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Sequential Empirical Coordination

Under an Output Entropy Constraint
Ehsan Shafieepoorfard and Maxim Raginsky, Senior Member, IEEE

Abstract—This paper considers the problem of sequential
empirical coordination, where the objective is to achieve a given
value of the expected uniform deviation between state-action
empirical averages and statistical expectations under a given
strategic probability measure, with respect to a given universal
Glivenko-Cantelli class of test functions. A communication
constraint is imposed on the Shannon entropy of the resulting
action sequence. It is shown that the fundamental limit on
the output entropy is given by the minimum of the mutual
information between the state and the action processes under
all strategic measures that have the same marginal state
process as the target measure and approximate the target

measure to desired accuracy with respect to the underlying
Glivenko–Cantelli seminorm. The fundamental limit is shown to
be asymptotically achievable by tree-structured codes.

Index Terms—coordination via communication, empirical
processes, sequential rate distortion, causal source coding

I. INTRODUCTION

DECISION-MAKING in the presence of limited commu-

nication or information acquisition resources has long

been a major topic of interest in the study of both networked

control systems [1]–[5] and economics [6]–[12]. The prob-

lem becomes more intricate when causality constraints are

imposed, and decisions must be made in real time. There are

many recent works on this topic dealing with various types of

information constraints and structural assumptions about the

source (see, e.g., [13]–[20]).

Reconstruction of an information source from its com-

pressed version subject to a fidelity criterion is the focus of

rate-distortion theory [21]; there is also a sequential general-

ization of rate-distortion theory [22, Ch. 5] to reconstruction

problems with causality constraints (additional relevant works,

motivated by video and perceptual coding, include [23]–[25]).

Moreover, when the reconstruction is fed into a controller that

can act on the information source, and if one can establish

some form of the separation principle between estimation and

control, the methods of sequential rate-distortion theory can be

brought to bear on the problem of optimal quantizer design

for this problem of control under communication constraints

[4], [26]–[34].
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However, there is an alternative perspective on the problem

of compressed representations in networked control systems

– that of empirical coordination under communication con-

straints. The problem of coordination, first introduced in the

information theory literature by Cuff et al. [35] (see also

[36]), can be stated as follows: Consider a finite collection

of decision makers (or DM’s, for short), who wish to generate

actions in response to a random state variable according

to some prescribed policy, but can only receive information

about the state over finite-capacity noiseless digital links.

Suppose that we have a large number of independent and

identically distributed (i.i.d.) copies of the state, and let the

DM’s generate a sequence of actions based on the information

they receive about this state sequence. What are the minimal

communication requirements (in bits per copy), to guarantee

that the long-term empirical frequencies of realized states

and actions approximate, to desired accuracy, the ideal joint

probability law of states and actions induced by the marginal

law of the state and the policy?

Cuff et al. [35] assume that both the state and the actions

take values in finite sets, and measure the quality of approx-

imation by the total variation distance between the empirical

distribution of states and actions and the target joint distri-

bution. However, this criterion is inapplicable to continuous-

valued states and/or actions with nonatomic probability laws

because the total variation distance between any nonatomic

probability measure and any discrete probability measure

attains its maximal value. To resolve this issue, Raginsky [37]

proposed a relaxed approximation criterion: Fix a suitable

class of bounded real-valued test functions on the space of

all state-action pairs and consider the worst-case deviation

between their empirical averages and their expectations with

respect to the target measure. Under the regularity assumption

that the class of test functions has the so-called universal

Glivenko–Cantelli property (cf. [38] and references therein,

as well as Section II for definitions), Raginsky [37] obtained

a full information-theoretic characterization of the minimal

communication requirements for empirical coordination. Since

any uniformly bounded class of real-valued functions on a

finite set is universal Glivenko–Cantelli, the framework of [35]

emerges as a special case.

In this paper, we present an extension of the empirical

coordination framework of [37] to the sequential setting: We

consider a two-terminal network consisting of a sender and

a decision-maker (DM). The sender observes N independent

copies of a discrete-time state process of fixed finite duration

T . It is useful to think of each copy as input data for

a task, which involves taking T actions contingent on the

http://arxiv.org/abs/1710.10255v2
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states. Completion of the task involves implementing a fixed

causal policy on the state process corresponding to that task.

However, the DM has no direct access to the state processes.

Instead, the sender can communicate with the DM over a

finite-capacity noiseless digital channel, and the idea is to

exploit statistical regularity across tasks to reduce the amount

of communication needed to guarantee that, on average, the

performance of the DM on all the tasks resembles the ideal

joint distribution of states and actions prescribed by the policy.

Thus, we are interested in the communication complexity

of coordination, i.e., the minimal amount of communication

needed to guarantee that, in the limit as N → ∞, the

empirical distribution of states and actions at each time t ∈ [T ]
can approximate the state-action distribution induced by the

state process law and by the policy specification. The coding

scheme employed by the sender must satisfy the sequentiality

constraint: The signal transmitted by the sender to the DM

at time t may only depend on the realizations of the state

processes up to time t. Following Tatikonda [22], we quantify

the communication resources by the Shannon entropy of the

signal process. Entropy constraints on the quantizer output are

commonly used in causal source coding problems [39], where

the compressed representation of the source at time t may

depend on the present and on the past source samples, but not

on the future ones.

Our main contribution is a full information-theoretic char-

acterization of the fundamental limit on the amount of com-

munication from the sender to the DM in the setting of

sequential empirical coordination. We refer to this fundamental

limit as the sequential rate-distortion function for empirical

coordination. Specifically, we show that, for all large enough

N , this fundamental limit can be achieved by means of tree-

structured codes of the kind employed by Tatikonda [22], and

that no sequential scheme for empirical coordination can beat

this fundamental limit.1 While we do not make any structural

assumptions on the state process (e.g., it is not assumed to be

memoryless, Markov, ergodic, etc.), we assume that the target

policy is feedforward (i.e., there is no functional dependence

of future states on current and past actions).

Like other set-ups that include the interplay between infor-

mation acquisition and decision-making, the sequential coor-

dination problem considered here can also be interpreted in

the framework of economics. It arises when a finite number

of economic agents (or sectors) with constrained cognitive (or

communication) resources [6] are subject to idiosyncratic eco-

nomic shocks. A better-informed information sender – such as

a central bank or monetary authorities – wishes to recommend

optimal actions to all the agents through a common public

1The reference policy for generating actions contingent on the states may be
randomized. However, we restrict the sequential encoder used by the sender
and the sequential decoder used by the DM to be deterministic. The reason
for this is that, when randomized strategies are used in the absence of a
noiseless feedback channel from the DM to the sender, the sender has to
form beliefs about the actions taken by the DM, who will in turn form beliefs
about the beliefs by the sender about the actions taken by the DM, and so
on, leading to the so-called infinite regress of expectations (see, e.g., [40]).
This lack of precise knowledge on the part of the sender will accumulate over
time. Restricting to deterministic strategies removes this problem: at any time
t, the sender is strictly better informed than the receiver and can perfectly
reconstruct the actions taken by the receiver.

signal. On average, though, the sender’s optimal signaling

strategy must take into account the limits on information-

processing capacities of all of the agents. Our paper ad-

dresses several features of this set-up as well; however, we do

not consider situations involving strategic motives, in which

different players involved in the information exchange have

biased or opposing objectives. Strategic considerations have

been addressed recently, both in economics [41]–[43] and in

information theory [44].

A. Contents of the paper

The organization of the paper is as follows. We introduce the

notation and basic concepts (in particular, Glivenko–Cantelli

classes) in Section II. The precise formulation of the sequential

empirical coordination problem is given in Section III. The

main results are presented in Section IV, with some examples

discussed in Section V. Appendix A contains a discussion

of typicality in standard Borel spaces based on universal

Glivenko–Cantelli classes. Two technical lemmas needed in

the achievability proof are given in Appendix B.

II. PRELIMINARIES AND NOTATIONS

All spaces in this paper are assumed to be standard Borel

spaces, as defined below (for detailed treatments, see the

lecture notes of Preston [45] or Chapter 4 of Gray [46]).

Definition 1. A measurable space (X,B(X)) is standard Borel

if it can be metrized with a metric d, such that: 1) (X, d) is

a complete separable metric space, and 2) B(X) is the Borel

σ-algebra, i.e., the smallest σ-algebra containing all open sets

in (X, d).

We denote by P(X) the space of all Borel probability measures

on X, and by M(X) the space of all bounded measurable

functions X → R equipped with the sup norm

||f ||∞ := sup
x∈X

|f(x)|.

We use the standard inner-product notation for integrals: given

any signed Borel measure ν on X and f ∈M(X),

〈ν, f〉 :=
∫

X

f(x) ν(dx).

When ν ∈ P(X), we will also use the standard expectation

notation Eν [f(X)]. A Markov (or stochastic) kernel with input

space X and output space Y is a mapping K(·|·) : B(Y) ×
X → [0, 1], such that K(·|x) ∈ P(Y) for every x ∈ X and

K(B|·) ∈ M(X) for every B ∈ B(Y). We denote the space

of all such kernels by M(Y|X). Any K ∈ M(Y|X) maps P(X)
into P(Y):

µK(·) :=
∫

X

K(·|x)µ(dx).

Given a probability measure µ ∈ P(X) and a Markov kernel

K ∈ M(Y|X), we denote by µ ⊗K the probability measure

on the product space (X×Y,B(X)⊗B(Y)) uniquely specified

by its values on the rectangles A×B, A ∈ B(X), B ∈ B(Y):

(µ⊗K)(A×B) :=

∫

A

K(B|x)µ(dx).
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If we let A = X in the above definition, then we end up

with with µK(B). Note that product measures µ⊗ ν, where

ν ∈ P(Y), arise as a special case of this construction, since any

ν ∈ P(Y) can be realized as a Markov kernel (B, x) 7→ ν(B).
Conversely, given a random element (X,Y ) of X × Y, its

probability law ν ∈ P(X×Y) can be disintegrated as µ⊗K ,

where µ(·) = ν(· × Y) ∈ P(X) is the marginal distribution of

X andK ∈ M(Y|X) is a version of the conditional distribution

of Y given X .

A. Universal Glivenko–Cantelli classes

The notion of a universal Glivenko-Cantelli class [38] (or

uGC class for short) plays a central role in this paper. The

main reason for adopting this notion is that it leads to a fruitful

extension of the notion of typical sequences in standard Borel

spaces [37] (cf. Appendix A for a discussion). Here, we set

up the notation and the definitions that will be needed in the

sequel.

Given a class of measurable functions F ⊆ {f ∈ M(X) :
‖f‖∞ ≤ 1} and a signed Borel measure ν on X, we define

the seminorm

‖ν‖F := sup
f∈F

|〈ν, f〉| .

Let [N ] := {1, . . . , N}, for N ∈ N, and let x[N ] =
(x1, . . . , xN ) denote an N -tuple of elements of X. The empir-

ical measure of x[N ] is an element of P(X), defined as2

Px[N ]
(·) = 1

N

∑

n∈[N ]

δxn
(·),

where δx is the Dirac measure centered at x.

Definition 2. A function class F ⊂ {f ∈M(X) : ‖f‖∞ ≤ 1}
is a universal Glivenko–Cantelli class (or a uGC class, for

short) if

∥∥PX[N ]
− µ

∥∥
F

N→∞−−−−→ 0, µ-a.s.

for any µ ∈ P(X), where X1, X2, . . . is a stationary memory-

less random process with marginal distribution µ.

For example, if X = R, then the class

F :=
{
fz = 1(−∞,z] : z ∈ R

}

of indicator functions of semi-infinite intervals is a uGC class

(this is the well-known Glivenko–Cantelli theorem, which

explains the origin of the name “universal Glivenko–Cantelli”).

B. Information-theoretic preliminaries

Throughout the paper, we rely on standard definitions and

notions from information theory. The relative entropy (or

information divergence) [47] between µ, ν ∈ P(X) is

D(µ‖ν) :=





〈
µ, log

dµ

dν

〉
, if µ ≺ ν

+∞, otherwise,

2Since X is a standard Borel space, all singletons are measurable and belong
to B(X).

where ≺ denotes absolute continuity of µ w.r.t. ν, and dµ/dν
is the Radon–Nikodym derivative. It is always nonnegative,

and is equal to zero if and only if µ ≡ ν. The Shannon mutual

information [47] in (µ,K) ∈ P(X) ×M(Y|X) is defined as

I(µ,K) := D(µ⊗K‖µ⊗ µK). (1)

If (X,Y ) is a pair of random objects with Law(X,Y ) =
µ⊗K , then we will also write Iµ,K(X ;Y ) to denote (1). We

will use standard identities for the mutual information and for

the conditional mutual information, as can be found in [48].

We work with natural logarithms throughout the paper, so all

entropies and mutual information is measured in nats.

III. PROBLEM FORMULATION

We now provide the precise formulation of the problem

of sequential empirical coordination informally stated in Sec-

tion I. The objective is for the sender to use minimal commu-

nication resources, so that the joint empirical distributions of

the states observed by the sender and the actions generated by

the receiver can mimic a given process law subject to a fidelity

criterion. Since this problem involves causality considerations,

we need to introduce the definition of a directed stochastic

kernel (see [22], [49] for a detailed presentation in the context

of control and feedback information theory):

Definition 3. Let Y1, . . . ,YM be a collection of Borel spaces.

For any any I ⊆ [M ], let YI :=
∏

i∈I Yi. Fix any set I =
{i1, . . . , iK} with i1 < i2 < . . . < iK , and let Ic denote

the complementary set [M ] \ I . A directed stochastic kernel

between YIc and YI is an element of M(YI |Y[iK−1]) that has

the form

K(dyI |y[iK−1]) =
K⊗

k=1

Tk(dyik |y[ik−1])

for a given collection of Markov kernels Tk ∈ M(Yik |Y[ik−1]),
k = 1, . . . ,K . We will denote the space of all such kernels by−→
M(YI |YIc).

Remark 1. It is important to keep in mind that YIc is not

the input space of an element of
−→
M(YI |YIc). Rather, this

notation is meant to distinguish the control variables from the

observation variables, as explained in detail below.

This definition naturally incorporates causality constraints. If

we think of the index i ∈ [M ] as time and let the times

ik ∈ I denote the instants when an action must be taken,

then the Markov kernel Tk prescribes the stochastic law for

taking a random action at time ik on the basis of the ‘past’

data y1, y2, . . . , yik−1. The stochastic kernel K describes the

overall sequential process of taking actions. A canonical way

in which such stochastic kernels arise is to start with a random

element Y[M ] = (Y1, . . . , YM ) of Y[M ] with probability law P

and, for each k ∈ [K], take Tk to be the regular conditional

probability distribution PYik
|Y[ik−1]

. This construction yields

the directed stochastic kernel

K(dyI |y[iK−1]) :=
K⊗

k=1

PYik
|Y[ik−1]

(dyik |y[ik−1]).
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For the problem of empirical coordination, fix the state

space X, the action space U, and the time horizon T . For

each t ∈ [T ], introduce the copies Xt and Ut of X and

U, respectively. Let µ ∈ P(X[T ]) denote the probability law

of the state process X[T ] = (X1, . . . , XT ), which can be

disintegrated as the product of T factors µ(t) ∈ M(Xt|X[t−1]):

µ(dx[T ]) =

T⊗

t=1

µ(t)(dxt|x[t−1]).

Furthermore, let π ∈ −→
M(U[T ]|X[T ]) denote the directed

stochastic kernel whose factors π(t) ∈ M(Ut|X[t] × U[t−1])
prescribe the causal policy, according to which the DM takes

target actions in U based on the past history of states and

actions. The resulting joint probability law of states and

actions, the so-called strategic measure P
π
µ ∈ P(X[T ] ×U[T ]),

is given by

P
π
µ(dx[T ], du[T ])

:= µ(dx[T ])⊗
⊗

t∈[T ]

π(t)(dut|x[t], u[t−1])

=
⊗

t∈[T ]

µ(t)(dxt|x[t−1])⊗ π(t)(dut|x[t], u[t−1]).

The marginal law of Xt under P
π
µ will be denoted by µt ∈

P(X), and the marginal conditional law of Ut given Xt by

πt ∈ M(U|X).
Let X[T ],[N ] := {Xt,n : t ∈ [T ], n ∈ [N ]} be a T × N

array of random elements of X, where t ∈ [T ] denotes the

time index, while n ∈ [N ] enumerates the copies of µ. For

all A ⊂ [T ] and B ⊂ [N ], we will denote by XA,B the

sub-array (Xt,n : t ∈ A;n ∈ B). For each n ∈ [N ] the

columns X[T ],n = (Xt,n)t∈[T ] are i.i.d. copies of the state

process with law µ. Similarly, let {Ut,n : t ∈ [T ];n ∈ [N ]},

denoted by U[T ],[N ], be an array of random elements of U

such that for n ∈ [N ] the pair process (X[T ],n, U[T ],n) are

i.i.d. copies of the state-action process with law P
π
µ. Notice

that both arrays X[T ],[N ] and U[T ],[N ] are independent across

[N ] while correlated across [T ]. The empirical distribution of

state-action pairs at time t is given by

PXt,[N ],Ut,[N ]
:=

1

N

∑

n∈[N ]

δXt,n,Ut,n
.

Then, for any uGC class F,
∥∥PXt,[N ],Ut,[N ]

− µt ⊗ πt
∥∥
F

a.s.−−→ 0 as N → ∞. (2)

Since (2) holds for every t ∈ [T ], we have

1

T

T∑

t=1

∥∥PXt,[N ],Ut,[N ]
− µt ⊗ πt

∥∥
F

a.s.−−→ 0 as N → ∞.

That is, the realized empirical distributions of states and

actions will be asymptotically consistent with the strategic

measure P
π
µ, uniformly over F.

We now consider the following sequential coding problem

involving an information sender (IS) and a decision-maker

(DM). The IS can transmit messages to the DM over a finite-

capacity channel. At each time t, the IS observes the state real-

izations X[t],[N ] and sends a message to the DM who will use

this message and all previously received messages to generate

the new N -tuple of actions Ut,[N ] using a deterministic policy.

The goal is to ensure that the realized empirical distributions

of states and actions approximate the strategic measure P
π
µ

to a given accuracy, while minimizing the communication

resources. We will assess the quality of approximation using

a fixed uGC class of test functions, while the communication

resources will be measured in terms of the overall Shannon

entropy of the messages sent by the IS to the DM.

Definition 4. A sequential N-code is a collection γ = (γt)t∈[T ]

of measurable mappings

γt : X[t],[N ] → Ut,[N ]

with countable ranges.

Given a state process law µ ∈ P(X[T ]) and an N -code γ, we

let Pγ
µ ∈ P(X[T ],[N ] × U[T ],[N ]) denote the induced strategic

measure, i.e., joint probability law of the states observed by

the IS and the actions generated by the DM:

P
γ
µ(dx[T ],[N ], du[T ],[N ])

=
⊗

n∈[N ]

µ(dx[T ],n)⊗
⊗

t∈[T ]

δγt(x[t],[N ])(dut,[N ]). (3)

We are interested in the minimum information transmission

rate needed by a sequential N -code in order to ensure that the

realized sequence of states observed by the sender and actions

taken by the decision-maker is ∆-consistent (in expectation)

with the target measure P
π
µ on a fixed but arbitrary uGC class

F ⊂M1
b (X × U). That is, we wish to design γ, so that

1

T

T∑

t=1

E
γ
µ

∥∥PXt,[N ],Ut,[N ]
− µt ⊗ πt

∥∥
F
≤ ∆, (4)

while minimizing the total Shannon entropy of the messages

U1,[N ] = γ1(X1,[N ]), . . . , UT,[N ] = γT (X[T ],[N ]). Let

ΓN
µ,π(∆) :=

{
γ = (γt)t∈[T ] :

1

T

∑

t∈[T ]

E
γ
µ

∥∥PXt,[N ],Ut,[N ]
− µt ⊗ πt

∥∥
F
≤ ∆

}

(5)

be the set of all sequential N -codes that meet the criterion

in (4). With this, we define the operational sequential rate-

distortion function for empirical coordination:

R̂T,N (∆) , inf
γ∈ΓN

µ,π(∆)

H
(
U[T ],[N ]

)

NT
, (6)

where H(U[T ],[N ]) is the joint Shannon entropy of the actions

generated by the IR using γ.

Our use of uGC classes in an operational criterion for

coordination is inspired by the work of Al-Najjar [50], who

analyzes the quality of forecasts or policy decisions made on

the basis of estimating the probabilities of a whole class of

events simultaneously from observed empirical frequencies.

This amounts to evaluating the uniform deviation between the

empirical probabilities and the ‘true’ probabilities over a class

A of measurable sets. In order for the estimate to be consistent,

the class of all indicator functions of the sets in A must be a
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uGC class (which is equivalent to A being a so-called Vapnik–

Chervonenkis class of sets). Al-Najjar considers the case when

the decision-makers have direct observation of all the relevant

data. We are extending Al-Najjar’s framework in three key

ways:

• We are considering arbitrary uGC classes, not just classes

of indicator functions.

• We are imposing an information constraint (i.e., the state

processes must be communicated to the DM over a finite-

capacity channel).

• We are considering the sequential set-up, where, for each

n, one must make T > 1 decisions, contingent on

previously made decisions and the history of states.

IV. MAIN RESULTS

Our main result addresses two questions pertaining to the

operational rate-distortion function defined in (6):

1) What is the minimum information transmission rate

needed for IS to induce an empirical state-action dis-

tribution that is ∆-consistent (in expectation) with the

target measure P
π
µ?

2) Can this minimum rate can be achieved by sequential

N -codes?

In order to address these questions, we first introduce an

information-theoretic counterpart of (6), which we refer to as

the sequential rate-distortion function for empirical coordina-

tion.

Consider the subset of
−→
M(U[T ]|X[T ]) consisting of those

directed stochastic kernels whose induced marginal distribu-

tions of (Xt, Ut) at each t ∈ [T ] are ∆-consistent with P
π
µ,

on average:

Πµ,π(∆) :=
{
π̃ ∈ −→

M(U[T ]|X[T ]) :

1

T

T∑

t=1

‖µt ⊗ π̃t − µt ⊗ πt‖F ≤ ∆
}
;

here, given π̃ ∈ −→
M(U[T ]|X[T ]), π̃t ∈ M(U|X) denotes the

induced conditional distribution of Ut given Xt. Then, the

sequential rate-distortion function for empirical coordination

is defined as

RT (∆) := inf
π̃∈Πµ,π(∆)

Iµ,π̃(X[T ];U[T ])

T
. (7)

Remark 2. For any π̃ ∈ −→
M(U[T ]|X[T ]), Ut and

(Xt+1, . . . , XT ) are conditionally independent given

(X[t], U[t−1]) for each t ∈ [T ]. Using this fact and the chain

rule for mutual information, we can write

Iµ,π̃(X[T ];U[T ]) =
∑

t∈[T ]

Iµ,π̃(X[T ];Ut|U[t−1])

=
∑

t∈[T ]

Iµ;π̃(X[t];Ut|U[t−1]), (8)

where the quantity in (8) is the directed information

Iµ,π̃(X[T ] → U[T ]) [22]. Thus, we can express the rate-

distortion function in (7) as

RT (∆) = inf
π̃∈Πµ,π(∆)

Iµ,π̃(X[T ] → U[T ])

T
. (9)

Thus, RT (∆) is the empirical coordination counterpart of

the sequential rate-distortion function [22], [49]. Equation (9)

conveys an important intuitive concept, beyond the common

information content embodied in the concept of mutual in-

formation. In a stochastic dynamical system, past states and

actions convey information about the current state. Each of the

terms Iµ,π̃(X[t];Ut|U[t−1]) denotes the amount of information

that needs to be conveyed about the state history X[t] beyond

what is contained in U[t−1] in order to pin down the current

action Ut. �

The rate-distortion function RT (∆) gives the smallest

amount of information that any causal policy must convey

about the sequence of states, on average per unit time, in

order for the resulting joint measure to be ∆-consistent (in

expectation) with the postulated target measure P
π
µ on the

class F. Theorems 1 and 2 below state that the sequential rate-

distortion function for empirical coordination defined in (7) is

the asymptotic fundamental limit of the empirical coordination

problem formulated in Section III. Note that the operational

performance criterion in (4) is non-additive in n. Nevertheless,

as evident from the two theorems below, the information-

theoretic expression for the fundamental limit of sequential

empirical coordination does not involve any limit as N → ∞.

Theorem 1 (Achievability). Suppose RT (∆) <∞. Then, for

each ε > 0, there exists N(ε) ∈ N, such that

R̂T,N (∆ + ε) ≤ RT (∆) + ε.

In other words, under the conditions of the theorem, for each

sufficiently large N , we can find a sequential N -code in

ΓN
µ,π(∆ + ε), whose output entropy (normalized by NT ) is

approximately bounded by RT (∆).

Proof. All of the heavy lifting needed in the proof is contained

in two technical lemmas presented in Appendix B. The key

step is taken care of by Lemma B.1, which extends the so-

called Piggyback Coding Lemma [37, Lemma A.1] to the

sequential case. This lemma, in turn, relies on Lemma B.2,

which provides a random coding argument along the lines

of [51, Lemma 9.3.1] for tree codes (a natural choice in the

presence of causality constraints). With these two lemmas at

hand, the achievability proof is conceptually transparent.

Since RT (∆) < ∞, there exists some π̃ ∈ Πµ,π(∆ + ε
2 )

such that

1

T
Iµ;π̃(X[T ];U[T ]) < RT (∆) +

ε

2
.

For each t, define the function

ψt,N (xt,[N ];ut,[N ]) :=
∥∥Pxt,[N ],ut,[N ]

− µt ⊗ π̃t
∥∥
F
.

Since F is a uGC class and since

(Xt,1, Ut,1), . . . , (Xt,N , Ut,N ) are i.i.d. under P
π̃
µ, we

have

max
t∈[T ]

lim
N→∞

E
π̃
µ

[
ψt,N (Xt,[N ], Ut,[N ])

]
= 0.
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Then by Lemma B.1 in the appendix, there exists a se-

quential N -code γ ∈ ΓN
µ,π̃(

ε
2 ), such that, for U[T ],[N ] =(

γt(X[t],[N ])
)
t∈T

, we have

H(U[T ],[N ])

NT
≤ 1

T
Iµ,π̃(X[T ];U[T ]) +

ε

2
< RT (∆) + ε.

Moreover, using the triangle inequality, we can estimate

1

T

∑

t∈[T ]

E
γ
µ

∥∥PXt,[N ],Ut,[N ]
− µt ⊗ πt

∥∥
F

≤ 1

T

∑

t∈[T ]

E
γ
µ

∥∥PXt,[N ],Ut,[N ]
− µt ⊗ π̃t

∥∥
F
+

1

T

∑

t∈[T ]

‖µt ⊗ π̃t − µt ⊗ πt‖F

≤ ∆+ ε.

Thus, γ ∈ ΓN
µ,π(∆ + ε), and therefore, from the definition of

R̂T,N (·), it follows that

R̂T,N (∆ + ε) ≤ H(U[T ],[N ])

NT
≤ RT (∆) + ε.

Theorem 2 (Converse). For any N , T and ∆,

R̂T,N (∆) ≥ RT (∆).

In other words, the average output entropy of any N -code

γ ∈ ΓN
µ,π(∆) must be at least as large as RT (∆).

Proof. The proof uses the techniques from [37]. Fix

an arbitrary sequential N -code γ ∈ ΓN
µ,π(∆), and let

(X[T ],[N ], U[T ],[N ]) the state-action process with process law

P
γ
µ. Let J be a random variable uniformly distributed on [N ],

independently of (X[T ],[N ], U[T ],[N ]). Consider the random

couple (X[T ],J , U[T ],J). From symmetry and independence, it

follows that the marginal distribution of X[T ],J is equal to

µ. For each t ∈ [T ], let π̃(t) ∈ M(U |X[t] × U[t−1]) be the

induced conditional law of Ut,J given (X[t],J , U[t−1],J), and

let π̃t ∈ M(U|X) denote the induced conditional law of Ut,J

given Xt,J . Then we have the following chain of equalities

and inequalities:

H
(
(γt(X[t],[N ]))t∈[T ]

)
=H(U[T ],[N ])

(a)
=I(X[T ],[N ];U[T ],[N ])

(b)

≥
∑

n∈[N ]

I(X[T ],n;U[T ],n)

(c)
=NI(X[T ],J ;U[T ],J |J)
(d)
=NI(X[T ],J ;U[T ],J , J)

≥NIµ,π̃(X[T ];U[T ]),

where:

• (a) follows from the fact that the map X[T ],[N ] → U[T ],[N ]

is deterministic;

• (b) is a standard information-theoretic fact: if X[N ] is a

sequence of independent random variables, then for any

sequence Y[N ] of random variables jointly distributed with

the Xn’s,
∑

n∈[N ]

I(Xn;Yn) ≤ I(X[N ];Y[N ]);

• (c) follows from the construction of J ;

• (d) follows from the fact that, since {X[T ],1, . . . , X[T ],N}
are i.i.d., J and X[T ],J are independent (see Appendix B

in [37]), and from the chain rule for the mutual inforna-

tion.

The remaining steps are consequences of definitions and of

standard information-theoretic identities. Dividing both sides

by NT , we obtain the bound

Iµ,π̃(X[T ];U[T ])

T
≤ H

(
U[T ],[N ]

)

NT
.

Now, for each t ∈ [T ], Xt,J is independent of J , and has the

same law as Xt,1, namely µt. Moreover, (cf. Appendix B in

[37]), the expected empirical distribution E
γ
µPXt,[N ],Ut,[N ]

is

equal to µt ⊗ π̃t. Then we have
∑

t∈[T ]

‖µt ⊗ πt − µt ⊗ π̃t‖F

=
∑

t∈[T ]

∥∥Eγ
µPXt,[N ],Ut,[N ]

− µt ⊗ π̃t
∥∥
F

≤
∑

t∈[T ]

E
γ
µ

∥∥PXt,[N ],Ut,[N ]
− µt ⊗ π̃t

∥∥
F

≤ ∆,

where the first inequality is by convexity, while the second

inequality is by assumption on γ. Therefore, π̃ =
(
π̃(t)

)
t∈[T ]

∈
Πµ,π(∆), and consequently

RT (∆) ≤ Iµ,π̃(X[T ];U[T ])

T
≤ H

(
U[T ],[N ]

)

NT
,

by definition. Since this holds for every γ ∈ ΠN
µ,π(∆), it

follows that RT (∆) ≤ R̂T,N (∆).

V. EXAMPLES AND BOUNDS

Although Theorems 1 and 2 provide a full characterization

of the fundamental limits on the minimal rate of communica-

tion for sequential empirical coordination, the computation of

the sequential rate distortion function RT (∆) is a complicated

optimization problem already in the static (T = 1) case, which

was addressed in [37]. Below, we provide two examples that

illustrate the difficulty of explicitly computingRT (∆) even for

T = 1. We also show that, in some cases, one can upper-bound

RT (∆) by a simpler information-theoretic quantity related to

remote lossy source coding.

A. Kolmogorov-Smirnov criterion for one-step costs

While we have remained silent on the nature of the target

strategic measure P
π
µ, it may have been selected based on

considerations of expected cost. Thus, suppose that we have

a function c ∈M(X× U), such that c(x, u) gives the cost of

taking action u in response to state x. Let F be the class of

indicator functions of the level sets of c:

fa(x, u) := 1{c(x, u) ≤ a}, a ∈ R. (10)

Then we have the following:



7

Proposition 1. Let F denote the class of all f of the form

(10). Then for any two P,Q ∈ P(X× U),

‖P −Q‖
F
= dKS(FP◦c−1 , FQ◦c−1), (11)

where Fµ denotes the cumulative distribution function (cdf) of

a Borel probability measure µ on the reals, and

dKS(F, F
′

) := sup
a∈R

|F (a)− F
′

(a)| (12)

is the Kolomogorov-Smirnov distance between cdf’s F and F
′

.

The class F is a universal Glivenko-Cantelli class.

Proof. Fix any pair P,Q ∈ P(X × U). Then the chain of

equalities

‖P −Q‖
F
=sup

a∈R

|P [c(X,U) ≤ a]−Q[c(X,U) ≤ a]|

=sup
a∈R

|FP◦c−1(a)− FQ◦c−1(a)|

=dKS(FP◦c−1 , FQ◦c−1)

follows from definitions. By the classical Glivenko-Cantelli

theorem [14, Prop. 4.24], the class of all indicator functions

r 7→ 1{r ≤ a}, a ∈ R, is a uGC class on (R,B(R)).
Therefore, since {P ◦ c−1 : P ∈ P(X × U)} ⊂ P(R), F is

a uGC class of functions on X× U.

The following is immediate from the above proposition:

Theorem 3.

RT (ε) = inf
π̃∈

−→
M(UT |XT )

{
Iµ,π̃(X[T ];U[T ]) :

1

T

T∑

t=1

dKS(F(µt⊗π̃t)◦c−1 , F(µt⊗πt)◦c−1) ≤ ∆

}
.

(13)

In other words, RT (∆) is the smallest mutual information

between the state process X[T ] with law µ ∈ P(X[T ]) and any

action process U[T ] generated from X[T ] by a causal policy

π̃, such that the time average of the Kolmogorov-Smirnov

distances between the state-action costs under π̃ and the target

policy π is bounded from above by ∆. Evaluating this quantity

exactly is difficult even for T = 1.

B. Weak convergence and Wasserstein distances

Another example concerns approximation of the target

strategic measure P
π
µ in a certain metric that metrizes the

topology of weak convergence of probability measures. Sup-

pose that X× U is a Polish space with a given metric d. For

any f ∈M(X× U), define the Lipschitz norm

‖f‖Lip := sup
(x,u),(y,v)∈X×U

|f(x, u)− f(y, v)|
d((x, u), (y, v))

(14)

and the bounded Lipschitz norm

‖f‖BL := ‖f‖∞ + ‖f‖Lip (15)

Proposition 2. Consider the function class F = {f ∈M(X×
U) : ‖f‖BL ≤ 1}. Then, for any two P,Q ∈ P(X× U),

||P −Q||F = dBL(P,Q), (16)

the bounded Lipschitz metric on P(X × U) that metrizes the

topology of weak convergence of probability measures. The

class F is a universal Glivenko-Cantelli class.

Proof. Eq. (16) is the definition of the bounded Lipschitz

metric [52, Sec. 11.3], which metrizes the topology of weak

convergence of probability measures [52, Thm. 11.3.3]. Now,

let (X1, U1), (X2, U2), ... be a sequence of i.i.d. random

elements of X× U with common marginal law P . Then

dBL(P(X[n],U[n]),P)
n→∞−−−−→ 0, P− a.s. (17)

by Varadarajan’s theorem [52, Thm. 11.4.1]. Since this holds

for any P ∈ P(X), and in light of (16), we conclude that F is

a uGC class.

Under an additional moment condition, the bounded Lips-

chitz metric can be upper-bounded by the so-called Wasser-

stein metric. Let P0(X×U) ⊂ P(X×U) be the set of all proba-

bility measures P for which there exists some (x0, u0) ∈ X×U,

such that 〈P, d(·, (x0, u0))〉 < ∞. The Wasserstein metric

between any two P,Q ∈ P0(X× U) is

Wd(P,Q) := sup
‖f‖Lip≤1

|〈P, f〉 − 〈Q, f〉|. (18)

We can now give the following upper bound on the sequential

rate-distortion function RT (∆) w.r.t. F:

Theorem 4. Suppose that Pπ
µ ∈ P0(X× U). Then

RT (∆) ≤ inf
π̃∈

−→
M(U[T ]|X[T ])

{
Iµ,π̃(X[T ];U[T ]) :

1

T

∑

t∈[T ]

Wd(µt ⊗ π̃, µt ⊗ πt) ≤ ∆



 .

(19)

Again, despite the clean conceptual interpretation of RT (∆)
in terms of approximating strategic measures by empirical

distributions of state-action pairs under the bounded Lipschitz

metric, it does not admit closed-form expressions even for

T = 1.

C. Upper bounds on the sequential rate-distortion function

While the exact computation of RT (∆) is a difficult task,

it is possible to obtain computable upper bounds under some

additional regularity assumptions. One example is given in the

theorem below. To keep things simple, we consider the case

of T = 1.

Theorem 5. Suppose that there exists a metric d on the action

space U, such that the elements of F satisfy the following

uniform Lipschitz condition: for all u, u′ ∈ U and all f ∈ F,

sup
x∈X

|f(x, u)− f(x, u′)| ≤ d(u, u′). (20)

Then R1(∆) ≤ R(∆), where

R(∆) := inf
P
Û|U

∈M(U|U):

E[d(U,Û)]≤∆

I(X ; Û). (21)

Remark 3. The function defined in (21) has been introduced

in a recent paper of Kochman, Ordentlich, and Polyanskiy
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[53] in the context of converse bounds for multiple-description

source coding and joint source-channel broadcasting of a

common source.

Proof. Disintegrate the joint probability law of (X,U) as µ⊗
π, where µ ∈ P(X) and π ∈ M(U|X). Fix a Markov kernel

PÛ |U ∈ M(U|U) satisfying E[d(U, Û)] ≤ ∆ and define π̃ ∈
M(U|X) by

π̃(·|x) :=
∫

U

π(du|x)PÛ |U (·|u). (22)

Then X and Û are conditionally independent given U . Using

this fact and the uniform Lipschitz property (20), we have for

any f ∈ F

〈µ⊗ π, f〉 − 〈µ⊗ π̃, f〉
= E

[
E[f(X,U)− f(X, Û)|X,U ]

]

≤ E
[
E[d(U, Û)|X,U ]

]

= E[d(U, Û)]

≤ ∆.

Interchanging the roles of π and π̃, we obtain

|〈µ⊗ π, f〉 − 〈µ⊗ π̃, f〉| ≤ ∆.

Taking the supremum over all f ∈ F, we see that ‖µ⊗π−µ⊗
π̃‖F ≤ ∆. Optimizing over all such PÛ|U , we get the bound

R1(∆) ≤ R(∆).

As an illustration, consider the case when X and µ are

arbitrary, U = R, and the policy π is deterministic: π(du|x) =
δg(x)(du) for some Borel function g : X → R. Suppose,

furthermore, that the uniform Lipschitz condition (20) is

satisfied with d(u, u′) = |u−u′|. Then we have the following:

• If
√
E[g2(X)] = m <∞, then

R1(∆) ≤ Cav

(
m2

∆2

)
,

where, for s ≥ 0,

Cav(s) := sup
Y : var[Y ]≤1

I(Y ;
√
sY + Z)

=
1

2
log(1 + s)

is the Shannon capacity of the additive white Gaussian

noise (AWGN) channel under the average power con-

straint (the additive noise Z is a standard normal random

variable independent of Y ).

• If ‖g‖∞ = m <∞, then

R1(∆) ≤ Cpk

(
m2

∆2

)
,

where

Cpk(s) := sup
Y : |Y |≤1 a.s.

I(Y ;
√
sY + Z)

is the Shannon capacity of the AWGN channel under the

peak power constraint.

To derive both of these bounds, the natural choice of PÛ |U

is given by the additive Gaussian noise channel Û = U +

∆Z = g(X)+∆Z . Then the Markov kernel π̃ defined in (22)

evidently satisfies

‖µ⊗ π − µ⊗ π̃‖F ≤ ∆,

and

R(∆) ≤ I(X ;U +∆Z) = I(X ; g(X) + ∆Z).

Since X and Û = g(X) + ∆Z are conditionally independent

given U = g(X), we have

I(X ; g(X)+∆Z) = I(g(X); g(X)+∆Z) = I(U ;U +∆Z).

Thus, in the case m2 = EU2 <∞,

I(X ; Û) = I(U ;U +∆Z)

≤ sup
U : var[U ]≤m2

I(U ;U +∆Z)

= Cav

(
m2/∆2

)
.

Similarly, if |U | ≤ m a.s., then

I(X ; Û) = I(U ;U +∆Z)

≤ sup
U∈[−m,m] a.s.

I(U ;U +∆Z)

= Cpk

(
m2/∆2

)
.

APPENDIX A

UNIVERSAL GLIVENKO–CANTELLI CLASSES AND TYPICAL

SEQUENCES IN STANDARD BOREL SPACES

If X1, . . . , XN are i.i.d. random elements of X with com-

mon marginal law µ, then for any f ∈ M(X) the empirical

means

〈PX[N ]
, f〉 = 1

N

∑

n∈[N ]

f(Xn), N ∈ N

converge to the mean 〈µ, f〉 almost surely, by the Strong Law

of Large Numbers (SLLN). By the union bound, this statement

carries over to any finite family of functions. Thus, for any

F ⊂M(X) with |F| <∞,

∥∥PX[N ]
− µ

∥∥
F

N→∞−−−−→ 0, µ-a.s. (A.1)

In general, (A.1) is referred to as the Uniform Law of Large

Numbers (ULLN) over F – that is, the worst-case absolute

deviation between empirical and true means converges to zero

uniformly over the function class F. However, ULLN may not

hold for an arbitrary infinite class of functions F on a general

Borel space. Specifically, it fails to hold on F ≡ {f ∈M(X) :
‖f‖∞ ≤ 1} if µ has a density.

This observation shows that properly defining the notion of

a typical sequence over an abstract Borel alphabet requires

some care. Let us recall the usual definition:

Definition A.1. Given a finite set X and a probability distribu-

tion µ ∈ P(X) on it, the typical set T
(N)
∆ (µ), for ∆ > 0, is the

set of all N -tuples x[N ] ∈ X[N ] whose empirical distributions

PX[N ]
are ∆-close to µ in the total variation norm:

T
(N)
∆ (µ) :=

{
x[N ] ∈ X[N ] :

∥∥PX[N ]
− µ

∥∥
TV

< ∆
}
.
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Now, if F ≡ {f : ‖f‖∞ ≤ 1}, then ‖ · ‖F coincides with the

total variation norm

‖ν‖TV := 2 sup
A∈B(X)

|ν(A)| . (A.2)

Therefore, we have the following implication of (A.1) with

F = {f : ‖f‖∞ ≤ 1}: If X1, X2, . . . are i.i.d. elements of a

finite alphabet X with common marginal µ, then

P

(
X[N ] /∈ T

(N)
∆ (µ)

)
N→∞−−−−→ 0. (A.3)

In order to extend the intuitive notion of typicality to general

Borel alphabets, we restrict the class F to be a universal

Glivenko–Cantelli class. Now, typical sequences on general

Borel spaces can be defined in the spirit of Definition A.1:

Definition A.2. Fix a uGC function class F on X. Given a

probability measure µ ∈ P(X), the typical set T
(N)
∆,F(µ), for

∆ > 0, is the set of all N -tuples x[N ] ∈ X[N ] whose empirical

distributions PX[N ]
are ∆-close to µ in the ‖·‖

F
seminorm:

T
(N)
∆,F(µ) :=

{
x[N ] ∈ X[N ] :

∥∥PX[N ]
− µ

∥∥
F
< ∆

}
.

In other words, the typical set T
(N)
∆,F(µ) consists of all x[N ],

whose empirical distributions are ∆-consistent with µ on the

class F. We then have the following counterpart of (A.3):

Proposition A.1. Consider a Borel space X and a uGC class

F ⊂ {f ∈ M(X) : ‖f‖∞ ≤ 1}. If X1, X2, . . . is a sequence

of i.i.d. random elements of X with common law µ, then for

any ∆ > 0

P(X[N ] /∈ T
(N)
∆,F(µ))

N→∞−−−−→ 0. (A.4)

Proof. Immediate from Definitions 2 and A.2.

APPENDIX B

TECHNICAL LEMMAS FOR THE PROOF OF THEOREM 1

Lemma B.1 below is at the heart of the proof of Theorem

1. It states that, for any sequence of functions on N -blocks of

state-action pairs whose expected values vanish asymptotically

under a given strategic measure, one may construct a sequence

of sequential N -codes, under which the expected value of

the time-average of these functions can be made arbitrarily

small, and whose output entropy is upper-bounded by the

mutual information of the source and action under the given

probability measure.

Lemma B.1. Consider a pair (µ, π̃) ∈ P(X[T ]) ×−→
M(U[T ]|X[T ]), such that Iµ,π̃(X[t];Ut|U[t−1]) < ∞ for each

t ∈ [T ]. Let (X[T ],n, U[T ],n)n∈[N ] be N i.i.d. copies of the

state-action processes with process law P
π̃
µ. Let ψt,N be a

sequence of bounded measurable functions ψt,N : Xt,[N ] ×
Ut,[N ] → [0, 1] obeying

lim
N→∞

E
π̃
µ

[
ψt,N (Xt,[N ], Ut,[N ])

]
= 0.

Then, for any ε > 0, there exists N0 = N0(ε), such that, for

every N > N0, we can find T mappings γt,N : X[t],[N ] →
U[N ], t ∈ [T ], satisfying

1

T

∑

t∈[T ]

Eµ

[
ψt,N(Xt,[N ], γt,N (X[t],[N ]))

]
≤ ε, (B.1)

while

1

NT
H

({
γt,N (X[t],[N ])

}
t∈[T ]

)
≤ 1

T
Iµ,π̃(X[T ];U[T ]) + ε.

(B.2)

Proof. Let δt,N := E
π̃
µ

[
ψt,N (Xt,[N ], Ut,[N ])

]
and define the

set

At,N :=
{
(xt,[N ], ut,[N ]) : ψt,N (xt,[N ], ut,[N ]) ≤

√
δt,N

}
.

(B.3)

By Markov’s inequality,

P
π̃
µ[A

c
t,N ] ≤ δt,N√

δt,N
=

√
δt,N

N→∞−−−−→ 0.

This implies that, for each t ∈ [T ], the state-action tuple

(Xt,[N ], Ut,[N ]) generated according to (µ, π̃) belongs to At,N

with high probability. By Lemma B.2 below, for all large

enoughN , there exist measurable mappings γt,[N ] : X[t],[N ] →
Ut,[N ], t ∈ [T ], such that3

Mt :=
∣∣γt,[N ](X[t],[N ])

∣∣− 1 = eN(Rt+ε),

where Rt = Iµ,π̃(X[t];Ut|U[t−1]), and

max
t∈[T ]

Pµ

[
(Xt,[N ], γt(X[t],[N ])) 6∈ At,N

]

≤ T max
t∈[T ]

{
P

π̃
µ

[
(Xt,[N ], Ut,[N ]) 6∈ At,N

]

+P
π̃
µ

[
it(X[t],[N ];U[t],[N ]) > N(Rt + ε/2)

]

+ exp (−Mte
−N(Rt+ε/2))

}

≤ T exp(−eNε/2) + T max
t∈[T ]

{√
δt,N

+P
π̃
µ

[
it(X[t],[N ];U[t],[N ]) > N(Rt + ε/2)

]}
,

where

is(x[s],[N ];u[s],[N ])

:= log
dPµ,π̃

Us,[N ]|(X[s],[N ],U[s−1],[N ])=(x[s],[N ],u[s−1],[N ])

dPµ,π̃
Us,[N ]|U[s−1],[N ]=u[s−1],[N ]

(us,[N ]).

are the conditional information densities. Now, since ψt,N

takes values in [0, 1], we can write

1

T

∑

t∈[T ]

Eµ

[
ψt,N (Xt,[N ], γt,N(Xt,[N ]))

]

≤ max
t∈[T ]

Pµ[(Xt,[N ], γt(X[t],[N ])) 6∈ At,N ] + max
t∈[T ]

√
δt,N ,

(B.4)

3By adjusting ε, we can ensure that Mt is an integer.
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For all sufficiently large N , the right hand side of (B.4) can

be made smaller than ε. To see this, notice that max
t∈[T ]

δt,N → 0

as N → ∞ by assumption. Moreover, since

it(X[t],[N ];U[t],[N ])

:= log
dPµ,π̃

Ut,[N ]|X[t],[N ],U[t−1],[N ]

dPµ,π̃
Ut,[N ]|U[t−1],[N ]

(X[t],[N ], U[t],[N ])

=
∑

n∈[N ]

log
dPµ,π̃

Ut,n|X[t],n,U[t−1],n

dPµ,π̃
Ut,n|U[t−1],n

(X[t],n, U[t],n),

is a sum of i.i.d. random variables, and

Rt =Iµ,π̃(X[t];Ut|U[t−1]) =
1

N
E
π̃
µ

[
it(X[t],[N ];U[t],[N ])

]
,

the quantity

max
t∈[T ]

P
π̃
µ

[
it(X[t],[N ];U[t],[N ]) > N(Rt + ε/2)

]

can be made as small as desired for all large N , according to

the law of large numbers. Therefore, we can find a sufficiently

large N0 = N(ε) and a sequential code γ = (γt,N )t∈[T ], such

that Eq. (B.1) holds.

Towards verifying Eq. (B.2), let Pγ
µ be the joint probability

law of X ∼ µ and the output of γ. For (X,U) ∼ P
γ
µ, we

have

1

NT
H

({
γt,N (X[t],[N ])

}
t∈[T ]

)

=
H(U)

NT

=
1

NT
H(U1,[N ], U2,[N ], . . . , UT,[N ])

(a)
=

1

NT

∑

t∈[T ]

H(Ut,[N ]|Ut−1,[N ])

(b)

≤ 1

NT

∑

t∈[T ]

log(Mt + 1)

(c)

≤ 1

NT

∑

t∈[T ]

N(Rt + ε)

=
1

T

∑

t∈[T ]

(Rt + ε)

=
1

T

∑

t∈[T ]

(Iµ,π̃(X[t];Ut|U[t−1]) + ε)

(d)
=

1

T
Iµ,π̃(X[T ];U[T ]) + ε

where (a) is by the chain rule for entropy; (b) uses the fact

that conditioning reduces entropy and the fact that Ut,[N ] can

take at most Mt + 1 values by construction of γt,N ; (c) is

by the choice of Mt’s; and (d) uses the chain rule for mutual

information.

Lemma B.2. Let X and U be standard Borel spaces, and

consider a pair (µ, π̃) ∈ P(X[T ]) ×
−→
M(U[T ]|X[T ]), such that

Rt = Iµ,π̃(X[t];Ut|U[t−1]) < ∞ for all t ∈ [T ]. Let

(X[T ],n, U[T ],n)n∈[N ] be N i.i.d. draws from the strategic

measure P
π̃
µ. Let At ∈ B(Xt,[N ] × Ut,[N ]), t ∈ [T ], be

a collection of Borel sets. Then, for a given ε > 0 and

any sequence of positive integers Mt, there exist measurable

mappings gt : X[t],[N ] → Ut,[N ], t ∈ [T ], such that for each

t ∈ [T ] and each x[t−1],[N ], gt(x[t−1],]N , ·) takes at most

Mt + 1 values, and

Pµ

[
(Xt,[N ], gt(X[t],[N ])) ∈ At

]

≤
∑

s∈[t]

{
P

π̃
µ

[
(Xs,[N ], Us,[N ]) ∈ As

]

+P
π̃
µ

[
is(X[s],[N ];U[s],[N ]) > N(Rs + ε)

]

+ exp
(
−Mse

−N(Rs+ε)
)}

, (B.5)

where

is(x[s],[N ];u[s],[N ])

:= log
dPµ,π̃

Us,[N ]|(X[s],[N ],U[s−1],[N ])=(x[s],[N ],u[s−1],[N ])

dPµ,π̃
Us,[N ]|U[s−1],[N ]=u[s−1],[N ]

(us,[N ])

are the conditional information densities.

Proof. We will use a random sequential selection procedure to

construct the sequence of mappings g1, g2, . . . , gT . The overall

idea is a generalization of the proof of the achievability part

of the lossy source coding theorem (see, e.g., [51] or [46]).

Given P
π̃
µ, let ν ∈ P(U[T ]) denote the marginal distribution

of the action process and disintegrate it as

ν(du[T ]) =
⊗

t∈[T ]

νt(dut|u[t−1]).

For each t ∈ [T ], define the Markov kernel νt,[N ] ∈
M(Ut,[N ] | U[t−1],[N ]) via

νt,[N ](dut,[N ]|u[t−1],[N ]) :=
⊗

n∈[N ]

νt(dut,n|u[t−1],n).

In order to construct the finite-range mappings gt(·) :
X[t],[N ] → U[N ], we first choose the elements of U[N ] to make

up the range of gt and then specify how to assign one of these

elements to each x[t],[N ] in the domain X[t],[N ].

For the first step, pick an arbitrary tuple u[N ](0) ∈ U[N ].

Then let u[N ](1), . . . , u[N ](M1) be i.i.d. draws from ν1,[N ],

and take the set {u[N ](0), . . . , u[N ](M1)} as the finite range

of g1. For the second step and for each i1 ∈ [M1],
let u[N ](i1, 1), . . . , u[N ](i1,M2) be M2 i.i.d. draws from

ν2,[N ](·|u[N ](i1)), and take the set

{u[N ](i1, i2)}i1∈[M1],i2∈[M2] ∪ {u[N ](0)}

as the range of g2. This process is continued inductively at

each t: for each (i1, . . . , it−1), we let

u[N ](i1, . . . , it−1, 1), . . . , u[N ](i1, . . . , it−1,Mt)

be Mt i.i.d. draws from νt,[N ](·|u[N ](i1, . . . , it−1)), and take

{u[N ](i1, . . . , it−1, it)}i1∈[M1],...,it∈[Mt] ∪ {u[N ](0)}

as the range of gt. Evidently, the range of each gt is selected

at random conditionally on the realizations of the ranges of

g1, . . . , gt−1. The resulting collection of elements of U[N ] can

be arranged on a rooted tree of depth T , where the root has M1
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children, each depth-1 node has M2 children, etc. Following

Tatikonda [22], we refer to this construction as a tree code.

We now complete the construction of the gt’s. To that

end, we use the following recursive procedure. For t ∈ [T ]
and x[t],[N ], suppose that g1, . . . , gt−1 have already been

specified. Given x[t],[N ], if gt−1(x[t−1],[N ]) = u[N ](0), then

we let gt(x[t],[N ]) = u[N ](0). Otherwise, if gt−1(x[t−1],[N ]) =
u[N ](i1, . . . , it−1), consider the set

Gt(x[t],[N ])

:= {u[N ](i1, . . . , it−1, j) : (xt,[N ], u[N ](i1, . . . , it, j)) /∈ At}.

If it is empty, then let gt(x[t],[N ]) = u[N ](0); otherwise, let

gt(x[t],[N ]) = u[N ](i1, . . . , it−1, j
∗)

where j∗ ∈ [Mt] is the smallest index j of all

u[N ](i1, . . . , it−1, j) ∈ Gt(x[t],[N ]).

For each t, let Et denote the event that gt(X[t],[N ]) =
u[N ](0). We upper-bound the probability of Et, with respect

to both µ and the random choice of the ranges of g1, . . . , gT .

By construction of gt’s, Et will occur if either Et−1 has

occurred or if Gt(x[t],[N ]) = ∅ and none of E1, . . . , Et−1

have occurred. Therefore,

P[Et] ≤ P[Et−1]

+P[{Gt(X[t],[N ]) = ∅} ∩ Ec
1 ∩ · · · ∩ Ec

t−1]. (B.6)

By symmetry and independence in the generation of the ranges

of gt (in particular, using the fact that the range of gt is gen-

erated by drawing Mt i.i.d. samples from νt,[N ](·|u[t−1],[N ]),
plus the ‘error’ tuple u[N ](0)), we can estimate the second

term on the right-hand side of (B.6) by

P[{Gt(X[t],[N ]) = ∅} ∩ Ec
1 ∩ · · · ∩ Ec

t−1]

≤
∫

P
π̃
µ(dx[t],[N ])P

π̃
µ(du[t−1],[N ])

(1− νt,[N ]((xt,[N ], Ut,[N ]) ∈ Ac
t | u[t−1],[N ]))

Mt , (B.7)

where we adhere to the standard convention of denoting ran-

dom variables by uppercase letters and using lowercase letters

for deterministic quantities. Thus, νt,[N ]((xt,[N ], Ut,[N ]) ∈
Ac

t | u[t−1],[N ]) is shorthand for

νt,[N ](Ut,[N ] : (xt,[N ], Ut,[N ]) 6∈ At | u[t−1],[N ]).

Moreover, if we define the sets

At(xt,[N ]) :=
{
ut,[N ] : (xt,[N ], ut,[N ]) ∈ At

}
,

Bt(x[t],[N ], u[t−1],[N ])

:=
{
ut,[N ] : it(x[t],[N ], u[t],[N ]) > N(Rt + ε)

}
,

then, performing a change of measure, we get

νt,[N ]((xt,[N ], Ut,[N ]) ∈ Ac
t | u[t−1],[N ])

≥ νt,[N ](A
c
t(xt,[N ]) ∩Bc

t (x[t],[N ], u[t−1],[N ]) | u[t−1],[N ])

=

∫
PUt,[N ]|X[t],[N ],U[t−1],[N ]

(dut,[N ]|x[t],[N ], u[t−1],[N ]))

1{ut,[N ]∈(Ac
t(xt,[N ])∩Bc

t (x[t],[N ],u[t−1],[N ])}

· exp[−it(x[t],[N ];u[t],[N ])]

≥ e−N(Rt+ε)

∫
PUt,[N ]|X[t],[N ],U[t−1],[N ]

(dut,[N ]|X[t],[N ], U[t−1],[N ]))

1{ut,[N ]∈(Ac
t(xt,[N ])∩Bc

t (x[t],[N ],u[t−1],[N ])}.

Using the inequality (1−ab)M ≤ 1−b+e−Ma for a, b ∈ [0, 1]
, we can estimate
(
1− νt,[N ]((xt,[N ], Ut,[N ]) ∈ At | u[t−1],[N ])

)Mt

≤ 1−P
π̃
µ[(Xt,[N ], Ut,[N ]) ∈ Ac

t ,

it(X[t],[N ];U[t],[N ]) ≤ N(Rt + ε) | x[t],[N ], u[t−1],[N ]]

+ exp
(
−Mte

−N(Rt+ε)
)
.

From Eqs. (B.6)–(B.8), it therefore follows that

P[Et] ≤ P[Et−1] +P
π̃
µ

[
(Xt,[N ], Ut,[N ]) ∈ At

]

+P
π̃
µ

[
it(X[t],[N ];U[t],[N ]) > N(Rt + ε)

]

+exp
(
−Mte

−N(Rt+ε)
)
.

Solving this recursion, we obtain the bound

P[Et] ≤
∑

t∈[T ]

{
P

π̃
µ

[
(Xt,[N ], Ut,[N ]) ∈ At

]

+P
π̃
µ

[
it(X[t],[N ];U[t],[N ]) > N(Rt + ε)

]

+exp
(
−Mte

−N(Rt+ε)
)}

.

for every t ∈ [T ]. By construction,

P[(Xt,[N ], gt(X[t],[N ])) ∈ At] ≤ P[Et], t ∈ [T ],

where the probability is w.r.t. the joint law of X and the randon

selections of g1, . . . , gT . Therefore, there exists at least one

choice of g1, . . . , gT satisfying (B.5).
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2013.

[34] T. Tanaka, P. M. Esfahani, and S. K. Mitter, “LQG control with minimum
directed information: semidefinite programming approach,” to appear in
IEEE Transactions on Automatic Control, 2017.

[35] P. W. Cuff, H. H. Permuter, and T. M. Cover, “Coordination capacity,”
IEEE Transactions on Information Theory, vol. 56, no. 9, pp. 4181–
4206, 2010.

[36] M. H. Yassaee, A. Gohari, and M. R. Aref, “Channel simulation via
interactive communications,” IEEE Transactions on Information Theory,
vol. 61, no. 6, pp. 2964–2982, 2015.

[37] M. Raginsky, “Empirical processes, typical sequences, and coordinated
actions in standard Borel spaces,” IEEE Transactions on Information

Theory, vol. 59, no. 3, pp. 1288–1301, 2013.
[38] R. van Handel, “The universal Glivenko–Cantelli property,” Probability

Theory and Related Fields, vol. 155, no. 3-4, pp. 911–934, 2013.
[39] D. L. Neuhoff and R. K. Gilbert, “Causal source codes,” IEEE Trans.

Inform. Theory, vol. IT-28, no. 5, pp. 701–713, September 1982.
[40] T. J. Sargent, “Equilibrium with signal extraction from endogenous

variables,” Journal of Economic Dynamics and Control, vol. 15, no. 2,
pp. 245–273, 1991.

[41] V. P. Crawford and J. Sobel, “Strategic information transmission,”
Econometrica: Journal of the Econometric Society, pp. 1431–1451,
1982.

[42] L. Rayo and I. Segal, “Optimal information disclosure,” Journal of
Political Economy, vol. 118, no. 5, pp. 949–987, 2010.

[43] M. Gentzkow and E. Kamenica, “Bayesian persuasion,” American

Economic Review, vol. 101, no. 6, pp. 2590–2615, 2011.
[44] E. Akyol, C. Langbort, and T. Basar, “Information-theoretic approach

to strategic communication as a hierarchical game,” Proceedings of

the IEEE, Special Issue on Principles and Applications of Science of
Information, vol. 105, no. 2, pp. 205–218, 2017.

[45] C. Preston, “Some notes on standard Borel and related spaces,” arXiv

preprint arXiv:0809.3066, 2008.
[46] R. M. Gray, Entropy and Information Theory. Springer Science &

Business Media, 2011.
[47] M. S. Pinsker, Information and Information Stability of Random Vari-

ables and Processes. Holden-Day, 1964.
[48] T. M. Cover and J. A. Thomas, Elements of Information Theory. John

Wiley & Sons, 2012.
[49] S. Tatikonda and S. Mitter, “The capacity of channels with feedback,”

IEEE Transactions on Information Theory, vol. 55, no. 1, pp. 323–349,
January 2009.

[50] Nabil I. Al-Najjar, “Decision makers as statisticians: diversity, ambigu-
ity, and learning,” Econometrica, vol. 77, no. 5, pp. 1339–1369, 2009.

[51] R. G. Gallager, Information Theory and Reliable Communication. New
York: Wiley, 1968.

[52] R. M. Dudley, Real Analysis and Probability. Cambridge University
Press, 2002.

[53] Y. Kochman, O. Ordentlich, and Y. Polyanskiy, “Ozarow-type outer
bounds for memoryless sources and channels,” to appear in Proceedings

of IEEE International Symposium on Information Theory, 2018.

http://linkinghub.elsevier.com/retrieve/pii/S1094202512000208
http://arxiv.org/abs/1701.06368
http://arxiv.org/abs/0809.3066

	I Introduction
	I-A Contents of the paper

	II Preliminaries and Notations
	II-A Universal Glivenko–Cantelli classes
	II-B Information-theoretic preliminaries

	III Problem formulation
	IV Main results
	V Examples and bounds
	V-A  Kolmogorov-Smirnov criterion for one-step costs
	V-B Weak convergence and Wasserstein distances
	V-C Upper bounds on the sequential rate-distortion function

	Appendix A: Universal Glivenko–Cantelli classes and typical sequences in standard Borel spaces
	Appendix B: Technical lemmas for the proof of Theorem 1
	References

