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Robust optimal policies for Markov decision processes with

safety-threshold constraints

Rayna Dimitrova†, Jie Fu∗, Ufuk Topcu‡

Abstract— We study the synthesis of robust optimal control
policies for Markov decision processes with transition uncer-
tainty (UMDPs) and subject to two types of constraints: (i)
constraints on the worst-case, maximal total cost and (ii) safety-
threshold constraints that bound the worst-case probability
of visiting a set of error states. For maximal total cost
constraints, we propose a state-augmentation method and a two-
step synthesis algorithm to generate deterministic, memoryless
optimal policies given the reward to be maximized. For safety
threshold constraints, we introduce a new cost function and
provide an approximately optimal solution by a reduction to an
uncertain Markov decision process under a maximal total cost
constraint. The safety-threshold constraints require memory
and randomization for optimality. We discuss the use and the
limitations of the proposed solution.

I. INTRODUCTION

Markov decision processes (MDPs) are important for

modeling and control synthesis of stochastic systems. In

practice, the transition kernels of Markov decision process

(MDP)s are often estimated from data or have unknown but

bounded parameters. For safety-critical systems, for instance

a robot with bounded resources, such as battery, the system

not only needs to perform reasonably well with respect to

its task, but also must not exhaust the resource under worst-

case uncertainty. Such resource constraints are modeled by

defining a cost function and a bound on the total (discounted

or non-discounted) cost in the worst-case realization of

model uncertainty. The control objective is to synthesize a

policy that maximizes the expected total reward in the worst

case, while satisfying the cost constraint.

For MDPs with known transition kernel, similar synthesis

problems have been extensively studied in planning for con-

strained MDP or cost-sensitive MDPs [1], [7], [13], [9], [12].

Different definitions of cost constraints lead to different so-

lution approaches: For constraints on the expected total cost,

formulations based on convex optimization were proposed

in [1], for constraints on the maximal total cost under any

possible execution, a dynamic programming approach was

developed in [7], [13]. However, none of these methods is

robust in the presence of modeling uncertainty. On the other

hand, for MDPs with uncertain parameters, robust MDPs

have been extensively studied [10], [8], [15]. Recently, robust

control of MDPs has been extended to handle expressive

temporal logic constraints [16], [3], [14]. A robust adaptive
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control design for uncertain MDP is developed [6] based on

a robust(min-max) value iteration with estimates of transition

probabilities. These approaches are based on robust policy

or value iteration.

Our notion of cost constraints is most similar to that in

[7], [13] in which the authors define maximal total cost con-

straints (or minimax constraints) so as to bound the total cost

under the worst-case path of a policy. Inspired by their work,

we use a state-augmentation method to transform planning

in uncertain MDPs with maximal total cost constraints into

a robust dynamic programming problem. After applying this

transformation, robust policy and value iteration procedures

become applicable. It is noted that the penalty method in

[13] does not exclude the chance of constraint violation:

One has to assign reward −∞ to do so. We propose a two-

step method: In the first step, the feasible set of memoryless

policies is computed, by computing a strategy in a safety

game on the graph of the uncertain MDP [4]. Within the

set of feasible policies, we compute the optimal policy with

respect to the given reward criterion.

In addition to maximal total cost constraints, we also

consider safety-threshold constraints. These are a special

case of expected total cost constraints, where we wish to

enforce a bound on the probability of reaching a set of error

states. We investigate the problem of computing a robust op-

timal policy under safety-threshold constraints. We propose a

method to approximate the optimal solution by introducing

a new cost function and applying the two-step algorithm.

This approach is inherently conservative, since under safety-

threshold constraints memory and randomization are needed

to achieve optimality. We discuss this conservativeness and

highlight its effects using several examples.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Definitions

For a finite set X = {1, . . . , |X|}, D(X) denotes the

probability simplex in R
|X|. Given a distribution µ ∈ D(X),

Supp(µ) = {x ∈ X | µ(x) 6= 0} is the support of µ.

We define uncertain Markov decision process (UMDP)s

following the notation and formulation in [15]. A UMDP

is a tuple M = (S,A,P, µ0, r, c) where S = {1, . . . , n}
and A = {1, . . . ,m} are finite sets of states and actions

respectively (n is the number of states and m is the num-

ber of actions in M). µ0 is the initial state distribution.

r : S × A × S → R and c : S × A × S → R

are reward and cost functions, respectively. The method

presented herein naturally extends to handle constraints with

respect to multiple cost functions, but for simplicity of the



presentation we consider UMDPs with a single cost function.

The transition probability function is uncertain and captured

by an ambiguity set

P = {P ∈ D(S)n×m : ∃ξ ∈ Ξ such that

P (· | s, a) = p(ξ; s, a), ∀(s, a) ∈ S ×A},

where P (· | s, a) represents the probabilities of reaching

states in S from s after action a being taken, Ξ ⊂ R
q is

the set of uncertain parameters of size q, and p(ξ; s, a) is

an affine function from Ξ to D(S). We make the following

assumption regarding the set of uncertain parameters.

Assumption II.1. The set Ξ is polyhedral, i.e.,

Ξ = {ξ ∈ R
q : alξ + bl ≥ 0 ∀l = 1, . . . , L}

where L is the number of constraints on the uncertain

parameters ξ and q is the dimension of ξ.

We overload the term UMDP to refer to tuples of the

form M = (S,A,P, µ0) and also of the form M =
(S,A,P, µ0, r), i.e., for the cases when we do not have

reward and/or cost functions. In the case when the ambiguity

set is a singleton P = {P}, we obtain a conventional MDP,

which we denote by M = (S,A, P, µ0).
The labeled digraph G = (S,E) of an MDP M =

(S,A, P, µ0) is defined such that (s, a, s′) ∈ E if and only

if P (s′ | s, a) 6= 0.

We assume the following about the ambiguity set P .

Assumption II.2. For any P, P ′ ∈ P , the graph of the MDP

M = (S,A, P, µ0) is the same as that of the MDP M ′ =
(S,A, P ′, µ0). That is, all distributions defined by P have the

same support, which defines precisely the graph structure.

Under Assumption II.2, the graph induced by a UMDP is

uniquely defined, and we denote it by G = (S,E).
A policy for a UMDP M = (S,A,P, µ0, r, c) is a

sequence of functions π = (πt)t∈I where I = [0, T ] for

T < ∞ if we consider a finite horizon, and T = ∞ if

we consider an infinite horizon, and πt : S → D(A) is a

probability distribution over the action space A according to

which the next action is chosen. A policy is memoryless if

πt = πt′ for all t, t′ ∈ I . We denote a memoryless policy

simply by π = (π)t∈I by slightly overloading the notation.

A policy is deterministic if πt : S → A. Thus, a memoryless

and deterministic policy is a function π : S → A.

Given a transition kernel P , a policy π induces a Markov

chain (st, at)t∈I . The expected total reward of (st, at)t∈I

under a discounting factor γ ∈ (0, 1] is

V P,π,µ0

r = E
P,π

[
∑

t∈I

γtr(st, at, st+1) | s0 ∼ µ0

]
.

B. Problem formulation

For a UMDP the expected total reward is uncertain, as

it depends on the uncertain transition kernel. Therefore, we

consider the synthesis of policies that are robust to such an

uncertainty, in the sense that we are looking for a policy that

maximizes the worst-case expected reward

V π,µ0

r = inf
P∈P

V P,π,µ0

r . (1)

To bound the expected total reward for the infinite-horizon

case when γ = 1, we assume that there exists a set of sink

states 1. A non-empty subset of sink states are accepting and

a path under any policy must eventually reach an accepting

sink state. The rewards of the self-loop transitions in all

accepting sink states are 0.

Similarly, the total cost associated with a policy π also

depends on the unknown transition kernel. Our goal is to

synthesize policies for which the worst-case maximal total

non-discounted cost is below a given threshold. The reason

for considering non-discounted cost is that constraints typi-

cally represent limited energy and time resources. Resource

consumption is not discounted, and typically the required

policies should bound the total cost for all possible execu-

tions resulting from the policy under all possible realizations

of the uncertainty in the model. Formally, the maximal total

cost of a policy π is defined by the upper bound

V π,µ0

c = sup
P∈P

V P,π,µ0

c , where

V P,π,µ0

c = sup
(St,At)t∈I∈Supp((st,at)t∈I)

[
∑

t∈I

c(St, At, St+1)

]

(2)

and where (St, At)t∈I is a sample in the Markov chain

(st, at)t∈I induced by π in the MDP with transition kernel P .

The main problem we study is stated as follows.

Problem 1. Given a UMDP M = (S,A,P, µ0, r, c), and a

discounting factor γ, and an upper bound η on the maximal

total cost, compute a policy π∗ that satisfies the conditions

V π∗,µ0

r ≥ V π,µ0

r for all policies π with V π,µ0

c ≤ η (3)

and

V π∗,µ0

c ≤ η. (4)

Next we present a method for computing a solution to

Problem 1, i.e., for computing a robust optimal policy in a

UMDP with a constraint on the maximal total cost.

III. MAIN RESULTS

We assume that r(s, a, s′) ≥ 0 and c(s, a, s′) ≥ 0 for

all (s, a, s′) ∈ S × A × S, and that η ≥ 0. In order to

compute a policy enforcing the cost constraint in the UMDP,

we augment the state space of the UMDP with a cost state

variable h whose domain is [0, η]. For simplicity, we give the

definition of cost-augmented MDP. The construction extends

naturally to UMDPs using the definition of ambiguity sets

for the transition function.

1A state s is a sink state if for all a ∈ A, P (s | s, a) = 1.



A. Cost-augmented uncertain MDP

We first provide the construction of cost-augmented MDP

for the non-discounted case, i.e., γ = 1. We then show how

the construction can be extended to discounted MDPs.

Definition 1 (Cost-augmented MDP: Non-discounted case).

Given an MDP M = (S,A, P, µ0, r, c), a discounting factor

γ = 1, and an upper bound on the cost η, a cost-augmented

Markov decision process (aug-MDP) M̃ is

M̃ = (S̃, A, P̃ , µ̃0, γ, r̃)

with components defined as follows.

• S̃ = S ×H ∪ {sink} is the augmented state space. An

augmented state (s, h) ∈ S̃ consists of a discrete state

s and a cost state h ∈ [0, η]. sink is a new sink state.

• P̃ is the transition probability function defined as fol-

lows: 1) For a given state (s, h) and an action a, in

case that there exists s′ such that P (s′ | s, a) 6= 0, if

h′ = h − c(s, a, s′) ≥ 0, let P̃ ((s′, h′) | (s, h), a) =
P (s′ | s, a); otherwise the system transits to the

new sink state sink by letting P̃ (sink | (s, h), a) =∑
(s′∈S:h−c(s,a,s′)<0) P (s′ | s, a). 2) For any s′ such

that P (s′ | s, a) = 0, P̃ ((s′, h′) | (s, h), a) = 0 for any

pair h, h′ ∈ H . 3) Lastly, P̃ (sink | sink, a) = 1 for any

a ∈ A.

• µ̃0 ∈ D(S̃) is defined such that µ̃0((s, η)) = µ0(s) for

all s ∈ S and µ̃0((s, h)) = 0 for any h 6= η.

• r̃ : S̃ × A × S̃ → R is the cost function defined such

that r̃((s, h), a, (s′, h′)) = r(s, a, s′) for any h, h′ ∈ H
and r̃(s̃, a, sink) = 0 for any s̃ ∈ S̃.

Given a UMDP M = (S,A,P, µ0, r, c) we can define

analogously the corresponding UMDP augmented with a

cost state M̃ = (S̃, A, P̃, µ̃0, r̃), and term it cost-augmented

uncertain Markov decision process (aug-UMDP).

In cases when γ 6= 1, one can transform the discounted

MDP to a non-discounted MDP. It is proven in [5] that for

any policy, the expected total rewards are the same in the

resulting non-discounted MDP and the original discounted

MDP. It is also straightforward to show that the maximal

total costs are the same because the transformation does not

affect the total cost/reward for a single path, though it affects

the probability measure of paths under a given policy.

B. Constraint satisfaction

Proposition 1. Given aug-UMDP M̃ and a policy π, let

M̃π = (s̃t, ãt)0≤t<∞ be the induced uncertain Markov

chain. If sup
P∈P̃ P

P,µ̃0(∃t : 0 ≤ t < ∞, s̃t = sink) = 0,
then the maximal cost constraint (4) is satisfied.

Proof. The proof directly follows from the construction of

the aug-UMDP: To violate the maximal total cost constraint

(4), a path must visit the state sink. Since the policy π avoids

sink with probability 1 under any possible P ∈ P , it holds

that π enforces the constraint (4).

Under Assumption II.2, we can compute a memoryless

policy from the graph G̃ = (S̃, Ẽ) of the given aug-UMDP

which ensures satisfaction of (4). To this end, we compute

a function fsafe : S̃ → 2A that maps each state to a set

of “safe actions” from that state. For any state (s, h) where

fsafe is defined, a policy only taking an action from fsafe(s, h)
is guaranteed to satisfy the constraint. The procedure for

computing fsafe is given in Algorithm 1. Note that the input

of Algorithm 1 is a general labeled graph G = (S,E). For

computing fsafe, we apply Alg. 1 to the graph G̃ = (S̃, Ẽ) of

the given aug-UMDP and set of sink states Ssink = {sink}.

Input: A labeled graph G = (S,E) with E ⊆ S ×A× S.
A set of sink states (nodes) Ssink ⊆ S.
Output: A function fsafe : S → 2A.
Initialize W0 := S \ Ssink, fsafe(s) := ∅ for all s ∈ S;
while True do

Wi+1 := Wi ;
for s ∈ Wi do

fsafe(s) := {a ∈ A | ∀(s, a, s′) ∈ E : s′ ∈ Wi+1} ;
if fsafe(s) = ∅ then Wi+1 := Wi+1 \ {s};

end
if Wi+1 = Wi then break;

end
return fsafe;

Algorithm 1: Almost sure constraint satisfaction.

The Lemma below follows from the construction of fsafe.

Lemma 1. Under Assumption II.2, let fsafe : S̃ → 2A be

the function obtained by Algorithm 1. The set of memoryless

policies feasible with respect to the cost constraint (4) is

Π = {π : S ×A → [0, 1] | π(s, a) > 0 ⇔ a ∈ fsafe(s)}.

We can use the function fsafe to compute the feasible

solutions to Problem 1 in the set of memoryless polices.

C. A two-step solution for UMDP

Now it is clear that given the function fsafe in the cost-

augmented UMDP we can prune in each state all the actions

not allowed by this function and compute a robust optimal

policy in the UMDP after this modification. Formally, the

revised UMDP M̃R = (S̃, A, P̃R, µ̃0, r̃) is such that PR ∈ P̃R

if and only if there exists a P ∈ P̃ such that for any s̃, a,

if a ∈ fsafe(s̃) then PR(· | s̃, a) = P (· | s̃, a), otherwise

PR(· | s̃, a) is the zero vector. Then, the robust optimal policy

in M̃R is a solution to Problem 1 for the given UMDP.

The robust optimal policy for an uncertain MDP can be

computed using various methods [10], [16], [15].

IV. SAFETY-THRESHOLD CONSTRAINTS

In this section, we study the synthesis problem subject

to safety-threshold constraints. The goal is to bound the

probability of visiting a set of error/unsafe states while

maximizing the expected total reward. We show that the

solution approach proposed for Problem 1 serves as an

approximate solution to this problem.

A. Cost function for safety-threshold constraints

Let M = (S,A,P, µ0, r) be a UMDP and let Serr ⊆ S
be a given a set of error states. We assume that each s ∈ Serr

is a sink state and not initial, i.e., µ0(s) = 0.



For an MDP with transition kernel P and a policy π we

define the safety value V P,π,µ0

s of π to be the probability of

reaching Serr under the policy π in M . Formally,

V P,π,µ0

s =
∑

t∈I

P
P,π [st ∈ Serr | s0 ∼ µ0, ∀t

′ < t, st′ /∈ Serr ] .

(5)

Then, the safety-value of a policy π in a UMDP is defined

by the upper bound (i.e., worst case)

V π,µ0

s = sup
P∈P

V P,π,µ0

s . (6)

Problem 2 (Robust optimality under a safety threshold).

Given a UMDP M = (S,A,P, µ0, r) and a real-valued

constant η ∈ [0, 1], compute a policy π∗ such that

V π∗,µ0

r ≥ V π,µ0

r for all policies π with V π,µ0

s ≤ η (7)

and

V π∗,µ0

s ≤ η. (8)

We now show how we can solve Problem 2 conservatively

by reducing it to Problem 1 using the following cost function.

Let csafety : S × A × S → R be the cost function such

that, for s, s′ ∈ S and a ∈ A, we have, if s 6∈ Serr ,

csafety(s, a, s
′) = sup

P∈P

∑

s′′∈Serr

P (s, a, s′′)

and, if s is a sink state, csafety(s, a, s
′) = 0. Intuitively,

csafety(s, a, s
′) is the worst-case probability of entering a

state in Serr when taking action a in state s. Note that the

value csafety(s, a, s
′) does not depend on the successor state

s′, but is determined by the current state s and the action a.

The following proposition formalizes the relationship be-

tween the maximal total cost V π,µ0

c (used in Problem 1)

based on the cost function csafety defined above, and the

safety value V π,µ0

s (used in Problem 2). More precisely, we

show that V π,µ0

s ≤ V π,µ0

c for every policy π. Intuitively, the

value V P,π,µ0

s is the probability measure of the set of paths

in the resulting Markov chain that reach the set Serr of error

states. This is the sum of the measures of all cones of the

finite paths reaching Serr . The value V π,µ0

c , on the other

hand, is the maximal sum of transition costs over all paths.

Each such sum corresponds to the sum of the probabilities of

the taken actions to enter Serr in one step. For each element

of the sum, the probability of the path prefix is not accounted

for in V π,µ0

c , which leads to an over-approximation of the

safety value. We give a bound on the effect of this over-

approximation through a bound on V π,µ0

c , provided that it

is finite. This bound is the sum of the cost of all transitions

entering Serr , and is easily obtained from the worst-case

probability of actions entering Serr .

Proposition 2. Let M = (S,A,P, µ0, r) be a UMDP,

and Serr ⊆ S be a set of error states. Let Msafety =
(S,A,P, µ0, r, csafety) be the UMDP obtained from M by

adding the cost function csafety defined by Serr .

Let π be a memoryless policy in M (and Msafety ). Then,

V π,µ0

s ≤ V π,µ0

c . Furthermore, if V π,µ0

c < ∞, then V π,µ0

c ≤∑
(s,a,s′),s′∈Serr

supP∈P P (s, a, s′), where the above sum is

over edges (s, a, s′) in the Markov chain Mπ induced by the

policy π.

Proof. Let M = (S,A, P, µ0, r) be an MDP with P ∈ P
and π be a memoryless policy inducing a Markov chain Mπ .

We define functions vs, vc : S → R ∪ {∞} as fol-

lows: For a sink state s, let vs(s) = vc(s) = 0;

For a non-sink state s and a = π(s), let vs(s) =∑
s′∈Serr

P (s, a, s′) +
∑

s′∈S\Serr
P (s, a, s′) · vs(s

′), and

vc(s) = maxs′∈S,P (s,a,s′)>0 (csafety(s, a, s
′) + vc(s

′)) .
Thus, vs(s) is the probability of visiting a state in Serr

and vc(s) is the maximal total cost of a path ending in a sink

state. The definitions imply that V π,µ0

s =
∑

s∈S µ0(s) ·vs(s)
and V π,µ0

c = maxs∈S,µ0(s)>0 vc(s). To show that V π,µ0

s ≤
V π,µ0

c it suffices to prove vs(s) ≤ vc(s) for all s ∈ S.

Given the definition of cost function csafety , we have

vc(s) = max
s′∈S,P (s,a,s′)>0

(
sup
P ′∈P

∑

s′′∈Serr

P ′(s, a, s′′) + vc(s
′)

)
,

≥
∑

s′∈Serr

P (s, a, s′) + max
s′∈S\Serr ,P (s,a,s′)>0

vc(s
′).

On the other hand,

vs(s) =
∑

s′∈Serr

P (s, a, s′) +
∑

s′∈S\Serr

P (s, a, s′) · vs(s
′)

≤
∑

s′∈Serr

P (s, a, s′) + max
s′∈S\Serr ,P (s,a,s′)>0

vs(s
′).

Since vc(s) = vs(s) for all sink states s, using backward

induction, we have vs(s) ≤ vc(s) for all s ∈ S.

Now suppose that V P,π,µ0

c < ∞. Since the transition costs

are non-negative, each infinite path from an initial state in

Mπ
safety contains only finitely many transitions with non-zero

cost. Thus, for each such path τ in Mπ
safety with total cost

cτ we have that cτ ≤
∑

(s,a,s′),s′∈Serr
supP∈P P (s, a, s′),

since if there is a repeated transition in the path τ , then a

path containing a cycle with infinite cost can be constructed

(a contradiction). We can then conclude that V P,π,µ0

c ≤∑
(s,a,s′),s′∈Serr

supP∈P P (s, a, s′). Since the kernel P was

arbitrarily chosen from P , the claim follows.

The proposition above implies that every feasible solution

to Problem 1 is a feasible solution to Problem 2. The follow-

ing example demonstrates that the converse does not hold.

Hence, an optimal solution of Problem 1 can be sub-optimal

for Problem 2. When the UMDP does not contain paths with

unbounded costs, we can bound the difference between max-

imal total cost and expected total cost of a memoryless and

deterministic policy by
∑

(s,a,s′),s′∈Serr
supP∈P P (s, a, s′).

Although this bound is rather coarse, in the cases when the

probabilities on transitions entering error states (and their

sum) are small, the difference V π,µ0

c − V π,µ0

s is also small.

We now illustrate the difference between the safety value

and the maximal total cost and the approximation the latter

one induces with respect to Problem 2 using several exam-

ples. For simplicity of the presentation, in the examples we

use MDPs, but since those are a special case of UMDPs, the

same can be done for UMDPs.
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Fig. 1. The MDP M = (S,A, P, µ0, r) used in Example 1 and Example 2.

Example 1. Consider the MDP M = (S,A, P, µ0, r) with

transition probabilities shown in Figure 1. The initial distri-

bution is such that µ0(0) = 1 and µ0(s) = 0 for all s 6= 0.

The reward function is such that r(s, a, s′) = 1 if s 6= 6 and

s′ = 6, and r(s, a, s′) = 0 otherwise.

Consider the set of error states Serr = {4} and η =
0.1. By the definition of csafety we have (omitting the sub-

script): c(0, a1, 1) = c(1, a, 6) = c(1, a, 7) = c(2, a, 6) =
c(6, a, 6) = c(7, a, 7) = c(4, a, 4) = 0, c(0, a2, 2) =
c(0, a2, 3) = c(0, a2, 4) = c(0, a3, 4) = c(0, a3, 5) =
c(5, a, 4) = c(5, a, 6) = 0.05, c(3, a, 4) = c(3, a, 6) = 0.1.

Now, consider three memoryless deterministic policies

π1, π2, π3 : S → A with πi(0) = ai, πi(s) = a for

i ∈ {1, 2, 3} and s 6= 0. Their values are as follows:

V ·,µ0

r V ·,µ0

s V ·,µ0

c

π1 0.3 0 0

π2 0.9 0.1 0.15

π3 0.9025 0.0975 0.1

This example demonstrates that solving Problem 2 approx-

imately by formulating it as Problem 1 introduces conser-

vatism. More specifically, for policy π2 we have V π2,µ0

s =
0.1 ≤ η and V π2,µ0

c = 0.15 > η. Thus, policy π2 does

not satisfy the constraint of Problem 1, while it satisfies the

one in Problem 2. Policy π3, on the other hand, meets both

constraints, and since it has value better than that of policy

π1, it is the optimal solution to Problem 1. (Note that in

this example policy π3 is also optimal for Problem 2. In

Section V we will see an example where the optimal solution

to Problem 1 is sub-optimal for Problem 2.)

For a known MDP M = (S,A,P, µ0, r), that is when the

set P is a singleton, the approximation introduced by con-

sidering Problem 1 with the cost function csafety precisely

coincides with the approximation used in [11]. In [11] the

probability of exiting a set of feasible (in our case, safe)

states is over-approximated by the sum of probabilities of

doing so in each step of the execution. For a known MDP,

the cost c(s, a, s′) is exactly the probability of entering a

state in Serr , and, in this case, we impose an upper bound

on the sum of the probabilities for the individual steps by

the total cost of the optimal policy for Problem 1.

As we saw in Section III-A, the computation of a robust

optimal policy under a maximal total cost constraint can be

precisely reduced to computing a robust optimal policy in a

cost-augmented UMDP. Since for a UMDP with rectangular

uncertainty the optimal expected reward can be achieved by

a deterministic policy [15], the same holds after adding a
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Fig. 2. The MDP M = (S,A, P, µ0, r) used in Example 3.

maximal total cost constraint. This, however, is not the case

for a safety threshold constraint (i.e., Problem 2), as it can

be seen in the example we give below.

Example 2. Consider the MDP from Example 1, again with

set of error states Serr = {4}. Now, however, let η = 0.05.

Clearly, the policy π1 defined in Example 1 is the only deter-

ministic solution to Problem 2 since V π1,µ0

s = 0 < 0.05 = η.

Let π4 be the randomized policy such that π4(0, a1) = 0.5
and π4(0, a3) = 0.5. We have that V π4,µ0

s = 0.5 · 0 + 0.5 ·
0.0975 = 0.04875 and thus, π4 meets the threshold η = 0.05.

Moreover, we have that V π4,µ0

r = 0.5 ·0.9025+0.5 ·0.3 =
0.60125 > 0.3 = V π1,µ0

r , meaning that π4 has better

expected reward than π1. Thus, if we allow randomized

policies, policy π1 is not an optimal solution to Problem 2.

Note that V π4,µ0

c = 0.1 > η, i.e., π4 is not feasible for

Problem 1. Randomized policies are not more powerful than

deterministic ones when considering Problem 1.

In Proposition 2 we established a bound on the difference

between the expected total cost and the maximal total cost

under the assumption that the latter one is finite. Below we

give an example of an MDP where this is not a case.

Example 3. Consider the MDP M = (S,A, P, µ0, r) with

transition probabilities given in Figure 2 and initial distri-

bution where µ0(0) = 1 and µ0(s) = 0 for all s 6= 0. Let

Serr = {3} be a set of error states and let r(0, a, 2) = 1 and

r(s, a, s′) = 0 if s 6= 0 or s′ 6= 2. For the single policy π in

M we have V π,µ0

s = 0.1 for the probability of reaching Serr .

Since csafety(1, a, 1) = csafety(1, a, 3) = 0.1, every path of

the form s0s
k
1s3 has cost (k + 1) · 0.1. Thus, V π,µ0

c = ∞.

In order to capture the safety value using the maximal total

cost constraint more precisely, one way is to pre-compute all

states from which an error state is reached almost surely for

all possible policies and then make all such states error states

as well. Formally, this set of states is Sunsafe = {s | ∀π ∈
Π, ∃P ∈ P,PP,π(st ∈ Serr | s0 = s) = 1}. Note that

Sunsafe can be computed from the graph of a UMDP, using

the algorithm described in [2, Teorem10.112].

In Example 3, we have Sunsafe = {1, 3} and by revising

Serr = Sunsafe, the maximal total cost becomes 0.1, which

is the cost of transitioning to the new sink error state 1.

V. EXAMPLES

In this section we give two examples of UMDPs and

illustrate the solutions to Problem 1.

Example 4. Consider the UMDP whose nominal transition

probabilities are shown in Figure 3. The only uncertain

transition is action b in state 2 with uncertainty ±0.05. We

have initial distribution µ0(1) = 1 and µ0(s) = 0 for s 6= 1.
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Fig. 3. The UMDP M = (S,A,P, µ0, r, c) used in Example 4.
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Fig. 4. The UMDP M = (S,A,P, µ0, r) used in Example 5.

The reward function is such that r(5, b, 8) = r(6, b, 8) =
r(7, b, 8) = 16 and r(s, σ, s′) = 0 for all other edges. That

is, to collect the reward, the goal is to visit state 8. The

discounting factor for the reward is γ = 0.5.

Essentially, there are two possible policies in this UMDP

that may reach state 8 starting from the initial state. Intu-

itively, these two policies model two different paths to state

8, depending on the action chosen at the initial state. Let

πa be the policy such that πa(1) = a and πa(s) = b for all

s 6= 1, and let πb be the policy where πb(s) = b for all s.

Since both policies πa and πb reach state 8 after 3
transitions with the exact same probability, they have the

same expected total reward. More precisely,V πa

r = V πb

r = 4.

The cost function is such that c(2, b, 5) = 1, c(2, b, 6) = 5,

c(8, b, 8) = 0, c(3, a, 3) = 0 and c(s, σ, s′) = 3 for all other

edges. The maximal total cost of policy πa is V πa

c = 11, and

the maximal total cost for πb is V πb

c = 9.

Let η = 10. In this case, since V πa

c > η and V πb

c < η,

from these two policies only πb satisfies the maximal cost

constraint, and thus, policy πb is the solution to Problem 1.

Example 5. Consider the UMDP with nominal transition

probabilities shown in Figure 4 and uncertainty ±0.05. We

have initial distribution µ0(1) = 1 and µ0(s) = 0 for s 6= 1.

The reward function is such that r(3, a, 7) = r(6, a, 7) =
16 and r(s, σ, s′) = 0 for all other edges. The reward is col-

lected by visiting state 7. The discounting factor is γ = 0.5.

There are two possible policies that may reach state 7,

starting from state 1. Let πa be the policy that chooses action

a in all states, and πb the one that selects b in state 1 and

a in all other states. Due to the discounting, the expected

reward of πa is higher than that of πb, since, intuitively,

policy πa allows reaching the goal faster than policy πb.

Consider a set of error states Serr = {8}, which defines

the cost function csafety , and a safety threshold η = 0.55.

The cost of each transition is the maximal probability to

enter state 8. Thus, policy πa is more risky than πb, in the

sense that at each state it has probability 0.3 to enter Serr ,

while for policy πb the risk at each state is 0.15.

The maximal total cost of policy πa is V πa

c = 0.6, and

of πb is V πb

c = 0.45. Since V πa

c > η and V πb

c < η, the

robust optimal solution to Problem 1 is πb. The worst case

probability of πa reaching Serr is V πa

s = 0.51 ≤ η, meaning

that πb is sub-optimal for Problem 2, since V πa

r > V πb

r .

VI. CONCLUSION

In this work we studied the synthesis of robust optimal

control policies for uncertain MDPs subject to cost con-

straints. We focus on constraints bounding the worst-case

maximal total cost and safety-threshold constraints defined

by the probability of visiting error states. We proposed a

method for robust policy synthesis that yields robust optimal

solutions under maximal total cost constraints. Our technique

readily applies in the case of safety-threshold constraints, but

the resulting solution may be sub-optimal.
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