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Time-triggered control of nonlinear discrete-time systems

Romain Postoyan and Dragan Nešić

Abstract— We investigate the time-triggered control of non-
linear discrete-time systems using an emulation approach.We
assume that we know a controller, which stabilizes the origin of
a discrete-time nonlinear system. We then provide conditions to
preserve stability when the control input is no longer updated at
each step, but withinN steps from the previous update, where
N is a strictly positive integer. We consider general output
feedback controllers and we allow for various holding strategies
of the control input between two updates, such as zero-inputor
hold-input policies for example. An easily computable bound
on the maximum number of steps between two updates, i.e.
N , is provided. The results are applied to linear time-invariant
systems in which case the assumptions are written as a linear
matrix inequality, and a nonlinear physical example is provided
as an illustration. This study is relevant for networked control
systems, as well as any system for which sparse or sporadically
changing control inputs are advisable in view of the resource
limitations for instance.

I. I NTRODUCTION

Control strategies that generate sparse or sporadically
varying inputs are suitable in a number of situations. Net-
worked control systems (NCS) are a typical example. These
are systems in which the plant and the controller commu-
nicate with each other via a digital channel, which may be
used by other tasks. In this set-up, the frequent transmission
of data between the plant and the controller, and thus the
frequent update of the control input, may exceed the com-
munication channel capacity, and leads to delays or packet
losses, which may destroy the desired properties of the
closed-loop system. Another example is embedded systems,
for which the computation of the control input is limited by
the available computation resources. Similar situations arise
in a variety of other control applications. In medicine for
instance, more specifically in dynamic phototherapy [7], to
develop sparse control policies would be beneficial for the
patients in order to reduce the pain induced by the treatment
[1].

Several types of such control strategies are available in the
literature. The simplest option is to hold the control inputfor
a fixed amount of time, leading totime-triggered control, see
e.g., [6], [18]. An alternative consists in adapting the trans-
missions according to the current state of the plant, we talk
of event-triggered control, see [10], [22] and the references
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therein. The idea is to evaluate a state-dependent criterion
at each step, whenever the latter is satisfied, a transmis-
sion is triggered. Event-triggered control usually generates
less transmissions than time-triggered control, however the
evaluation of the transmission condition may be difficult to
implement in some applications. Inself-triggered control,
transmissions also adapt to the system evolution but the next
triggering instant is decided based on the value of the state
at the last control input update (and not the current state as
in event-triggered control, to avoid the frequent evaluation
of the triggering condition), see [10] and the references
therein. The choice between these paradigms depends on
the considered problem, all are relevant and deserve being
investigated.

We study nonlinear discrete-time systems in this paper.
This is justified by the fact that many processes are con-
veniently modeled in discrete-time because of their intrinsic
nature or because of the tools used to construct the model, see
[15] for instance. Also, any sufficiently smooth continuous-
time model can be (approximately) discretized. Results,
which relate the stability of nonlinear discretized modelsto
the stability of the original system can be found in [19]; we
do not address this issue in this paper and leaves it for future
work. In the context of NCS, to work with a discrete model
may be convenient as it allows considering holding strategies
in which the input is set to zero when no transmission has
occurred to reduce the actuation cost, see [24] for instance.
Furthermore, equidistant transmissions naturally give rise to
discrete-time models of the form considered here. Results on
the event-triggered control of discrete-time systems can be
found in [5], [8], [13] for instance. Recently, many works
have been devoted to the design of predictive strategies
for NCS, see e.g., [2], [4], [11], [23]. At each triggering
instant, a packet containing future values of the control input
is sent to the plant, and then stored in a buffer until the
next transmission occurs. Hence, in [3], time-triggered and
self-triggered policies are presented for general nonlinear
discrete-time systems in order to optimize a discounted cost.
While this strategy allows reducing the usage of the network,
it still updates the control input value at each iteration. To
overcome this potential issue, self-triggered controllers for
constrained nonlinear systems are proposed in [9], which
generate sparse or sporadically changing control inputs,
depending on the desired specification, while guaranteeing
stability and a desired level of optimality.

In this study, we focus on time-triggered control and our
objective is to address the following problem. We assume
that we know an output-feedback controller, which uniformly
asymptotically stabilizes the origin of the plant when it is



updated at each step. We then consider the scenario where
a new control input is transmitted to the plant within every
N steps from the last transmission. Between two updates,
the input is held using a general type of functions, which
captures the hold-input and the zero-input [24] policies
as particular cases. We provide conditions on the closed-
loop system as well as an explicit bound on the maximum
allowable transmission interval (MATI), i.e.N , to guarantee
stability. In particular, sufficient conditions for local/global,
asymptotic/exponential stability are given. These conditions
are written as a linear matrix inequality for linear time-
varying systems, and a discretized Lorenz model of a thermal
convection loop is proved to satisfy the required assumptions.

The approach is inspired by the continuous-time results
in [18]. It appears that the discrete-time nature of the
problem generates differences and some non-trivial technical
difficulties compared to [18]. Indeed, we first had to modify
the assumptions on the closed-loop system, and we had to
make an assumption on aℓ2-gain contrary to [18], as will
be explained later. We then provide a bound on the MATI,
which is different from the one in continuous-time. Indeed,in
contrast with [18], we do not provide an explicit formula for
the MATI bound but a simple algorithm for its computation,
which is easy to implement. Compared to the related works
based on model predictive ideas [3], [9], the controller is an
output feedback law (we do not require to measure the full
state) and we do not rely on optimization techniques, which
may be important for applications with low computational
capacities.

II. PRELIMINARIES

Let R := (−∞,∞), R≥0 := [0,∞), and Z≥0 :=
{0, 1, 2, . . .}. For (x, y) ∈ R

n+m, (x, y) stands for
[xT, yT]T. A function χ : R≥0 → R≥0 is of classK if
it is continuous, zero at zero and strictly increasing, and it
is of classK∞ if, in addition, it is unbounded. A continuous
function χ : R

2
≥0 −→ R≥0 is of classKL if for each

t ∈ R≥0, χ(·, t) is of classK, and, for eachs > 0, χ(s, ·)
is decreasing to zero. The distance of a pointx ∈ R

n to a
setA ⊆ R

n is denoted by|x|A := inf{|x − y| : y ∈ A}.
Let P be a real, square, and symmetric matrix,λmax(P )
and λmin(P ) are respectively the largest and the smallest
eigenvalue ofP . The notationI stands for the identity matrix.
The symbol⋆ used in matrices denotes the symmetric block
component.

We will use the following stability definition.
Definition 1: Consider the systemx+ = F (x) with x ∈

R
n. The compact setS ⊂ R

n is:

• uniformly locally asymptotically stable(ULAS) if there
exist β ∈ KL and c > 0, such that for anyx(0)
with |x(0)|S ≤ c, the corresponding solution verifies
|x(k)|S ≤ β(|x(0)|S , k) for any k ∈ Z≥0.

• uniformly globally asymptotically stable(UGAS) if the
previous property holds for anyx(0).

• uniformly locally (respectively, globally) exponentially
stable (ULES (respectively, UGES)) if it is ULAS

(respectively, UGAS) andβ(s, k) = Ce−σk with C > 0
andσ > 0 for any s, k ∈ Z≥0. �

III. PROBLEM STATEMENT

Consider the system

x+p = fp(xp, u), y = gp(xp), (1)

with statexp ∈ R
np , input u ∈ R

nu , and outputy ∈ R
ny .

We design the following controller to stabilize system (1)

x+c = fc(xc, y), u = gc(xc, y), (2)

wherexc ∈ R
nc is the controller state. System (2) covers

static controllers, in which caseu = gc(y) (and no variable
xc is needed).

We study the scenario where the input to system (1)
is no longer updated by (2) at each step but sporadically,
such that there exists a maximum ofN steps between
two successive updates. The underlying idea is to transmit
as rarely as possible. Hence, denotingki, i ∈ Z≥0, the
sequence of transmission instants,ki+1 − ki ≤ N for any
i ∈ Z≥0. At each ki, the controller receives the current
value of the plant outputy, generates an updated control
input u, which is immediately transmitted to the plant. We
assume that the delays induced by the transmissions and the
computation time are negligible. For the sake of convenience,
we introduce the clock variableτ ∈ Z≥0 to count the
number of steps since the last transmission. Variableτ has
the following dynamics

τ+ =















1 when τ ∈ {1, . . . , N}
(transmission)

τ + 1 when τ ∈ {1, . . . , N − 1}
(no transmission).

(3)

In (3), when a transmission occurs, which may happen at
any time in {1, . . . , N}, τ is reset to1, otherwiseτ is
incremented by1 and this may occur when{1, . . . , N − 1},
but not whenτ = N as a transmission necessarily needs
to be triggered in this case (otherwise the inter-transmission
time will be strictly bigger thanN , which is excluded). When
τ ∈ {1, . . . , N−1}, a transmission may or may not occur. We
see that system (3) generates non-unique solutions for a given
initial condition: that is not an issue for the forthcoming
analysis.

The objective of this paper is to provide conditions to
guarantee the stability of the closed-loop system (1)-(2) in
presence of communication constraints. In particular, we aim
at providing an easily computable bound onN . We first need
to model the overall system for this purpose.

The control input applied to system (1) is no longeru, but
a sampled version of inputu, which we denotêu. Similarly,
controller (2) receives the sampled version ofy, denotedŷ.
Hence, (1) and (2) respectively becomex+p = fp(xp, û) (the
output equation does not change) andx+c = fc(xc, ŷ), u =
gc(xc, ŷ). The variableŝu andŷ have the following dynamics



like in [14]

(

û+

ŷ+

)

=























(

u+

y+

)

whenτ ∈ {1, . . . , N} (transmission)
(

ĝc(xp, xc, û, ŷ, τ)
ĝp(xp, xc, û, ŷ, τ)

)

whenτ ∈ {1, . . . , N − 1}
(no transmission),

(4)
where y+ = gp(x

+
p ) = gp (fp(xp, û)) and u+ =

gc(x
+
c , y

+) = gc (fc(xc, ŷ), gp(fp(xp, û))). The mappingŝgc
and ĝp model the way the variableŝu and ŷ are respectively
generated by the plant and the controller when there is no
transmission. A typical implementation is zero-order-hold,
meaning that̂u andŷ remain constant in absence of transmis-
sion, i.e.gc(xp, xc, û, ŷ, τ) = û andgp(xp, xc, û, ŷ, τ) = ŷ.
Another common possibility is to ‘zero’̂y and û when no
transmission occurs [24], which givegc = 0 and gp = 0.
We allow ĝc and ĝp to depend on all the variables of the
problem for the sake of generality, hence covering other types
of holding policy, such as the model-based one [16].

For the sake of convenience, and as commonly done in
the NCS literature, we introduce the sampling-induced error
e := (eu, ey) ∈ R

ne with eu := û − u, ey := ŷ − y and
ne := nu + ny. The overall system is modeled as follows

x+ = f(x, e)

(

e+

τ+

)

=































(

g1(x, e, τ)
1

)

whenτ ∈ {1, . . . , N}
(transmission)

(

g2(x, e, τ)
τ + 1

)

whenτ ∈ {1, . . . , N − 1}
(no transmission),

(5)

wherex := (xc, xp) ∈ R
nx , nx := np + nc, f(x, e) :=

(

fp(xp, gc(xc, gp(xp) + ey) + eu), fc(xc, gp(xp) + ey)
)

,

g1(x, e, τ) := (0, 0) and g2(x, e, τ) :=
(

ĝc
(

x, eu + u, ey +

y, τ
)

−gc
(

fc(xc, y+ey), ĝp(x, eu+u, ey+y, τ)
)

, ĝp
(

x, eu+

u, ey+y, τ
)

−gp
(

fp(xp, u+eu)
)

)

, with u = gc(xc, gp(xp)+

ey) andy = gp(xp).

IV. M AIN RESULT

In this section, we first state the assumptions we make
on system (5), we then provide a bound onN , which we
analyse, and we finally state the main stability results.

A. Assumption

We make the following assumption on system (5).
Assumption 1:There existV : Rnx → R≥0 continuous,

W : Rne → R≥0 continuous,αV , αV , αW , αW , α, ε ∈ K∞,
H : Rnx → R continuous,θ ≥ γ > 0, L ∈ R≥0 and∆ > 0
such that the following holds.

(i) For any (x, e) ∈ R
nx+ne , αV (|x|) ≤ V (x) ≤ αV (|x|)

andαW (|e|) ≤W (e) ≤ αW (|e|).
(ii) For any (x, e) ∈ R

nx+ne such thatmax{|x|, |e|} ≤
∆, V (f(x, e)) − V (x) ≤ −α(|x|) −ε(|e|) −θH2(x)
+γW 2(e).

(iii) For any (x, e) ∈ R
ne such thatmax{|x|, |e|} ≤ ∆,

W (g2(x, e, τ)) ≤ LW (e) +H(x).

When items (ii)-(iii) hold for any(x, e) ∈ R
nx+ne , we say

that the assumption holdsglobally. �

Item (i) of Assumption 1 means thatV andW are positive
definite and radially unbounded. Item (ii) of Assumption 1 is
a robust local stability property of the systemx+ = f(x, e).
When the loop is closed at each step,e = 0, and items (i)-
(ii) imply that the origin is uniformly locally asymptotically
stable for the systemx+ = f(x, 0), which corresponds to the
closed-loop system (1)-(2). Whene 6= 0, these items imply
that thex-system satisfies an input-to-stable stability property
with input e, and also that thex-system is (locally)ℓ2-stable
from W (e) to H(x) with gain

√

γ
θ
. It is interesting to note

that this gain is less than1 sinceγ ≤ θ. This is an important
difference compared to the continuous-time results in [18]
where there is no condition on the correspondingL2-gain.
A possible explanation is the following. The underlying idea
in [18] is that thee-system isL2-stable fromH(x) toW (e),
with a gain that can be made arbitrarily small, by selecting
the MATI bound accordingly (see Proposition 6 in [17] for a
formal statement), then a small-gain analysis allows ensuring
the stability of the overall system. In our study, we cannot
make thisℓ2-gain as small as desired because the MATI,N ,
is a strictly positive integer. Whenγ > θ, our analysis gives
N = 1, that is we transmit at each step, ase is always equal
to 0. Item (iii) of Assumption 1 is an exponential growth
condition of the dynamics of thee-system when there is no
transmission. When system (1) is linear and time-invariant,
the conditions in Assumption 1 can be written as a linear
matrix inequality, as explained in Section V-A. An example
of a nonlinear system that verifies Assumption 1 is provided
in Section V-B.

B. MATI estimate

To provide a bound onN , we introduce the variableφ ∈
R≥0 which has the following dynamics

φ+ = λ
φ− 1

φ− 1 + λL2
, φ(1) = λ, (6)

whereλ := θ
γ
≥ 1, and θ, γ, L come from Assumption 1.

We define the MATI as

N⋆ := sup {k ∈ Z>0 : φ(k) ≥ 1} . (7)

Note that the set in the right-hand side of (6) is never empty
asφ(1) = λ = θ

γ
> 1 (θ > γ according to Assumption 1).

Moreover, the denominator in (6) never cancels whenφ ≥ 1
(unlessL = 0, in which case we defineφ+ = λ). We provide
guidelines on how to computeN⋆ below but before that
we state the following result, which provides necessary and
sufficient conditions under whichN⋆ is respectively (in)finite
and strictly bigger than1.

Proposition 1: The following holds.

(i) N⋆ is finite if and only ifL > 1−
√
λ−1.

(ii) N⋆ ≥ 2 if and only if L ≤
√
λ−

√
λ
−1

. �

Proof. We first prove item (i) of Proposition 1. The idea is
to show thatφ(k), as iteratively defined by (3), does not
increase. We will see that two situations can then happen:
either the iterative map in (3) has a fixed point that belongs



to [1, λ], in which caseφ converges to it as time grows and
N⋆ is infinite, or there is no such fixed point andφ becomes
strictly less than1 in finite time.

For the sake of convenience, we introduceψ := φ− 1. To
show thatψ(k) is non-increasing is thus equivalent to show
that φ(k) is non-increasing. We have

ψ+ = φ+ − 1 = λ
ψ

ψ + λL2
− 1 =

(λ− 1)ψ − λL2

ψ + λL2
.

(8)
Let ψ ∈ [0, λ− 1],

ψ+ ≤ ψ ⇔ (λ− 1)ψ − λL2

ψ + λL2
≤ ψ

⇔ (λ− 1)ψ − λL2 ≤ ψ2 + λL2ψ

⇔ 0 ≤ ψ2 + (λ(L2 − 1) + 1)ψ + λL2.

(9)

We interpret the last term on the right-hand side above as
a second-order polynomial inψ, which we denotep. Its
discriminant isδ := (λ(L2−1)+1)2−4λL2. Whenδ < 0, p
has no real root, thereforep(ψ) > 0 for all ψ, which means
that any solution to (8) strictly decreases and (8) has no fixed
point, henceN⋆ is finite.

Consider now the case whereδ ≥ 0 and letX := λ(L2 −
1)+1. We show that the maximal root ofp, ψ :=

−X +
√
δ

2
,

is such thatψ < λ−1. This statement is equivalent to−X+√
δ = −X +

√
X2 − 4λL2 < 2(λ − 1), which leads to

−X−2(λ−1) < −
√
X2 − 4λL2. Note that−X−2(λ−1) ≤

0, otherwise we would have−2(λ−1) > X = λ(L2−1)+1,
which gives0 > λL2 + λ − 1, which is false asλL2 ≥ 0
andλ − 1 ≥ 0 by definition ofλ. Thus−X − 2(λ − 1) <
−
√
X2 − 4λL2 is equivalent to(−X − 2(λ− 1))2 > X2 −

4λL2, that we write asX2 + 4(λ − 1)X + 4(λ − 1)2 >

X2−4λL2. After simplifying both sides of the last inequality,
we obtain(λ − 1)X + (λ − 1)2 + λL2 = (λ − 1)(λ(L2 −
1) + 1) + (λ − 1)2 + λL2 = λ2L2 > 0 which is true as
long asL > 0. Hence,ψ < λ − 1 whenL > 0. For any
ψ > max{ψ, 0}, ψ+ > ψ sinceψ > ψ impliesψ+ > ψ

+
=

ψ, as the right-hand side of (8) is strictly increasing inψ
on R≥0. Consequently,ψ(k) iteratively defined by (8) and
initialized atλ strictly decreases whenL > 0. WhenL = 0,
ψ(k) = λ− 1 for any k ∈ Z≥0 according to (8).

We have thus proved thatψ(k) is non-increasing in all
cases. We deduce thatN is finite if and only if (8) has no
fixed point (i.e.δ < 0) or whenψ < 0. The first case, i.e.
δ < 0, is equivalent toL ∈ (1 −

√
λ
−1
, 1 +

√
λ
−1

). We
next analyse the second case. We haveψ < 0 andδ ≥ 0 is
equivalent to−X +

√
X2 − 4λL2 < 0 andX2 − 4λL2 ≥

0. These inequalities are equivalent toX ≥ 2
√
λL, that is

λ(L2 − 1) + 1 ≥ 2
√
λL, which gives(

√
λL− 1)2 ≥ λ and

finally L ≥ 1 +
√
λ
−1

. As a result,N⋆ is finite if and only
if L > 1−

√
λ
−1

.
To prove item (ii) of Proposition 1, we study whenφ(2) ≥

1 with φ(1) = λ, that is whenλ
λ− 1

λ− 1 + λL2
≥ 1. The latter

is equivalent toλ(λ − 1) ≥ λ− 1 + λL2, which we rewrite
asλ2 − 2λ + 1 = (λ − 1)2 ≥ λL2. Henceφ(2) ≥ 1 if and

only if λ− 1 ≥
√
λL, which corresponds to the condition in

item (ii) of Proposition 1. �

According to Proposition 1, whenL > 1 −
√
λ−1, N⋆ is

finite. To compute it, we can run a simple program where
we initialize φ at λ, and we iterate it according to (6) until
it becomes strictly less than1 at iterationN⋆ + 1. When,
in addition,L ≥

√
λ −

√
λ
−1

, we immediately know that
N⋆ = 1 according to item (ii) of Proposition 1, which means
that we transmit at each step. WhenL < 1 −

√
λ−1, N⋆ is

infinite, which means that we only need to close the feedback
loop once. This situation may happen in specific scenarios,
like when y = x and model-based holding functions are to
generatêu andx̂, or when controller (2) stabilizes the origin
of system (1) in one step and the zero-input holding strategy
is employed.

Remark 1: In [18], where the plant and the controller have
continuous-time dynamics, a similar variableφ is introduced
to compute the MATI. In particular,φ is given by the solution
to a nonlinear ordinary differential equation (see (27) in
[18]). The latter is solved analytically and then the MATI
bound is obtained. To analytically determineN⋆ is a difficult
task, which is the reason why we have decided to define it
as in (7), which is easy to evaluate as explained above.�

C. Stability guarantees

The next result ensures asymptotic stability properties for
system (5).

Theorem 1:Consider system (5) and suppose
Assumption 1 holds. For anyN ∈ {1, . . . , N⋆},
where N⋆ is defined in (7), the compact set
A := {(x, e, τ) : x = 0, e = 0, τ ∈ {1, . . . , N}} is:

(i) ULAS;
(ii) UGAS when Assumption 1 holds globally;
(iii) ULES (respectively, UGES) when Assumption 1 holds

(respectively, globally) withαV (s) = aV s
2, αV (s) =

aV s
2, αW (s) = aW s2, αW (s) = aW s2, α(s) = as2,

ε(s) = ǫs2 for anys ≥ 0, with aV , aV , aW , aW , a, ǫ >

0. �

Proof. We prove item (i) of Theorem 1, the two other items
similarly follow. We write system (5) asq+ ∈ F (q) with
q := (x, e, τ) for the sake of convenience. We introduce
U(q) = V (x) + γφ(τ)W 2(e) for any (x, e) ∈ R

nx+ne

andτ ∈ {1, . . . , N}, whereV,W, γ come from Assumption
1. Let (x, e) ∈ R

nx+ne be such thatmax{|x|, |e|} ≤ ∆,
where∆ comes from Assumption 1, andτ ∈ {1, . . . , N}.
Let ϕ ∈ F (q). From item (ii) of Assumption 1, when
ϕ = (f(x, e), g1(x, e, τ), 1), i.e. when a transmission occurs,

U(ϕ)− U(q)≤−α(|x|)− ε(|e|)− θH2(x) + γW 2(e)
+γφ(1)W 2(0)− γφ(τ)W 2(e)

=−α(|x|)− ε(|e|)− θH2(x) + γW 2(e)
−γφ(τ)W 2(e).

(10)
By definition ofN⋆ in (7) and sinceτ ≤ N ≤ N⋆, φ(τ) ≥ 1,
thusγW 2(e)− γφ(τ)W 2(e) ≤ 0 and

U(ϕ)− U(q) ≤ −α(|x|) − ε(|e|) ≤ −ρ(|(x, e)|),
(11)



for someρ ∈ K∞.
When ϕ = (f(x, e), g2(x, e, τ), τ + 1), i.e. when no

transmission occurs,τ ∈ {1, . . . , N − 1} and in view of
items (ii)-(iii) of Assumption 1,

U(ϕ)− U(q) ≤ −α(|x|) − ε(|e|)− θH2(x) + γW 2(e)
+γφ(τ + 1)W 2(g2(x, e, τ)) − γφ(τ)W 2(e)

≤ −α(|x|)− ε(|e|)− θH2(x) + γW 2(e)

+γφ(τ + 1) (LW (e) +H(x))
2 − γφ(τ)W 2(e)

= −α(|x|)− ε(|e|)− θH2(x) + γW 2(e)
+γφ(τ + 1)

(

L2W (e)2 +H(x)2 + 2LW (e)H(x)
)

−γφ(τ)W 2(e)
= −α(|x|)− ε(|e|)

−〈(H(x),W (e)),M(τ)(H(x),W (e))〉 ,
(12)

where

M(τ) :=

(

θ − γφ(τ + 1) −γφ(τ + 1)L
⋆ γ

(

−1 + φ(τ )− φ(τ + 1)L2
)

)

.

(13)
The matrixM(τ) is positive semi-definite if and only if






0 ≤ θ − γφ(τ + 1)
0 ≤ (θ − γφ(τ + 1)) γ

(

−1 + φ(τ) − φ(τ + 1)L2
)

−γ2φ(τ + 1)2L2.
(14)

The first inequality follows from the fact thatφ(τ) ≤ θ
γ

for
all τ ∈ {1, . . . , N}, asφ is shown to be non-increasing in
the proof of Proposition 1 andφ(1) = θ

γ
. The definition

of φ(τ + 1) in (6) is such that the left-hand side of the
second inequality above cancels. Indeed, the latter can be
written as

(

−γ2(−1 + φ(τ)) − γθL2
)

φ(τ + 1) + θγ(−1 +
φ(τ)) (the terms inφ(τ + 1)2 cancel), whose root, when
interpreting φ(τ + 1) as an unknown, isφ(τ + 1) =

θγ(1− φ(τ))

−γ2(−1 + φ(τ)) − γL2θ
=
θ

γ

φ(τ) − 1

φ(τ) − 1 + L2 θ
γ

, which cor-

responds to (6). The matrixM(τ) is therefore positive
semi-definite, henceU(ϕ) − U(q) ≤ −α(|x|) − ε(|e|) ≤
−ρ(|(x, e)|) with ρ as in (11).

We have proved thatU(ϕ) − U(q) ≤ −ρ(|(x, e)|) for
any ϕ ∈ F (q). Let ∆ = αU (∆) where αU (s) =
min{αV (

s
2
), γα2

W ( s
2
)} for s ≥ 0 (see for instance Lemma

2 in [22]), U(q) ≤ ∆ implies max{|x|, |e|} ≤ ∆ in view
of item (i) of Assumption 1. The set{q : U(q) ≤ ∆, τ ∈
{1, . . . , N}} is thus forward invariant for system (5). We
note thatαU (|q|A) ≤ U(q) ≤ αU (|q|A) whereαU : s 7→
αV (s) + θαW (s) ∈ K∞ andαU ∈ K∞. We deduce that the
setA is ULAS using Theorem 8 in [20]. �

Remark 2:The stability properties ensured by Theorem 1
are robust to the so-calledσ- or ρ-perturbations whenf(x, e),
g1(x, e, τ), g2(x, e, τ) in (5) are compact and non-empty
for any x, e, τ (which is the case when the corresponding
mappings are continuous for instance), according to Theorem
2.8 in [12] as the Lyapunov function used in the proof of
Theorem 1 is continuous. �

V. A PPLICATIONS

In this section, we apply the results of the previous section
to linear time-invariant systems and to a nonlinear example.

A. Linear time-invariant systems

Consider the system

x+p = Apxp +Bpu, y = Cpxp, (15)

where (Ap, Bp) is stabilizable and(Ap, Cp) is detectable.
We can therefore stabilize the origin of system (15) using a
dynamic controller of the form

x+c = Acxc +Bcy, u = Ccxc +Dcy. (16)

We take into account the communication constraints between
system (15) and controller (16), and we obtain the model
below in view of Section III

x+ =A1x+ B1e

(

e+

τ+

)

=































(

(0, 0)
1

)

whenτ ∈ {1, . . . , N}
(transmission)

(

A2x+ B2e

τ + 1

)

whenτ ∈ {1, . . . , N − 1}
(no transmission),

(17)
where x = (xc, xp) ∈ R

nx , and A1 :=
(

Ap +BpDcCp BpCp

BpCp Ac

)

, B1 :=

(

BpDc Bp

Bc 0

)

,

A2 :=

(

−Cp(Ap +BpDcCp) −CpBpCp

−CcBcCp −CcAc

)

, and

B2 :=

(

−CpBpDc −CpBp

−CcBc 0

)

.

The next result shows that system (15) ensures Assump-
tion 1 provided a linear matrix inequality holds, which then
implies that the setA is UGES according to Theorem 1. Its
proof is omitted for space reasons.

Proposition 2: Consider system (17) and suppose that
there exists a symmetric positive definite matrixP , θ ≥ γ >

0 such that
(

AT
1 PA1 − P + θAT

2 A2 AT
1 PB1

⋆ −γI+ BT
1 PB1

)

< 0.

(18)
Then, Assumption 1 holds globally and the setA defined in
Theorem 1 is UGES whenN ≤ N⋆ with N⋆ given by (7).
�

B. Lorenz model

We consider the Euler discretization of the controlled
Lorenz model of a thermal convection loop1 studied in [26]
with sampling periodT > 0

x+1 = x1 + T (−ax1 + ax2)
x+2 = x2 + T (bx1 − x2 − x1x3 + u)
x+3 = x3 + T (x1x2 − cx3)
y = x1,

(19)

wherea, b, c > 0, see [26] for details on the meaning of the
state variables, the control input and the parameters. We take
a = 10, b = 28, c = 8

3
andT = 10−3. We design the static

1A careful analysis of the relationship between the stability of this model
and the stability of the original sampled-data one would be interesting but
is outside the scope of this paper, see [19].



output-feedback lawu = −by. After taking into account the
communication constraints, the input applied to the plant is
u = −b(y+e) wheree = ŷ−y (there is no need to introduce
the error onu since the controller is static).When using
the hold-input strategy, the corresponding system satisfies
Assumption 1 withW (e) = |e|, αW (s) = αW (s) = s,
L = 1, H(x) = T | − ax1 + ax2|, V (x) = 0.0059288x41 +
2.8058 · 10−6x42+0.0044086x43+2.5782x21− 4.9865x1x2+
8.0907·10−7x1x3+5.3294x22−7.4358·10−7x2x3+3.0477x23,
which was obtained using SOSTOOLS [21],αV (s) = s2 and
someα ∈ K∞, α(s) = ε(s) = 10−3s2, θ = 200, γ = 2.001,
and ∆ =

√
1000, for x = (x1, x2, x3) ∈ R

3, e ∈ R and
s ≥ 0. In particular, item (ii) of Assumption 1 holds for
any |x| ≤ ∆ and e ∈ R, and item (iii) of Assumption 1 is
verified for anyx, e. As a consequence, the setA defined
in Theorem 1 is ULAS. Furthermore, in this case, the set
{(x, e, τ) : V (x) + γφ(τ)W 2(e) ≤ ∆2} belongs to the
basin of attraction of the origin (sinceV (x) ≥ |x|2 for any
x ∈ R

3).
The formula in (7) givesN⋆ = 18, while simulation

results of periodic transmissions have shown that the asymp-
totic stability of the setA for the closed-loop system is
preserved up toN⋆ = 77. The bound we have obtained can
be further improved by taking ‘smaller’ functionsε andα,
nevertheless this may affect the robustness of the closed-
loop system. Also, a different Lyapunov function would
generally lead to a differentN⋆ (as well as a different basin
of attraction). Finally, we note that Assumption 1 does not
hold when ‘zeroing’ ŷ when no transmission occurs (i.e.
wheng2 = 0 in (5)). In this case, item (iii) of Assumption 1
is verified withL = 0 (andH(x) = |x1 +T (−ax1 + ax2)|)
but item (ii) of Assumption 1 cannot be satisfied, otherwise
N∗ would be infinite according to item (i) of Proposition 1
(asL = 0), which means that the origin of the open-loop
system would be locally exponentially stable, which is not
the case.

VI. CONCLUSIONS

We have investigated the scenario in which a discrete-time
controller and a discrete-time plant communicate with each
other at least everyN steps. Assuming that the corresponding
closed-loop system satisfies a robust asymptotic stability
property when there is no communication constraint, we have
provided an explicit bound onN to preserve stability. The
results have been applied to linear time-invariant systemsin
which case the assumptions are written as a linear matrix
inequality, as well as to a nonlinear physical example.

This study was motivated by [25], where we develop
energy-efficient transmissions strategy for time-triggered
controlled discrete-time systems implemented over a wireless
network.
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