ > 0, such that for anyz(0) to model the overall system for this purpose.
with |2(0)|s < ¢, the corresponding solution verifies The control input applied to system (1) is no longebut

|z(k)|s < B(|z(0)|s, k) for any k € Z>o. a sampled version of input, which we denote:. Similarly,
« uniformly globally asymptotically stabi@)GAS) if the controller (2) receives the sampled versionyofdenotedy.
previous property holds for any(0). Hence, (1) and (2) respectively becomg-:- = fp(xp, ) (the

« uniformly locally (respectively, globally) exponentiall output equation does not change) ard = f.(z¢,9), u =
stable (ULES (respectively, UGES)) if it is ULAS g.(z.,y). The variableg andy have the following dynamics



like in [14]
ut .
1/*) whenr € {1,...,N} (transmissioh
(A-ﬁ- = gC(IpvxcvuvyaT)>When c{1 N —1
y gp(xpvxcvaagaT) ’ { B }
(no transmissiohp
) @)
where y*© = gp(x;) 9p (fp(zp, ) and ut =

9, y") = ge (fe(@e, D), gp(fp(2p, @))). The mappingg.
andg, model the way the variablesandy are respectively

When items (ii)-(iii) hold for any(z,e) € R"=*" we say
that the assumption holdgobally. O

Item (i) of Assumption 1 means that andiV are positive
definite and radially unbounded. Item (ii) of Assumption 1 is
a robust local stability property of the systerm = f(x,e).

When the loop is closed at each steps 0, and items (i)-

(ii) imply that the origin is uniformly locally asymptotidls
stable for the system™ = f(z,0), which corresponds to the
closed-loop system (1)-(2). When= 0, these items imply
that thex-system satisfies an input-to-stable stability property

generated by the plant and the controller when there is §th inpute, and also that the—sywstem is (locallyy-stable
transmission. A typical implementation is zero-orderehol from W(e) to H (x) with gain V- Itis interesting to note
meaning that: and; remain constant in absence of transmisthat this gain is less thahsincey < ¢. This is an important

sion, i.e.gc(zp, Te, 0, ¥, 7) = 4 and g, (T, Te, 4, Y, T) = Y

difference compared to the continuous-time results in [18]

Another common possibility is to ‘zerqj and @& when no where there is no condition on the correspondifiggain.

transmission occurs [24], which givg. = 0 andg, = 0.

A possible explanation is the following. The underlyingade

We allow g and g, to depend on all the variables of thein [18] s that thec-system isC;-stable fromH (x) to W (e),
problem for the sake of generality, hence covering othezgyp with a gain that can be made arbitrarily small, by selecting

of holding policy, such as the model-based one [16].

the MATI bound accordingly (see Proposition 6 in [17] for a

For the sake of convenience, and as commonly done fRrmal statement), then a small-gain analysis allows engur
the NCS literature, we introduce the sampling-inducedrerrdhe stability of the overall system. In our study, we cannot

e = (ey,ey) € R"™ with e, := 4 —u, ¢, := § — y and
ne 1= N, + ny. The overall system is modeled as follows
xt = f(z,e)

<gl(x’1€’T)> whenr € {1,...,N}

(transmissioh  (5)

(e+>
Tt ga(z,e,7)
< S whenr € {1,...,N — 1}

(no transmissioj
wherez = (zq,zp) € R, ny = n, + n,, f(z,e) :=
(fp(xpvQC(vagp(xp) + ey) + ew), fe(ze, gp(wp) + ey))’
g1(z,e,7) := (0,0) and ga(x, e, 7) := (gc(x,eu +u, ey +
y,T)—gc(fc(xc,y+€y),gp(x,eu+U,6y—|—y,7)),§p(I,6u+
Uy €y +Y, T) _gp(fp(xpa u—l—eu))), with u = ge(we, gp(zp) +
ey) andy = g,(zp).

IV. MAIN RESULT

In this section, we first state the assumptions we make

on system (5), we then provide a bound &1 which we
analyse, and we finally state the main stability results.

A. Assumption

We make the following assumption on system (5).

Assumption 1:There existV : R"* — R, continuous,
W :R"™ — Rx( continuousgy,, @y, gy, aw, @, € € Koo,
H :R" — R continuousf) >~y >0, L € R>p andA >0
such that the following holds.

() Forany(z,e) € R, ay (|z]) < V(z) <@y (|z))
anday (le]) < W(e) < aw(le]).

(i) For any (z,e) € R™=*"e such thatmax{|z|,|e|} <
A, V(f(x,e) = V(z) < —a(lz]) —e(le]) ~0H>(2)
+yW2(e).

(i) For any (x,e) € R" such thatmax{|z|, |e|} < A,
Wi(gz(z,e,7)) < LW(e) + H(x).

make thisls-gain as small as desired because the MAY],

is a strictly positive integer. When > 6, our analysis gives

N =1, that is we transmit at each step,as always equal

to 0. Item (iii) of Assumption 1 is an exponential growth
condition of the dynamics of the-system when there is no
transmission. When system (1) is linear and time-invariant
the conditions in Assumption 1 can be written as a linear
matrix inequality, as explained in Section V-A. An example
of a nonlinear system that verifies Assumption 1 is provided
in Section V-B.

B. MATI estimate

To provide a bound oV, we introduce the variable €
R>o which has the following dynamics

o—1
+ = —_— =
o= o Y= )
where \ := % > 1, andf,~, L come from Assumption 1.
We define the MATI as
N* = sup{k € Zso : ¢(k) > 1}. (7)

Note that the set in the right-hand side of (6) is never empty
as¢(l) =X =2 > 1 (§ > v according to Assumption 1).
Moreover, the denominator in (6) never cancels when 1
(unlessL = 0, in which case we defing™ = \). We provide
guidelines on how to comput&™* below but before that
we state the following result, which provides necessary and
sufficient conditions under whicN* is respectively (in)finite
and strictly bigger than.

Proposition 1: The following holds.

(i) N*is finite if and only if L > 1 — VAL

(i) N*>2ifand only if L < VA — VA . 0
Proof. We first prove item (i) of Proposition 1. The idea is
to show that¢(k), as iteratively defined by (3), does not
increase. We will see that two situations can then happen:
either the iterative map in (3) has a fixed point that belongs



to [1, A], in which casep converges to it as time grows andonly if A—1 > /AL, which corresponds to the condition in
N* is infinite, or there is no such fixed point agdbecomes item (ii) of Proposition 1. |
strictly less thanl in finite time. According to Proposition 1, wheh > 1 — VA1, N* is
For the sake of convenience, we introduce= ¢ — 1. To finite. To compute it, we can run a simple program where
show thaty)(k) is non-increasing is thus equivalent to showwe initialize ¢ at A, and we iterate it according to (6) until

that ¢(k) is non-increasing. We have it becomes strictly less thaP at iteration N* + 1. When,
Vo NT in addition, L > vA — VA , we immediately know that
Yt = et —1= /\L —1= % N* = 1 according to item (ii) of Proposition 1, which means
P+ AL? P+ AL? ; N—1 ;
®) that we transmit at each step. Whén< 1 — v A~1, N* is
Let s € [0, A — 1] infinite, which means that we only need to close the feedback
’ ’ loop once. This situation may happen in specific scenarios,
N (A—1)p — AL? like wheny = 2 and model-based holding functions are to
YT <y )+ A2 <Y 9 generatel and, or when controller (2) stabilizes the origin
& (A=1y— L% <%+ AL%Y ©) of system (1) in one step and the zero-input holding strategy
& 0<y?+ (AML2—1)+ 1)+ AL is employed.

) _ _ Remark 1:In [18], where the plant and the controller have

We interpret the last term on the right-hand side above a$ntinuous-time dynamics, a similar variablés introduced
a second-order polynomial i, which we denotep. Its ¢ compute the MATI. In particular; is given by the solution
discriminant sy := (AM(L?—1)+1)*—4AL?. Whend < 0,p {5 a nonlinear ordinary differential equation (see (27) in
has no real root, therefore(¢’) > 0 for all v/, which means g}y The Iatter is solved analytically and then the MATI
that any solution to (8) strictly decreases and (8) has ndfixg,qng is obtained. To analytically determiivé is a difficult
point, henceN™ is finite. task, which is the reason why we have decided to define it

Consider now the case whefe> 0 and letX := A(L> — a5 in (7), which is easy to evaluate as explained aboie.

1)+1. We show that the maximal root pf ¢ := ﬂ C. Stability guarantees

is such that) < A—1. This statement is equivalent X + The next result ensures asymptotic stability properties fo
Ve = —X + VXZ—4M2 < 2(\ — 1), which leads to gystem (5).
—X—2(A-1) < =V X? —4AL% Note that-X —2(A-1) < Theorem 1:Consider system (5) and suppose
0, otherwise we would have2(A—1) > X = A(L*~1)+1, Assumption 1 holds. For anyN € {1,...,N*},
which gives0 > AL? + X — 1, which is false as\L?> > 0 where N* is defined in (7), the compact set
andA — 1 > 0 by definition of \. Thus—X —2(A—1) < A.={(z,e,7) : 2=0,e=0,7€{1,...,N}}is:
—v/ X2 —4)L? is equivalent to — X —2(A —1))? > X2 — (i) ULAS:
2 H 2 2 !

4)‘2L , th‘;‘t we write asX® +4(A — )X +4(A —1)° > (i) UGAS when Assumption 1 holds globally;
X7—4AL". After simplifying b()2th 5|de2s of the last |neq2uallty, (i) ULES (respectively, UGES) when Assumption 1 holds
we obtain(A — 1)X + (A = 1)° + AL® = (A — NL” — (respectively, globally) with,, (s) = a, 52, @y (s) =
)+ 1)+ (A =1)* 4+ A% = \*L* > 0 which is true as av s, ay(s) = ays®, aw(s) = aws? a(s) = as?
long asL_> 0. Hence,_zp <A-1 lvhenL > 0. F(E+any £(s) — es2 for an_ys >0, With ay, @y, ayy, @w, a, € >
¥ > max{1, 0}, YT > 1 sincey > ¢ impliesy™ > ¢ = 0. N B h 0
¢, as the right-hand side of (8) is strictly increasingyn - proof. We prove item (i) of Theorem 1, the two other items
on Rx. Consequently;)(k) iteratively defined by (8) and similarly follow. We write system (5) ag* € F(q) with
initialized at\ strictly decreases wheh > 0. WhenL = 0, q == (z,e,7) for the sake of convenience. We introduce
(k) =X —1foranyk € Z>q accprdmg to (8). o Ulg) = V(z) + vo(r)W2(e) for any (z,e) € Rmatne

We have thus proved that(k) is non-increasing in all andr ¢ {1,..., N}, whereV, W, ~ come from Assumption
cases. We deduce that is finite if and only if (8) has no 1 et (z,e) € R=*ne be such thatnax{|z|, |e|} < A,
fixed point (i.e.d < 0) or wheny < 0;1The first case, .. where A comes from Assumption 1, and € {1,...,N}.
5 < 0, is equivalent tol € (1 —+vA 1+ VX ). We Let ¢ € F(q). From item (i) of Assumption 1, when
next analyse the second case. We have 0 andd > 0is ¢ = (f(z,e), g1(x,e,7),1), i.e. when a transmission occurs,
equivalent to—X + X2 —4AL? < 0 and X? — 4\L? > U Ula) < Ol W
0. These inequalities are equivalent 3 > 2v/\L, that is (¢) ~Ulg) = _O‘(|xl|)v[_/2€(ge|) - V(;g +We)
AML? — 1) + 1 > 2v/AL, which gives(v/AL — 1) > \ and +yo(WA(0) - 7¢(T)2 (e) )
| & R — —al[a]) — e(le]) — 6H(x) + 2(e)
finally L > 1++/\ . As a result,N* is finite if and only 2
. —1 —vo(T)W=(e).
if L>1-VX . (10)

To prove item (ii) of Proposition/\l, vlve study wheii2) > By definition of N* in (7) and sincer < N < N*, ¢(7) > 1,
Lwith ¢(1) = ), that is whem\;————— > 1. The latter thus~ W2 (e) — y¢(r)W?(e) < 0 and

is equivalent toA(A — 1) > X\ — 1 + AL?, which we rewrite Ul)—-U(g) < —allz]) —e(le]) < —=p(|(z,e)]),
as\? — 2\ +1=(\—1)% > \L2. Hence#(2) > 1 if and (11)



for somep € K. A. Linear time-invariant systems
When ¢ = (f(z,e),92(z,e,7),7 + 1), i.e. when no Consider the system
transmission occursy € {1,...,N — 1} and in view of
items (ii)-(iii) of Assumption 1, zf = Apry + Bpu,  y = Cpayp, (15)
U(p) —Ulq) < —a(|z]) —<(le]) — 0H?(z) +yW?(e) where (4,, B,) is stabilizable and 4,,C,) is detectable.
+yo(T + D)W2(ga(x,e,7)) — yp(T)W?2(e) We can therefore stabilize the origin of system (15) using a
< —a(|z]) —e(le]) — OH?(x) + yW?2(e) dynamic controller of the form
(7 + 1) (LW (€) + H(x))* = y(r)W?(e)

+_ _
= —a(fe) ~ &(le]) ~ 6H(2) + W(c) fe = Aetet By u = Cotet Dy (39
+yo(T + 1) (L*W(e)* + H(z)? + 2LW (e)H () We take into account the communication constraints between
—yo(T)W2(e) system (15) and controller (16), and we obtain the model
= —a(|z]) —e(le]) below in view of Section Il
—((H(x), W(e)), M(T)(H(x), W(e))), 12) ot = Az + Bre
where ((0’10)> whenr € {1,...,N}
_ [0—o(r+1) —yé(r+ 1)L et transmissio
Mir) = ( * V(_1+¢(7)_¢(T+1)L2)). <T+) N Aoz + Bae ( !
whenr € {1,...,N — 1}
. : . e (1.3) ( T+1 > T
The matrix M () is positive semi-definite if and only if (no transmissiop
0 < 0—vo(r+1) (17)
0 < (0= + 1)y (-1+9() —o(r+1L?)  Where v = (gem) € R, and A=
“2¢(r + 1212, ( Ap—i-BgDcOp BﬁC’p B - B,D. B, >,
(14) ByCyp c B 0
The first inequality follows from the fact that(r) < £ for 4 ._ —Cp(4p + ByD:Cy)  —CpB,Cy ) and
. . Y . . 2 * il
all - € {1,...,N}, as¢ is shown to be non-increasing in —CeB.Cy —CeA,
the proof of Proposition 1 ané(1) = £. The definition 3, ._ —CpBpDe —CpBy

—C.B. 0

of ¢(r + 1) in (6) is such that the left-hand side of the Th  oh h 15 A
second inequality above cancels. Indeed, the latter can he e next result shows that system (15) ensures Assump-

: tion 1 provided a linear matrix inequality holds, which then
written as(—y2(—1+ ¢(7)) —y0L?) ¢(7 + 1) + Oy(—=1+ . i
o) (the(terms ino(r + 1)? cangel), whose root, when implies that the se#d is UGES according to Theorem 1. Its

it i 1 K i 1) — Proofis omitted for space reasons.
n erpreevl(qgﬁg(}?s ) as agl un¢?7(_))w_r\1|5¢(7- +1) Proposition 2: Consider system (17) and suppose that

== , Which cor-  there exists a symmetric itive definit tixo >
—2(—1 — 120 — 20 y positive definite matfxd > v >
71+ 6(r) = 7(r) —1+ L 7 0 such that

responds to (6). The matriy\(7) is therefore positive
semi-definite, henc& (o) — U(q) < —a(|z|) — e(le]) < ( ATPA; —P+0A; A, ATPB ) -0
—p(|(z, e)]) with p as in (11). * 1+ B{ PB, '
We have proved that/(¢) — U(q) < —p(|(z,e)|) for i i (13)
any o € F(q). Let A = a,(A) where ay(s) = Then, Assumptlon 1 holds globally qnd the s_édefmed in
min{ay (3),ve%, (2)} for s > 0 (see for instance Lemma Theorem 1 is UGES wheV < N* with N* given by (7).
2.in [22]), U(q) < A implies max{|z|,|e|} < A in view
of item (i) of Assumption 1. The sefq : U(¢) <A, 7€ B |orenz model
{1,...,N}} is thus forward invariant for system (5). We
note thatoy; (lqla) < U(q) < au(|qla) whereay : s —
ay(s) +b0aw(s) € K anday; € K. We deduce that the

We consider the Euler discretization of the controlled
Lorenz model of a thermal convection Idogtudied in [26]
with sampling periodl” > 0

set.A is ULAS using Theorem 8 in [20]. |

Remark 2: The stability properties ensured by Theorem 1 vy = x4+ T(—ar + axs)
are robust to the so-called or p-perturbations wheff(z, e), vy = x4+ T(bxy — x9 — T173 + u) 19
gi(x,e,7), g2(z,e,7) in (5) are compact and non-empty r5 = a3+ T(z122 — Cc3) (19)
for any x, e, 7 (which is the case when the corresponding y = i,

mappings are continuous for instance), according to Thmeore

2.8 in [12] as the Lyapunov function used in the proof Oiwherea,l_),c > 0, see [26] f(_)r details on the meaning of the
Theorem 1 is continUous. state variables, the control input and the parameters. Wée ta

a=10,b=28, c= 3% andT = 10~%. We design the static

V. APPLICATIONS
In thi . v th | fth . . 1A careful analysis of the relationship between the stabilitthis model
n this section, we apply the resulits of the previous Sec“%hd the stability of the original sampled-data one wouldrieresting but

to linear time-invariant systems and to a nonlinear exampl@& outside the scope of this paper, see [19].



output-feedback law. = —by. After taking into account the
communication constraints, the input applied to the plant i [1]
u = —b(y+e) wheree = —y (there is no need to introduce
the error onu since the controller is static).When using
the hold-input strategy, the corresponding system satisfie
Assumption 1 withW(e) = le|, aw (s) = aw(s) = s,
L =1, H(z) =T|— azxy + azxz|, V(z) = 0.0059288z] +
2.8058 - 10023 4 0.004408625 + 2.5782x7 — 4.9865 122 +
8.0907-10" "2y 234+5.329423—7.4358-10 "o 23+ 3.047723,
which was obtained using SOSTOOLS [24], (s) = s and
somea € Koo, afs) = g(s) = 107352, § = 200, v = 2.001,
and A = /1000, for z = (x1,22,23) € R3, e € R and
s > 0. In particular, item (ii) of Assumption 1 holds for
any |z] < A ande € R, and item (iii) of Assumption 1 is
verified for anyz,e. As a consequence, the sdtdefined
in Theorem 1 is ULAS. Furthermore, in this case, the setm
{(z,e,7) : V(x) + vp(T)W?2(e) < A?} belongs to the
basin of attraction of the origin (sindé(z) > |x|? for any
x € R3). (8]
The formula in (7) givesN* = 18, while simulation
results of periodic transmissions have shown that the asymo]
totic stability of the setA for the closed-loop system is
preserved up tav* = 77. The bound we have obtained canyq,
be further improved by taking ‘smaller’ functiorrsand «,
nevertheless this may affect the robustness of the close[(lji]
loop system. Also, a different Lyapunov function would
generally lead to a differenv* (as well as a different basin [12]
of attraction). Finally, we note that Assumption 1 does not
hold when ‘zeroing’y when no transmission occurs (i.e.[13]
wheng, = 0 in (5)). In this case, item (iii) of Assumption 1
is verified with L = 0 (and H (z) = |z1 + T'(—ax1 + az2)|)
but item (ii) of Assumption 1 cannot be satisfied, otherwisélﬂ']
N* would be infinite according to item (i) of Proposition 1
(as L = 0), which means that the origin of the open-loop

[2]

(31

(4

(5]

(6]

system would be locally exponentially stable, which is no&lS]
the case. [16]
VI. CONCLUSIONS [17]

We have investigated the scenario in which a discrete-times]
controller and a discrete-time plant communicate with each
other at least eveny steps. Assuming that the correspondinqlgl
closed-loop system satisfies a robust asymptotic stability
property when there is no communication constraint, we have

. - . [20]
provided an explicit bound oV to preserve stability. The
results have been applied to linear time-invariant systems
which case the assumptions are written as a linear matrfi&l
inequality, as well as to a nonlinear physical example.

This study was motivated by [25], where we develop22]
energy-efficient transmissions strategy for time-trigger
controlled discrete-time systems implemented over a sl 53,
network.
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