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Abstract

We study risk-sensitive optimal control of a stochastic differential equation (SDE)

of mean-field type, where the coefficients are allowed to depend on some functional of

the law as well as the state and control processes. Moreover the risk-sensitive cost func-

tional is also of mean-field type. We derive optimality equations in infinite dimensions

connecting dual functions associated with Bellman functional to the adjoint process of

the Pontryagin maximum principle. The case of linear-exponentiated quadratic cost

and its connection with the risk-neutral solution is discussed.

1 Introduction

We consider the mean-field-type control problem with a risk-sensitive performance functional.

For mean-field-type control, the approach is generally to use the maximum principle, see for

instance [1, 3, 5, 8, 9]. We refer the reader to [7] for a recent survey on the approach.

In [2], it is shown that one can introduce a system of dual Hamilton-Jacobi-Bellman and

Fokker-Planck equations, dHJB-FP, similar to that introduced by Lasry & Lions [6] to handle

risk-sensitive mean-field-type control problem. However, the solution of the dHJB equation

is not the value function, but must be interpreted as an adjoint function for a dual control

∗Alain Bensoussan is also with the College of Science and Engineering, Systems Engineering and Engi-

neering Management, City University Hong Kong.
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problem. Here, we extend this approach to the risk-sensitive mean-field-type control problem.

We then make the connection with the stochastic maximum principle, and study the linear-

exponentiated-quadratic case.

We consider functions f(x,m, v), g(x,m, v) where the arguments are x ∈ R
n, m is a

probability measure on R
n, but we will remain mostly in the regular case (with respect to

Lebesgue measure), in which m represents the probability density, assumed to be in L2(Rn)

and v is a control in R
d. The function f is scalar, and the function g is a vector in R

n.We also

consider σ : x ∈ R
n 7→ σ(x) ∈ L(Rn;Rn), and h : (x,m) ∈ R

n × L2(Rn) 7→ h(x,m) ∈ R. All

these functions are smooth. In the case of the differentiability with respect to the measure

m, we use the concept of Gateaux differentiability. If F : L2(Rn) → R, then

lim
θ→0

d

dθ
F (m+ θm̃) =

∫

ξ∈Rn

∂F

∂m
(m)(ξ)m̃(ξ)dξ,

with the functional ξ ∈ R
n 7→ ∂F

∂m
(m)(ξ) ∈ L2(Rn).

Consider a probability space (Ω,X , P ) and a filtration F = (Ft)t≥0, generated by a

Wiener process w(·) in R
n. The classical mean-field-type control problem is the following:

Given a control process v(·) adapted to the filtration F, the corresponding state equation is

the McKean-Vlasov equation of the mean-field type:

dx(t) = g(x,mv, v)dt+ σ(x(t))dw(t), x(0) = x0, (1)

in which mv(x, t) is the probability density of the random variable (state) x(t). The initial

value x0 is a random variable that is independent of the Wiener process w(·). This density

is well-defined if the matrix a(x) = σ(x)σ∗(x) is invertible. We define the second order

differential operator

Aφ(x) = −
1

2

∑

i,j

aij(x)
∂2φ(x)

∂xi∂xj
,

and its adjoint

A∗φ(x) = −
1

2

∑

i,j

∂2[aij(x)φ(x)]

∂xi∂xj
.

Next define the cumulative expected cost functional J(v(.)) as

= E

[
∫ T

0

f(x,mv, v)dt+ h(x(T ), mv(T ))

]

. (2)

The risk-neutral mean-field-type control problem is to minimize J(v(·)).

In this paper we consider a risk-sensitive cost functional, which means that we replace

(2) by

Jα(v(.)) = Eeα[
∫ T

0
f(x(t),mv(t),v(t))dt+h(x(T ),mv (T ))] (3)

in which α is a real number, representing the risk-sensitivity index of the decision-maker.

When α > 0, it models a risk-averse decision, when α < 0 a risk-seeker individual.
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Note that
Jα(v(.))− 1

α
→ J(v(.)), as α→ 0.

Equivalently,
1

α
log10(J

α) → J(v(.)), as α→ 0.

So the case (2) is considered as representing the risk-neutral situation corresponding to

α = 0.

From now on, we shall assume that α > 0. The case α < 0 is examined using the same

methodology by change f → −f, and h→ −h.

2 Risk-Neutral Case

We define the risk-neutral Hamiltonian H : (x,m, q) ∈ R
n×L2(Rn)×R

n 7→ H(x,m, q) ∈ R

as

H(x,m, q) = inf v{f(x,m, v) + qg(x,m, v)}

and the optimal value of v is denoted by v∗(x,m, q).We then setG(x,m, q) = g(x,m, v∗(x,m, q)).

The mean-field-type control problem is easily transformed into a stochastic control

problem for a higher dimensional state, which is the probability density mv(·). It is the

solution of the Fokker-Planck equation

∂mv

∂t
+ A∗mv + div(g(x,mv, v(·))mv) = 0, (4)

and mv(0, x) = m0(x), in which m0(x) is the probability density of the initial value x0. The

objective functional J(v(.)) can be written as

J(v(.)) =

∫ T

0

∫

x∈Rn

f(x,mv(t), v(t))mv(x, t)dxdt

+

∫

h(x,mv(T ))mv(x, T )dx. (5)

The adjoint system of optimality associated with (4) and (5) is given by

u(x, T ) = h(x,m) +

∫

Rn

∂

∂m
h(ξ,m)(x)m(ξ, T )dξ (6)

−
∂u

∂t
+ Au = H(x,m,Dxu(x))

+

∫

Rn

∂

∂m
H(ξ,m,Dxu(ξ))(x)m(ξ, t)dξ (7)

∂m

∂t
+ A∗m+ div(G(x,m,Dxu)m) = 0, (8)

m(0, x) = m0(x). (9)

3



The optimal feedback control is v∗(x, t) = v∗(x,m,Dxu). When the functions h, f, g are

mean-field free, i.e., do not depend on m then the equations (6) and (7) reduces to standard

Hamilton-Jacobi-Bellman equation in x and a Fokker-Planck-Kolmogorov equation:

u(x, T ) = h(x), (10)

−
∂u

∂t
+ Au = H(x,Dxu(x)), (11)

∂m

∂t
+ A∗m+ div(G(x,Dxu)m) = 0, (12)

m(0, x) = m0(x). (13)

In this case, u can be interpreted as the value function, the optimal feedback v∗(x, t) =

v∗(x,Dxu(x, t)) is time consistent, which means that it does not depend on the initial con-

dition of the dynamic system (1), whereas when the system is coupled, it does.

3 Risk-Sensitive Case

3.1 Mean-Field Free Case

Let us consider the problem of optimizing

Jα(v(·)) = Eeα[
∫ T

0
f(x(t),v(t))dt+h(x(T ))] , (14)

subject to the state dynamics

dx(t) = g(x(t), v(t)) + σ(x(t))dw(t), x(0) = x0, (15)

To be able to apply the optimality principle we have to introduce a second state equation,

namely

dz = f(x(t), v(t))dt, z(0) = 0, (16)

and we then get

Jα(v(·)) = Eeα[z(T )+h(x(T ))].

In this way the functional involves only the final state, but the state is now augmented. The

new state is the pair (x(t), z(t)). However, we are in the standard situation, in which we can

apply Dynamic Programming. Introduce the family of problems

dx = gds+ σ(x)dw, x(t) = x (17)

dz = f(x(s), v(s))ds, z(t) = z. (18)

We denote the solution by xx,z,t(s), zx,z,t(s), and set Jα
x,z,t(v) = Eeα[zx,z,t(T )+h(xx,z,t(T ))]. We

define Φα(x, z, t) = inf v(.) J
α
x,z,t(v). We can then write the Bellman equation:
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−
∂Φα

∂t
+ AΦα = inf vDxΦ

αg(x, v) +
∂Φα

∂z
(x, v), (19)

Φα(x, z, T ) = eα[z+h(x)]. (20)

The above system can be solved by separation of variables as follows: Φα(x, z, t) = eαzuα(x, t)

with uα(x, t) solution of

−
∂uα

∂t
+ Auα = inf vDxΦ

α.g(x, v) + αuαf(x, v), (21)

uα(x, T ) = eαh(x). (22)

We see easily that uα−1
α

→ u as α → 0, where the function u is the solution of the

risk-neutral system (10)-(11). The optimal control is obtained by a feedback depending on

the state x, but not on the state z.

3.2 Mean-Field Dependence

We now turn to the risk-sensitive mean-field-type control problem with (1) and (3). We

introduce again a new state z(t) with the mean-field term:

dx = g(x,mv, v)dt+ σ(x)dw, x(0) = x0, (23)

dz = f(x,mv, v)dt, z(0) = 0. (24)

We have to consider a feedback v(x, z) depending on the full state (x, z). The simplification

which occurred in the case without mean-field, namely the optimal feedback was depending

on the state x only, does not extend in the current context. However, we still consider that

the probability mv(t) entering in the functions f and g is the probability density of x(t) and

not the joint probability distribution µv(x, z, t) of the pair (x(t), z(t)). Therefore,

mv(x, t) =

∫

R

µv(x, z, t)dz.

The joint probability distribution µv(x, z, t) of the pair (x(t), z(t)) solves the degenerate

Fokker-Planck-Kolmogorov equation

∂µv

∂t
+ A∗µv + div(g(x,mv, v(x, z, t))µv)

+ ∂
∂z
[f(x,mv, v(x, z))µv] = 0,

µv(0, x, z) = m0(x)⊗ δ0(z)

(25)

and we can write the cost functional as

Jα(v) =

∫

x∈Rn

∫

z∈R

µ(x, z, T ) eα[z+h(x,
∫
R
µv(x,z,T )dz]dzdx
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We can apply the general theory by adapting the system (6) (7) and (8). We introduce

the Hamiltonian of the augmented state as

H̃(x,m, q, ρ) = inf v{qg + ρf},

reserving the terminology H(x,m, q) = H̃(x,m, q, 1). The optimal feedback control is de-

noted by v∗(x,m, q, ρ) and we set F̃ (x,m, q, ρ) = f(x,m, v∗(x,m, q, ρ)), G̃(x,m, q, ρ) =

g(x,m, v∗(x,m, q, ρ)).

We also set v∗(x,m, q) = v∗(x,m, q, 1),

F (x,m, q) = F̃ (x,m, q, 1), G(x,m, q) = G̃(x,m, q, 1).

The risk-sensitive adjoint system is

u(x, z, T ) = eα[z+h(x,m(T ))]

+α

∫

Rn

∫

R

eα[ζ+h(ξ,m(T ))] ∂

∂m
h(ξ,m)(x)µ(ξ, ζ, T )dξdζ (26)

−
∂u

∂t
+ Au = H̃(x,m,Dxu,

∂u

∂z
) +

∫

Rn

∂

∂m
H̃(ξ,m,Dxu(ξ, ζ),

∂u

∂z
(ξ, ζ))(x)µ(ξ, ζ, t)dξ dζ (27)

∂µ

∂t
+ A∗µ+ div(g(x,m, v(x, z, t))µ) +

∂

∂z
[f(x,mv, v(x, z))µ] = 0, (28)

µ(0, x, z) = m0(x)⊗ δ0(z), (29)

m(x, t) =

∫

R

µv(x, z, t)dz. (30)

3.3 Transformation of the equation

We aim to transform the system (26), (27), (28). We introduce χ(x, z, t) defined by χ(x, z, t) =
∂u
∂z
(x, z, t).

We differentiate the equation in u, in (27), with respect to z. Taking account of the

fact that the integrals depend only on x, we get the relation

χ(x, z, T ) = αeα[z+h(x,m(T ))], (31)

−
∂χ

∂t
+ Aχ

=
∂χ

∂z
F̃ (x,m,Dxu,

∂u

∂z
) +Dxχ.G̃(x,m,Dxu,

∂u

∂z
). (32)

We have the following result
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Lemma 1. The function (x, z, t) 7→ χ(x, z, t) is positive: χ > 0.

Proof. We proceed only formally, since the assumptions have not been stated. The equation

(32) is a linear parabolic equation in χ, with no right-hand side and strictly positive final

condition. This implies the result.

This allows to assert that

H̃(x,m,Dxu,
∂u

∂z
) = χH(x,m,

Dxu

χ
),

F̃ (x,m,Dxu,
∂u

∂z
) = F (x,m,

Dxu

χ
),

G̃(x,m,Dxu,
∂u

∂z
) = G(x,m,

Dxu

χ
).

So we can write the system

u(x, z, T ) = eα[z+h(x,m(T ))] +

α

∫

Rn+1

eα[ζ+h(ξ,m(T ))] ∂

∂m
h(ξ,m)(x)µ(ξ, ζ, T )dξdζ (33)

−
∂u

∂t
+ Au = χH(x,m,

Dxu

χ
) +

∫

Rn

∂

∂m
χ(ξ, ζ)H(ξ,m,

Dxu(ξ, ζ)

χ(ξ, ζ)
)(x)µ(ξ, ζ, t)dξ dζ (34)

∂µ

∂t
+ A∗µ+ div(G(x,m,

Dxu

χ
)µ) +

∂

∂z
[F (x,m,

Dxu

χ
)µ] = 0, (35)

µ(0, x, z) = m0(x)⊗ δ0(z), (36)

m(x, t) =

∫

R

µv(x, z, t)dz, (37)

χ(x, z, T ) = αeα[z+h(x,m(T ))], (38)

−
∂χ

∂t
+ Aχ =

∂χ

∂z
F (x,m,

Dxu

χ
) +Dxχ.G(x,m,

Dxu

χ
). (39)

Remark 1. Note formally that uα, χα, µα, mα the solution of the system (33),(34), (35),

(36), (37), (39) satisfy
χα

α
→ 1,

uα − 1− αz

α
→ u

where the pair (u,m) is the solution of the risk-neutral system (6), (7), (8).
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4 Stochastic Maximum Principle

We can derive from the system (33)- (39) a stochastic maximum principle. We use the

following notation: X(t), Z(t) represent the optimal states and V (t) represent the optimal

control. The probability distribution of X(t) is denoted by PX(t).We shall define the adjoint

processes by Y (t) = Dxu(X(t),Z(t),t)
χ

, η(t) = χ(X(t), Z(t), t).

In fact the real adjoint process is Y. Following the standard notation of stochastic

maximum principle, the Hamiltonian is written as

H(X(t),PX(t), v, Y (t)) = f(X(t),PX(t), v) + Y (t).g(X(t),PX(t), v)

and by definition of F,G,

F (X(t),PX(t), v, Y (t)) = f(X(t),PX(t), V (t))

G(X(t),PX(t), v, Y (t)) = g(X(t),PX(t), V (t))

In order to state the stochastic maximum principle we compute the Itô differential of

Y (t). We apply Ito’s formula to the function Dxu(X(t),Z(t),t)
χ

. After tedious calculations, we

obtain

dY = [−D2
xu.a.Dx logχ+ Dxu(X(t),Z(t),t)

χ

∣

∣

∣
σ∗Dx logχ

∣

∣

∣

2

− 1
χ
tr(D2

xu.σ.Dxσ
∗)(X(t), Z(t))]dt

−DxH(X(t),PX(t), V (t), Y (t))dt

− 1
χ(X(t),Z(t))

∫

Rn+1 χ(ξ, ζ)Dx
∂H
∂m

(ξ,m, Dxu(ξ,ζ)
χ

)(X(t))

µ(ξ, ζ, t)dξdζ dt

+[D
2
xu

χ
− Dxu

χ
.(Dx logχ)

∗]σ(X(t))dw(t)

Set η(t) = χ(X(t), Z(t), t) =: χ(t). Using Itô’s formula,

dη = ηldw(t), η(T ) = αeα[Z(T )+h(X(T ),m(T ))],

in which we have set l(t) = σ∗Dx logχ(X(t), Z(t), t). Let also define Γ(t) = D2
xu.σ(X(t), Z(t), t).

dX(t) = g(X(t),PX(t), V (t))dt+ σ(X(t))dw(t),

X(0) = x0,

dZ(t) = f(X(t),PX(t), V (t))dt,

dY = −[Γ(t)l(t)
χ(t)

− Y (t)
∣

∣

∣
l(t)

∣

∣

∣

2

+ 1
χ(t)

tr(Γ(t)Dxσ
∗(X(t)))]dt

−DxH(X(t),PX(t), V (t), Y (t))dt

− 1
χ(t)

E[χ(t)Dx
∂H
∂m

(X(t),PX(t), V (t), Y (t))(X(t))]dt

+(−Y (t)l∗(t) + Γ(t)
χ(t)

)dw(t),

Y (T ) = Dxh(X(T ),PX(T ))+
α

χ(T )
E
[

eα[Z(T )+h(X(T ),m(T ))]Dx
∂h
∂m

(X(T ),PX(t))(X(T )
]

,

dχ = χldw(t), χ(T ) = αeα[Z(T )+h(X(T ),m(T ))],

V (t) ∈ argminv{H(X(t),PX(t), v, Y (t))}
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The processes l(t) and Γ(t) are defined by the fact that χ(t) and Y (t) are solutions of

stochastic backward differential equations.

5 Linear-quadratic risk-sensitive case

5.1 Mean-Field Free Case

Here we assume that β = 0 and f(x, v) = x∗Qx + v∗Rv, g(x, v) = Ax + Bv, h(x) =

x∗QTx, σ(x) = σ

We look for a solution as follows uα(x, t) = eα[x
∗Π(t)x+ρ(t)], where

d

dt
Π(t) + Π(t)A+ A∗Π(t)

−Π(t)[BR−1B∗ − αa]Π(t) +Q = 0, (40)

Π(T ) = QT , (41)

ρ(t) =
1

2

∫ T

t

tr[aΠ(s)] ds (42)

Of course, the Riccati equation (40) may fail to have a solution.

5.2 Mean-Field Dependent Case

For linear-quadratic setup we want to solve the following problem (we only consider the

one-dimensional case):



























inf v(·)∈UEe
α[ 12x2(T )+βE[x(T )]+z(T )],

subject to

dx(t) = (ax(t) + bv(t))dt + σdB(t),

dz(t) = 1
2
v2(t)dt,

x(0) = x0, z(0) = 0.

(43)

With g(x,m, v) := ax + bv, f(x,m, v) := 1
2
v2, h(x,m) := 1

2
x2 + β

∫

ym(dy), σ(x) := σ.

Note that g, f, σ are independent of m. The corresponding Hamiltonian

H̃(x,m,Dxu,Dzu) = inf v

[

(ax+ bv)Dxu+
1

2
v2Dzu

]

(44)

= axDxu−
1

2
b2
(Dxu)

2

Dzu
, (45)

where the optimal control is

v̄ = −b
Dxu

Dzu
, (46)

noting that, by Lemma 1 or (52) below, Dzu > 0.

9



The optimal state (x(t), z(t)) solves














dx(t) = (ax(t)− b2Dxu
Dzu

)dt+ σdB(t),

dz(t) = 1
2

(

bDxu
Dzu

)2

dt,

x(0) = x0, z(0) = 0.

(47)

Its associated infinitesimal generator is

Aψ(x, z) =
σ2

2
D2

xψ(x, z) +

(

ax− b2
Dxu

Dzu

)

Dxψ(x, z)

+
1

2

(

b
Dxu

Dzu

)2

Dzψ(x, z). (48)

5.2.1 The adjoint function u

The adjoint function u is the solution of

∂tu(t, x, z) +Au(t, x, z) = 0, (49)

with terminal value

u(T, x, z) = eα(z+h(x,m(T ))) + αβx

∫ ∫

eα(ζ+h(y,m(T )))µ(dy, dζ, T ). (50)

In terms of the process (x(t), z(t)) given in (47) we have






du(t, x(t), z(t)) = σDxu(t, x(t), z(t))dB(t),

u(T, x(T ), z(T )) = φα
T + αβx(T )E[φα

T ],

φα
T := eα(z(T )+h(x(T ),m(T ))).

(51)

5.2.2 The function Dzu

Differentiating (49) w.r.t. z we obtain the following PDE for χ := Dzu:

∂tχ +Aχ = 0, χ(T ) = αeα(z+h(x,m(T ))). (52)

In terms of the process (x(t), z(t)) given in (47) we have
{

dχ(t) = σDxχ(t)dB(t),

χ(T ) = αφα
T , χ(0) = αE[φα

T ].
(53)

5.2.3 The function Dxu

Differentiating (49) w.r.t. x we obtain the following PDE for

ϕ := Dxu, (the equality Dxχ = Dzϕ is used in the calculation).

∂tϕ+Aϕ = 0, (54)

ϕ(T ) = αxeα(z+h(x,m(T ))) +

αβ

∫ ∫

eα(ζ+h(y,m(T )))µ(dy, dζ, T ). (55)
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In terms of the process (x(t), z(t)) given in (47) we have

{

dϕ(t) = σDxϕ(t)dB(t),

ϕ(T ) = αx(T )φα
T + αβE[φα

T ].
(56)

5.2.4 Characterization of the optimal control

Using (56) and (53), by Itô’s formula, the process p := Dxu
Dzu

= ϕ

χ
satisfies

{

dp(t) = −{ap(t) + ℓ(t)q(t)}dt+ q(t)dB(t),

p(T ) = ϕ(T )
χ(T )

= x(T ) + β
χ(0)
χ(T )

,
(57)

where

ℓ(t) := σ
Dxχ

χ
= σ

Dxzu

Dzu
(58)

and

q(t) = σ
Dxϕ(t)

χ(t)
− p(t)ℓ(t). (59)

The process (p, q, l) has an explicit solution in terms of χ(0) and deterministic function

π, ω and is given by p(t) = π(t)x(t) + βω(t)χ(0)
χ(t)

, q(t) = σπ(t)− βl(t)ω(t)χ(0)χ−1(t). where

π, ω solve Riccati equations.

{

π̇ + 2aπ − b2π2 + αβσ2γ = 0, π(T ) = 1

ω̇ + (a− b2π)ω = 0, ω(T ) = 1.

The expected value y(t) = E[x(t)] of the optimal state solves the ODE

ẏ = ay − b2E[p] = (a− b2π)y − βb2ωχ(0)E[χ−1(t)].

The optimal value of the problem is vα := Dzu(0,x0,0)
α

= χ(0)
α
.

5.3 Approximation of the risk-sensitive value

In this section we assume that β 6= 0 is small. In the previous section we provided an explicit

solution of the value function in terms of χ(0)
α

= Eφα. However, χ(0) needs to be calculated.

When β = 0 this was explicitly computed from π(0), ω(0) (which were denoted Π(0), ρ(0)).

The optimal value of the adjoint function is u0(x, z, t) = eα(z+
1

2
Π(t)x2+ρ(t)).

Now, when β 6= 0 we aim to approximate uβ(T ) := Eφα
T = eαβy(T )

E

[

eα[z(T )+ 1

2
x2(T )]

]

.

For β small enough we test the ansatz uβ(x, z, t) = eαβy(T )ũ(x, z, t) where y(T ) = yβ(T ) ∼

y0(T ) = x̄0e
∫ T

0
[a−b2Π(t)]dt,

E

[

eα[z(T )+ 1

2
x2(T )]

]

∼

∫

x

∫

z

u0(x, z, 0)µ(x, z, 0)dxdz,

which is expressed as
∫

x
u0(x, 0, 0)m0(x)dx =

∫

x
e

1

2
Π(0)x2+ρ(0)m0(x)dx.
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The function ũ solves the partial differential equation

∂ũ

∂t
+
a

2
Dxxũ+ axDxũ−

b2

2

|Dxũ|
2

Dzũ
= 0, (60)

and ũ(x, z, T ) = eα(z+
1

2
x2) + αβλ(T ), where λ(T ) = Eµ(.,T )e

α(z(T )+ 1

2
x2(T ). We will check that

ũ(x, z, t) ∼ u0(x, z, t) + αβxω(t)λ(T ) = û(x, z, t), for a convenient function of time ω(t) to

be determined. By choosing ω(t) as

ω(t) = e
∫ T

t
[a−b2Π(s)]ds,

we easily check that

∂û

∂t
+
a

2
Dxxû+ axDû−

b2

2

|Dxû|
2

Dzû
=
b2

2

αβ2

ω2
u0.

This means that the function û is consistent with (60) around t = T. When β2 can be

neglected, the approximation of ũ by û becomes exact. If we accept this approximation, we

still need to fix the value of y(T ) and λ(T ). This involves calculations using the probability

measure µ which solve the Fokker-Planck-Kolmogorov equation

∂

∂t
µ−

a

2
Dxxµ+

∂

∂x
((ax− b

Dxu

Dzu
)µ) +

b2

2
∂z

[

µ
|Dxu|

2

|Dzu|2

]

= 0. (61)

From the approximation above it follows that the ratios Dxu
Dzu

and Dxû
Dzû

are close to each other:

Dxu

Dzu
=
Dxũ

Dzũ
∼
Dxû

Dzû
= Π(t)x+ β

λ(T )ω(t)

u0(x, z, t)
.

Neglecting the term in β of the last term Dxu
Dzu

∼ Π(t)x and hence µ will be approximated

by û as
∂

∂t
µ̂−

a

2
Dxxµ̂+

∂

∂x
(x(a− bΠ)µ̂) +

b2Π2x2

2
Dzµ̂ = 0, (62)

and µ(x, z, 0) = µ̂(x, z, 0) = m0(x)⊗ δ0(z). We immediately deduce that the expected value

of x(t) as y(t) =
∫

x∈R

∫

z∈R
xµ(x, z, t)dxdz is solution of the ordinary differential equation

ẏ = y(a− b2Π), y(0) = x̄0 =

∫

xm0(x)dx.

Next, writing

−
∂u0

∂t
−
a

2
Dxxu0 = x(a− b2Π)Dxu0 +

b2Π2x2

2
Dzu0

and testing with µ̂ we obtain

λ(T ) = E

[

eα[z(T )+ 1

2
x2(T )]

]

(63)

∼

∫

x,z

u0(x, z, 0)µ(x, z, 0)dxdz (64)

=

∫

x

u0(x, 0, 0)m(x, 0)dx (65)

∼

∫

x∈R

eα(
1

2
Π2(0)x2+ρ(0))m0(x)dx. (66)
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This completes the approximation in β.

6 Conclusion

In this paper we have developed a risk-sensitive mean-field-type optimal control framework.

We have considered performance functionals and coefficients that are allowed to depend on

some functional of the law as well as the state and control processes. We derived optimality

equations in infinite dimensions connecting dual functions associated with Bellman functional

to the adjoint processes of the Pontryagin stochastic maximum principle.
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