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Abstract— We present a novel complex number formulation
along with tight convex relaxations for the aircraft conflict
resolution problem. Our approach combines both speed and
heading control and provides global optimality guarantees
despite non-convexities in the feasible region. We present a
new characterization of the conflict separation condition in
the form of disjunctive linear constraints. Using our approach,
we are able to close a number of open instances and reduce
computational time by up to two orders of magnitude on
standard instances.

I. INTRODUCTION

Safety plays a critical role in ATM due to the high
stakes involved in aircraft operations. The safety of flights
is ensured by Air Traffic Control (ATC) services which are
in charge of monitoring aircraft trajectories and maintaining
minimum separation distances between aircraft [1]. Current
air separation standards issued by the International Civil
Aviation Organization (ICAO) require that aircraft be
separated by at least 5 NM1 horizontally and 1000 ft
vertically [2] and two aircraft violating these rules are said
to be in conflict. In this paper, we present a novel Conflict
Detection and Resolution (CD&R) algorithm based on
speed and heading control for en-route traffic. We focus
on the horizontal aircraft conflict resolution problem i.e.
2-dimensional plane, since altitude change maneuvers can
be easily modeled using discrete decision variables.

The aircraft conflict resolution problem is traditionally rep-
resented as an optimization problem in which the objective
is to find conflict-free trajectories for all aircraft flying in
a given region of airspace. A comprehensive review of the
literature on CD&R algorithms up to the 21st century can
be found in [3]. Since we propose a global optimization
approach for the aircraft conflict resolution problem, we next
focus on reviewing the literature on exact methods.

The first exact approaches for conflict resolution are due to
[4] and [5]. In [4], the authors propose a Mixed-Integer Lin-
ear Program (MILP) to find conflict-free aircraft trajectories
in the horizontal space. Aircraft dynamics are approximated
and separation constraints are verified at discrete time steps.
An optimal control formulation with speed and heading
maneuvers is proposed and solved on instances with up to
4 aircraft. In [5], two horizontal conflict resolution problems
are solved: a first problem is solved with speed control only
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and a second with heading control. In [6], the authors present
a MILP for speed and altitude control based on a disjunctive
linear separation constraint. This separation condition is also
used in [7] where the authors introduce linear upper bounds
when speed control is the only separation maneuver. [8]
proposes a space-discretized MILP formulation involving
speed and heading controls where aircraft recover a parallel
trajectory.

Several papers have built on the separation constraints
introduced in [5]. In [9], the problem is represented as a
MILP and improvements on the original formulation are
proposed. In [10], a Mixed-Integer Non-Linear Program
(MINLP) is proposed to solve the horizontal aircraft col-
lision avoidance problem. The separation constraints are
expressed using trigonometric functions to represent heading
variations. Recently, in [11], the authors proposed an exact
non-convex MINLP approach combining speed, heading and
altitude controls. The authors also consider a 2D variant of
their problem in which only horizontal maneuvers (speed
and heading control) are allowed which coincides with the
problem we are addressing in this paper. Let us emphasise
that, in [9], [10], [11], the authors point out the existence
of past conflicts in their formulations without providing
a comprehensive method to handle these. In particular, if
heading control is allowed, initially diverging aircraft (before
optimization) can eventually converge (after optimization).
Alternative separation conditions derived from aircraft pairs
time of minimal distance were recently proposed in [12],
[13] and formulated using MINLPs.

This review highlights that exact approaches are penalized
by the non-convexity of trigonometric functions involved
in the separation conditions. In turn, discretised approaches
either use upper bounds on aircraft minimal crossing times
to guarantee conflict-free trajectories or consider only a finite
number of alternative trajectories, thus potentially ignoring
conflict-free solutions with better objective function values.
In this paper, we present a new formulation for aircraft
separation based on a complex number representation of
velocity control. We then introduce convex relaxations in
the form of Mixed-Integer Quadratic Programs (MIQPs)
and a Mixed-Integer Quadratically-Constrained Programs
(MIQCPs). We show that these convex relaxations are likely
to produce global optimal solutions, i.e., the relaxations are
usually tight. Numerical results highlight the efficiency of
the proposed approach when compared to state-of-the-art
methods on classical benchmark problems.
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II. AIRCRAFT SEPARATION CONDITION
Let us consider a set A of aircraft in a given air sector,

all at the same flight level. Let pi(t) = [xi(t), yi(t)]
ᵀ be

the vector representing the position of flight i at time t.
The relative position of aircraft i and j at time t can be
represented as pij(t) = pi(t)−pj(t). Let d be the horizontal
separation norm, the two aircraft are separated if and only if:

‖pij(t)‖ > d,∀t > 0 (1)

Let vij = [vij,x, vij,y]ᵀ be the relative velocity vector of i
and j, i.e. vij,x = vi,x − vj,x and vij,y = vi,y − vj,y , and let
p̂ij = [x̂ij , ŷij ]

ᵀ be their relative initial positions. Assuming
that uniform motion laws apply, pij(t) can be expressed as:
pij(t) = p̂ij + vijt.

For each aircraft i ∈ A, we denote v̂i its initial speed and
θ̂i its initial heading. Let qi be the speed variation rate (qi =
1 means no deviation) and let θj be the heading deviation
angle (θi = 0 means no deviation): qi and θi are the main
speed and heading control variables for i ∈ A, respectively.
Aircraft velocity components are vi,x = qiv̂i cos(θi + θ̂i)

and vi,y = qiv̂i sin(θi + θ̂i). Aircraft relative velocity vector
components can then be written as

vij,x = qiv̂i cos(θi + θ̂i)− qj v̂j cos(θj + θ̂j) (2)

vij,y = qiv̂i sin(θi + θ̂i)− qj v̂j sin(θj + θ̂j) (3)

Modeling aircraft separation can be achieved by deter-
mining the time of minimum separation based on aircraft
relative motion [14], [12]. Squaring Equation (1) we obtain
the separation condition

fij(t) ≡ ‖vij‖2t2 + 2p̂ij · vijt+ ‖p̂ij‖2 − d2 > 0 (4)

where · is the inner product in the Euclidean space. From
Equation (4), fij(t) is a 2nd order convex polynomial in t.
Let tmij be the time at which fij(t) is minimal

f ′ij(t) = 0 ⇔ tmij =
−p̂ij · vij

‖vij‖2
(5)

Note that the sign of the inner product p̂ij · vij indicates
aircraft convergence/divergence, formally we can state that,
p̂ij · vij > 0 ⇔ tmij < 0 which indicates that aircraft i and
j are diverging. Modeling aircraft divergence is critical if
heading control maneuvers are allowed since a pair of ini-
tially diverging aircraft (before optimization) may converge
(after optimization).

Substituting tmij in fij(t), the separation condition (4) can
be simplified to fij(t

m
ij ) > 0, which does not depend on

t anymore. Furthermore, multiplying both sides by ‖vij‖2
gives the following separation condition

gij(vij) = ‖vij‖2fij(tmij )

= ‖vij‖2(‖p̂ij‖2 − d2)− (p̂ij · vij)
2 > 0 (6)

For clarity of presentation, we will drop the ij subscript in
the remainder of this section. In scalar form, the separation
condition (6) can be written as a function of aircraft relative
velocity:

g(vx, vy) = v2x(ŷ
2 − d2) + v2y(x̂

2 − d2)− vxvy(2x̂ŷ) ≥ 0 (7)

The separation constraint (6) provides a sufficient condition
for aircraft separation but ignores the temporal dimension
of the problem as it cannot differentiate between past and
future conflicts. In particular, diverging aircraft do not have
to satisfy these constraints as they incur no risk of future
conflicts (assuming they are initially separated).

Note that the function g on the left hand side of (7) is a
two-dimensional quadratic function. Thus, the feasible region
corresponding to the equation g(vx, vy) = 0 can be described
by two linear equations. These equations are characterised
by solving the equation g(vx, vy) = 0 treating vy or vx as a
constant. The discriminants of the resulting uni-dimensional
quadratic functions are{

∆vx = 4d2v2y(x̂2 + ŷ2 − d2)

∆vy = 4d2v2x(x̂2 + ŷ2 − d2)

(8)

(9)

Hence the equation admits real roots if x̂2 + ŷ2 − d2 > 0,
which is always true since i and j are assumed to be initially
separated. Given the discriminants defined in (8) and (9),
points satisfying g(vx, vy) = 0 must satisfy the following
set of linear equations,

(ŷ2 − d2)vx −
(
x̂ŷ + d

√
x̂2 + ŷ2 − d2

)
vy = 0

(ŷ2 − d2)vx −
(
x̂ŷ − d

√
x̂2 + ŷ2 − d2

)
vy = 0

(x̂2 − d2)vy −
(
x̂ŷ − d

√
x̂2 + ŷ2 − d2

)
vx = 0

(x̂2 − d2)vy −
(
x̂ŷ + d

√
x̂2 + ŷ2 − d2

)
vx = 0

(10)

(11)

(12)

(13)

Equations (10)-(13) define two lines in the plane (vx, vy)
and the sign of g(vx, vy) depends on these linear equations.
Consider the plane equation

vxx̂+ vy ŷ = 0 (P)

induced by the dot product p̂ij · vij and indicating conver-
gence/divergence. This plane splits the space (vx, vy) in two
half-spaces, one of which represents diverging trajectories.
Any point in this half-space corresponds to diverging trajec-
tories and thus is feasible. The remaining half-space can be
split into two symmetric sub-spaces using the plane normal
to vxx̂+ vy ŷ = 0, defined as,

vyx̂− vxŷ = 0. (N)

Let us emphasise that the feasible region defined by the
separation constraint (7) can be reduced to two on/off linear
inequalities based on (10)-(13). Depending on the sign of
the constants x̂ and ŷ, (7) can only be satisfied on one side
of the lines defined by the system of linear equations. An
Example of the non-convex region defined by the inequality
g(vx, vy) ≥ 0 is depicted in Figure 1.

Given a binary variable z ∈ {0, 1}, let us consider the
following disjunction,

{z = 1, vyx̂− vxŷ 6 0} ∨ {z = 0, vyx̂− vxŷ > 0}.

This disjunction models the crossing order of aircraft at the
intersection point of their trajectories. Given the disjunction
above, the feasible region can be split into two symmetrical



(a) Side-view of the feasible region (b) Upper-view of the feasible region

Fig. 1. Different angles on the feasible region in the plane (vx, vy). Note
that points behind the hyperplane (P) are feasible (past conflicts) and (N)
splits the feasible region into two symmetric convex sub-regions denoted
F1 and F2.

polyhedra defined by the lines corresponding to the roots
of (7). We next present a new formulation to link relative
velocity variables to aircraft control variables.

III. COMPLEX NUMBER FORMULATION

Aircraft motion can be represented by the vector vi =
[vi,x, vi,y]ᵀ where vi,x = qiv̂i cos(θi + θ̂i) and vi,y =

qiv̂i sin(θi+ θ̂i). We propose to isolate the decision variables
qi and θi using trigonometric identities:

vi,x = qiv̂i cos(θi) cos(θ̂i)− qiv̂i sin(θi) sin(θ̂i)

vi,y = qiv̂i sin(θi) cos(θ̂i) + qiv̂i cos(θi) sin(θ̂i)

This representation admits a natural formulation where the
control actions are represented as a complex number:

Vi = qi(cos(θi) + i sin(θi))

In rectangular form, let δi,x = <(Vi) and δi,y = =(Vi)
respectively represent the real and imaginary parts of Vi,
i.e.,

Vi = δi,x + iδi,y, where δi,x = qi cos(θi), δi,y = qi sin(θi).

The magnitude of Vi is then |Vi| =
√
δ2i,x + δ2i,y = qi

and its argument arg(Vi) = arctan2(δi,y, δi,x) = θi. This
approach is inspired by complex number formulations for the
optimal power flow problem in power systems [15], [16].

A common objective function for aircraft conflict reso-
lution is to minimize the deviation with respect to initial
trajectories [5], [13], [11]. This can be achieved by min-
imizing the norm of both (1 − qi) and θi. Observe that
δ2i,y + (1 − δi,x)2 = q2i − 2qi cos(θi) + 1 which is minimal
when θi = 0 and qi = 1. Hence we propose to minimize the
objective function:

∑
i∈A δ

2
i,y + (1− δi,x)2.

For each i ∈ A, let 0 < q < q be bounds on qi and let
θ < θ be bounds on θi. We assume that θ > −π/2 and
θ < π/2. This is reasonable since aircraft heading control
range is typically limited to ±π/6 due to aircraft dynamics
and passenger comfort constraints. This implies bounds on
δi,x and δi,y:

q cos(max{|θ|, |θ|}) 6 δi,x 6 q (14)

q sin(θ) 6 δi,y 6 q sin(θ) (15)

Further, observe that δi,y/δi,x = tan(θi) which is smooth
between −π/2 and π/2 (δi,x > 0). Hence, the traditional
constraints on aircraft control variables qi and θi can be ex-
pressed in the complex number space (δi,x, δi,y) as follows:

q 6 qi 6 q ⇔ q2 6 δ2i,x + δ2i,y 6 q2 (16)

θ 6 θi 6 θ ⇔ δi,x tan(θ) 6 δi,y 6 δi,x tan(θ) (17)

The aircraft conflict resolution problem with speed and
heading controls is summarized in Model 1, hereby referred
to as the Complex Number formulation. Indicator constraints
are used to formulate the disjunction therein: depending on
the implementation framework, these can be directly passed
to the solver or a convex hull formulation can be used based
on the methods presented in [17], [18], [19].

Model 1 (Complex Number Formulation):

minimize
∑
i∈A

=(Vi)
2 + (1−<(Vi))

2

subject to

Vij = ViV̂i − Vj V̂j ∀(i, j) ∈ P

=
(
VijP̂

∗
ij

)
6 0 if z = 1 ∀(i, j) ∈ P

=
(
VijP̂

∗
ij

)
> 0 if z = 0 ∀(i, j) ∈ P

=
(
VijL̂

∗
ij

)
6 0 if z = 1 ∀(i, j) ∈ P

=
(
VijÛ

∗
ij

)
> 0 if z = 0 ∀(i, j) ∈ P

q2 ≤ |Vi|2 6 q2 ∀i ∈ A
θ 6 arg(Vi) 6 θ ∀i ∈ A
Vi, Vij ∈ C, zij ∈ {0, 1} ∀(i, j) ∈ P

where V̂i = v̂i

(
cos(θ̂i) + i sin(θ̂i)

)
, P̂ ∗ij = x̂ij − iŷij ,

L̂∗ij = αl
ij− iβl

ij and Û∗ij = αu
ij− iβu

ij . Note that coefficients
αl
ij , βl

ij and αu
ij , βu

ij can be preprocessed based on the sign of
x̂ij and ŷij . For implementation details, a real-number exten-
sion of this model can be found under: https://github.
com/ReyHijazi/Conflict_Resolution. This formula-
tion is non-convex due to the concave quadratic constraints
involved in the left inequality of (16) and the disjunction
modeled by the binary variable zij . We next present convex
relaxations for this model.

IV. CONVEX RELAXATIONS AND SOLUTION
ALGORITHM

Non-convexity in the above formulation can be tackled by
deriving the convex hull of (16) as described in [15]. Let
δ̃i,x > 0 and δ̃i,y > 0 be variables defined for each i ∈ A
as:

q2 6 δ̃i,x + δ̃i,y (18)

δ̃i,x 6 (1 + q cos(max{|θ|, |θ|}))δi,x − q cos(max{|θ|, |θ|})
(19)

δ̃i,y 6 q(sin(θ) + sin(θ))δi,y − q2 sin(θ) sin(θ) (20)

Constraints (18) set a relaxed lower bound on aircraft
speed control while Constraints (19) and (20) link variables

https://github.com/ReyHijazi/Conflict_Resolution
https://github.com/ReyHijazi/Conflict_Resolution


δ̃i,x and δ̃i,y to convex envelopes of (16). Substituting the
lower bound on δ2i,x + δ2i,y in (16) by Constraints (18)-(20)
results in a relaxed Mixed-Integer Quadratically Constrained
Program (MIQCP) that can be solved by commercial opti-
mization software such as CPLEX [20]—we hereby refer to
this relaxation as LB-MIQCP.

The complex number formulation can be further relaxed
by entirely omitting Constraints (16). While this relaxation
ignores aircraft speed control bounds, the resulting
formulation is a Mixed-Integer Quadratic Program (MIQP)
for which efficient and scalable algorithms are implemented
in optimization software—we hereby refer to this relaxation
as LB-MIQP. Observe that LB-MIQP is also a relaxation
of LB-MIQCP. Formally, let OPT denote the optimal
objective value of the complex number formulation and
LBMIQP and LBMIQCP be the optimal objective values
of LB-MIQP and LB-MIQCP, respectively. The following
holds: LBMIQP 6 LBMIQCP 6 OPT . Given the objective
function, it is expected that both relaxations LB-MIQP
and LB-MIQCP often provide solutions that do not violate
aircraft speed control bounds. This is due to the objective
function in Model 1 aiming at minimizing the deviation to
aircraft initial trajectories thus driving qi away from their
bounds.

We use the convex relaxations presented above to solve the
horizontal aircraft conflict resolution problem. We first solve
LB-MIQP and check if the optimal speed vector q? violates
aircraft speed bounds, i.e. for each aircraft we check if con-
straints (16) is satisfied. If the solution is bound-violating, we
then solve LB-MIQCP and check if the newly obtained q?

violates the lower bound in (16). If the solution is still bound-
violating, we introduce a heuristic to efficiently determine a
feasible solution: we fix the binary variable vector z? and
solve Model 1 using an interior point method. Note that the
Non-Linear Program (NLP) solved in this last step contains
only continuous variables and thus provides an upper bound
on OPT—we hereby refer to this problem as UB-NLP. This
solution algorithm is summarized in Algorithm 1. The status
of the final solution is either global if the solution of LB-
MIQP or LB-MIQCP satisfies Constraints (16); infeas. if one
of the two relaxations returns infeasible; local if UB-NLP
returns a feasible upper-bound; or nosol. if problem UB-NLP
is infeasible.

V. NUMERICAL RESULTS

We test the performance of the proposed complex number
formulation with classical benchmark instances: the Circle
Problem (CP) and the Random Circle Problem (RCP). The
CP consists of a set of aircraft uniformly positioned on the
circumference of a circle and heading towards its centre.
Aircraft speeds are assumed to identical, hence the problem
is highly symmetric. In contrast, the RCP builds on the
same framework but aircraft initial speeds and headings are
randomly deviated within specified ranges to create random
instances with less structure. These benchmarks problems
are illustrated in Figure 2 and have been widely used in the

Algorithm 1: Solution algorithm for the horizontal air-
craft conflict resolution problem

Input: A, θ0, v0, q, q, θ, θ
Output: q?, θ?, status
P ← {i ∈ A, j ∈ A : i < j}
q?,θ?,z? ← Solve LB-MIQP
if status(LB-MIQP)=infeas. then

status ← infeas.
return

if q? /∈ [q, q] then
q?,θ?,z? ← Solve LB-MIQCP
if status(LB-MIQP)=infeas. then

status ← infeas.
return

if q? /∈ [q, q] then
status(LB-MIQCP) ← viol.
z ← z?

q?,θ? ← Solve UB-NLP
if UB-NLP is feasible then

status ← local
else

status← nosol.
else

status← global
else

status ← global
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Fig. 2. Illustration of benchmark instances: the CP with 7 aircraft (left)
and the RCP with 30 aircraft (right).

field to assess the performance of CD&R algorithms [21],
[7], [11], [12]. For reproducibility concerns, and for future
comparisons, we have uploaded the models and the instances
used here in the public repository https://github.com/

ReyHijazi/Conflict_Resolution.

In all experiments, we use a circle of radius of 200NM.
For CP instances, all aircraft have the same initial speed
of 500NM/h. For RCP instances, aircraft initial speeds are
randomly chosen in the range 486-594NM/h and their initial
headings are deviated from a radial trajectory (i.e. towards
the centre of the circle) by adding a randomly chosen an
angle between −π/6 and +π/6.

All considered models are implemented using the AMPL
modeling language [22] on personal computer with 8Gb of
RAM and an Intel i7 processor at 2.9GHz. The MIQP and
MIQCP problems are solved with CPLEX v12.7 [20] using
default options and a time limit of 300s. The NLP problems
are solved with IPOPT with a constraint violation tolerance
of 1e− 9 [23].

https://github.com/ReyHijazi/Conflict_Resolution
https://github.com/ReyHijazi/Conflict_Resolution


A. Experimental Results in the Literature

State-of-the-art computational results for the horizontal
aircraft conflict resolution problem can be found in [5], [8],
[11], [13], [24]. Some of these approaches [5], [13] consider
heading and speed control separately or maneuver-discretised
formulations [24] which can lead to suboptimal solutions. In
[11], an exact implementation of the combined speed and
heading control problem is tested. Results on CP instances
with more than 7 aircraft are not reported due to scalability
issues. Asymmetric instances with up to 20 aircraft and an
average number of conflicts of 18.6 are solved in 25-35s.

B. Our Experimental Results

We test the performance of Algorithm 1 on the 17 CP
instances with 4 to 20 aircraft. The results for these CP
instances are summarized in Table I. In the header, |A| indi-
cates the number of aircraft and nc indicates the number of
initial conflicts nc (corresponding to the number of conflicts
occurring if no control action is taken). The remaining of
the table is organized in three sub-sections corresponding
to the three steps of Algorithm 1. In each sub-section, Obj.
indicates the objective value, Time indicates the computing
time in seconds, Gap indicates the relative optimality gap
in % and Status indicates the status returned by Algorithm
1. Further, in subsections LB-MIQP and LB-MIQCP, nv
indicates the number of bound-violating speed constraints
(16). A time limit of 300s is imposed for problems LB-
MIQP and LB-MIQCP; and the status of the solution is set
to local if the solution returned after running out of time
is feasible. In sub-section UB-NLP, the relative optimality
gap is determined using the best of the lower bounds of LB-
MIQP and LB-MIQCP.

All CP instances with 4 to 10 aircraft are solved to global
optimality within the allocating computing time. Instances
with up to 7 aircraft are solved in less than a second.
Instances with 11 to 17 are solved to local optimality within
the first step of the algorithm (LB-MIQP) whereas instances
18 and 19 are solved in two steps (LB-MIQCP) and instance
20 is solved in three steps (UB-NLP). This is a substantial
improvement compared to the existing literature where only
results with up to 7 aircraft were reported [11].

To evaluate the performance of the proposed approach
on RCP instances, we generated 100 instances for four
aircraft set sizes i.e. 10, 20, 30 and 40 aircraft. The results
are presented by reporting, for each aircraft set size, the
mean over the 100 instances and the standard deviation
in parenthesis. Solution status is reported by indicating the
distribution of the 100 instances in whole numbers.

All 200 10- and 20-aircraft RCP instances are solved to
global optimality in one step, i.e. after solving LB-MIQP, in
less than a second. The initial conflict density in 30-aircraft
RCP instances is more than twice that of 20-aircraft: 71 of
them are solved to global optimality in one step while an
additional 12 are solved to global optimality in two steps. All
of the remaining 17 instances are solved to local optimality
using the proposed heuristic with an average total computing

time of 40s and an average optimality gap of 4.8%. 40-
aircraft instances pose a greater challenge with an average
conflict density of 59.3. This leads to an average of 2 bound-
violating constraints for LB-MIQP and 1.7 for LB-MIQCP.
Consequently, only 17 of the 40-aircraft are solved to global
optimality, while 75 are solved to local optimality and 8
out of 100 remain open. Most feasible solutions (bound-
satisfying) are found using the heuristic with an average
optimality gap of 13.9% and a standard deviation of 16.1%.

VI. CONCLUSIONS AND FUTURE WORKS

We have introduced a novel formulation for the aircraft
conflict resolution problem based on a complex number
representation of velocity (speed and heading) control. The
new model captures the non-convexity of the feasible region
in a set of quadratic and linear on/off constraints. The
resulting complex number formulation contains a single
disjunction which models the crossing order of aircraft pairs
at the intersection point of their trajectories. We introduce
convex relaxations for this formulation and present a 3-step
solution algorithm for its implementation. The performance
of the proposed approach is tested on benchmark problems
for conflict resolution. We find that the complex number
formulation outperforms existing approaches and is able to
solve to global optimality several open instances. Future
work will be focused on multi-action control formulations
to enable aircraft to return to their initial trajectories.
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