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Experimental design trade-offs for gene regulatory network inference:

an in silico study of the yeast Saccharomyces cerevisiae cell cycle

Johan Markdahl, Nicolo Colombo, Johan Thunberg, and Jorge Gonçalves

Abstract— Time-series of high throughput gene sequencing
data intended for gene regulatory network (GRN) inference
are often short due to the high costs of sampling cell systems.
Moreover, experimentalists lack a set of quantitative guidelines
that prescribe the minimal number of samples required to infer
a reliable GRN model. We study the temporal resolution of data
vs. quality of GRN inference in order to ultimately overcome this
deficit. The evolution of a Markovian jump process model for
the Ras/cAMP/PKA pathway of proteins and metabolites in the
G1 phase of the Saccharomyces cerevisiae cell cycle is sampled
at a number of different rates. For each time-series we infer a
linear regression model of the GRN using the LASSO method.
The inferred network topology is evaluated in terms of the
area under the precision-recall curve (AUPR). By plotting the
AUPR against the number of samples, we show that the trade-
off has a, roughly speaking, sigmoid shape. An optimal number
of samples corresponds to values on the ridge of the sigmoid.

I. INTRODUCTION

Time-series gene expression data provides a series of snap-

shots of molecular concentrations in gene regulatory net-

works (GRN) [1]. This information is used to infer dynamic

models of GRN networks which aid our understanding of how

observable phenotypes, e.g., diseases, arise from molecular

interactions [2]. As such, time-series data is of importance to

fundamental research within systems biology, and potentially

also in applications like medical diagnostics, drug devel-

opment, and therapies [3]. The advent of high throughput

sequencing have made time-series data widely available

although it is prohibitively expensive to densely sample gene

expression levels. It remains difficult for experimentalists to

accurately judge the frequency and distribution of samples

needed to infer network structures: for each project, they

must navigate the trade-off between oversampling (more

samples than necessary, increasing costs with no benefit to

GRN inference) and undersampling (too few samples to reli-

ably infer the GRN, potential waste of resources and failure

to infer the GRN) [4]. Such costs add up; studies indicate

that 85% of research investment in biomedical sciences is

wasted, corrsponding to US$200 billion worldwide in 2010

[5]. This work undertakes an in silico study of the impact

of the cost vs. number of samples trade-offs on the quality

of the output produced by a GRN inference algorithm. Our

ultimate goal, to which this paper is a stepping stone, is to

formulate guidelines and construct decision support systems
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to help researches navigate trade-offs such that GRN models

of desired quality can be inferred at a minimal cost.

The performance of GRN inference algorithms has been

benchmarked against in silico and in vivo data in a number

of comparative studies [6]–[9]. The aforementioned trade-off

has received comparatively less attention [1], [4], [10]–[12].

There are of course many works that touch upon it in passing,

e.g., [13], or that pay the price of intentionally oversampling

to ensure capturing high-frequency content [14], [15]. Early

work that take a systematic approach to studying the trade-

off are rather abstracts and deal with generalities in broad

strokes [1], [4], [10]. For example, [1] states that cyclic

processes such as cell cycles and circadean rythms should

be sampled uniformly over multiple cycles. In perturbation-

response studies, by contrast, most samples should be taken

early to capture the transient dynamics.

Only in the past year have results been published to

support the common sense notions of navigating the trade-

off that are current experimental practices [11], [12]. Sefer

et al. [11] take an in-depth look at the experimental design

question of sampling densely versus sampling repeatedly; the

former is recommended for the purpose of detecting a spike

in the molecule count number of some species. Mombaerts

et al. [12] study the difference between transient and steady-

state sampling of the circadian clock in Arabidopsis thaliana,

finding that the transient contains more information. In a

similar vein, this paper establishes that the performance of

an inference algorithm that fits a linear model to a pathway

in the G1 phase of the Saccharomyces cerevisiae cell cycle is

comparable to random classifier in the case of 3–6 samples,

increases over 7–11 samples, and then flattens out with

additional samples giving diminishing returns. Together with

[11], [12], this paper represents a first effort to refine previ-

ous, rule based experiment trade-off navigation practices [1],

[4], [10], into more specific, quantitative guidelines.

Alongside the development of novel GRN inference algo-

rithms, new models have been adopted to generate in silico

data and represent the dynamics of inferred networks [16]–

[20]. GRN models exist at different levels of abstraction,

from the logical models captured by Boolean networks,

over continuous models, e.g., systems of ordinary differential

equations, to the mesoscopic single molecule models such as

chemical reaction networks (CRN) whose dynamics are mod-

eled as Markovian jump processes governed by the chemical

master equation (CME) [20]. To measure the performance

of a GRN inference algorithm, the ground truth in terms of

gene expression causal interactions is required. For in vivo

data, the ground truth is often unavailable and replacing it
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with a known gold standard poses certain challenges [10],

[21], making in silico studies an attractive alternative [19].

In this paper we require in silico models to generate output

with a wide range of sample rates. We strive to replicate

realistic experiment conditions, e.g., choosing a detailed in

silico model of cellular dynamics based on Markovian jump

processes to represent key characteristics such as intrinsic

noise [19], [22], common network motifs like sparsity [16],

[17], and species with highly different concentrations [23].

This paper uses the CME to model a pathway involved in

the G1 phase of the S. cerevisiae cell cycle [23], following

the experiment setup of a query driven rather than a global

study [21]. A sample is drawn from the probability density

function governed by the CME using a stochastic simulation

algorithm (SSA). We then infer a linear autoregressive model

to explain the in silico data using the LASSO method [24].

LASSO provides a basic approach for GRN inference [8],

and has the benefit of imposing sparsity on the regression

parameters, thereby capturing a characteristic GRN motif.

Large regression coefficients suggest the existence of reg-

ulatory interactions between species, whereby an interaction

topology can be extracted by thresholding the model param-

eters. The area under the precision-recall curve is used to

score the performance of LASSO by comparing the inferred

topology with that of the CRN simulated by the SSA [25].

We obtain a graph of the trade-off by repeating the inference

procedure for data of varying temporal resolution. The main

contributions of this paper can be summarized as follows:

(i) we establish that the trade-off function which charts

performance over number of samples has a sigmoid shape for

a pathway in the G1 phase of the S. cerevisiae cell cycle and

the LASSO method and (ii) we provide a graph that allows

an experimentalist to match a desired quality of inference

(for the pathway) with a minimum number of samples.

II. RESEARCH QUESTION AND RESEARCH PROBLEM

Suppose that the experiment budget is somewhat flexible, and

that there exist incentives to cut costs. Consider how a biol-

ogist conducting a high throughput gene sequencing exper-

iment should navigate the number of samples vs. quality of

GRN inference trade-off. Since the cost of undersampling is

an incomplete or failed study whereas oversampling amounts

to a waste of resources, we express the multiobjective

optimization problem, i.e., the trade-off, in terms of a hard

constraint on the quality of the inferred network: minimize

the number of samples required to achieve a certain quality

of inference for a given experiment, i.e., to optimize marginal

costs. For this paper we limit the scope to a particular model

of the Ras/cAMP/PKA pathway in S. cerevisiae [23] and the

LASSO method applied to GRN inference [24]. Consider the

resolution of gene expressions measurements in cases where

additional detail can be purchased at a cost that is higher

than that of additional samples, i.e., to optimize fixed costs.

In particular, we study the cases of including or excluding a

phosphoproteomic analysis of S. cerevisiae, which requires

the use of different techniques compared to proteomics and

metabolomics [26] (the low molecule count numbers for

phosphorylated proteins requires a larger cell culture).

III. METHOD

To begin with, in silico data is generated from a Markov

process model of a pathway in the yeast S. cerevisiae

cell cycle, see Section III-B. To simulate the model, an

efficient solver for the chemical master equation is required

as detailed in Section III-A. The model of the pathway

is from [23], and has been verified against experimental

data. The model consists of molecule count numbers for

a total of 30 proteins and metabolites and 34 stochastic

reactions. It is described in detail in Section III-B. The

output of the simulation is sampled at discrete time-points,

whereby a sparse discrete-time state-space model is fitted

using the LASSO method, see Section III-C. The translation

of the ground truth causal relations from the Markovian

jump process model to a discrete-time difference equation

based model is done in Section III-D. The evaluation of the

model in using precision-recall curves based on the relations

established in Section III-D is explained in Section III-E.

A. The chemical master equation

Consider a chemical reaction network (CRN) from a meso-

scopic, non-deterministic perspective as detailed in [27]. The

system consists of n molecular species S1, . . . , Sn contained

in a volume Ω. The system is assumed to be well-stirred or

spatially homogeneous. Let X(t) = [X1(t), . . . , Xn(t)]
⊤ ∈

N
n

be a vector whose ith element Xi denotes the number

of molecules of species Si at time t. The n species interact

through m reactions R1, . . . , Rm on the form

Rj :

k∑

l=1

njl
Sjl

cj
−→

h∑

l=1

mjl
Pjl

, (1)

where the left-hand side contain the reactants, the right-

hand side the products, and cj is the stochastic reaction

constant. Each reaction Ri defines a transition from some

state X0 ∈ N
n

to X(t) = X0 + Si, where Si is a column

of the stoichiometry matrix S = [S1, . . . ,Sm].

To each reaction Ri we associate a function wi : N
n →

[0,∞) such that wi(X)dt is the probability that Ri occurs

just once in [t, t + dt) [27]. These, so called propensity

functions, wi are given by ci times the number of distinct

molecular reactant combinations for reaction Ri found to be

present in Ω at time t [28]. More specifically, wi = ci if

∅
cj
−→P and

wi(Xjl
, . . . , Xjk

) = ci

k∏

l=1

(
Xjl

njl

)
, (2)

if
∑k

l=1 njl
Sjl

→ P , where ci is a stochastic reaction

constant, P denotes a sum of chemical products, and njl
∈ N

denote the coefficient of Sjl
in Ri as detailed in (1).

Let P(X, t) : Nn× [0,∞) → [0, 1] denote the probability

that the system is in state X at time t. The chemical master



equation (CME) is a system of coupled differential-difference

equations given by

Ṗ(X, t) =

m∑

k=1

wk(X − Sk)P(X − Sk, t)− wk(x)P(X, t),

(CME)

one equation for each feasible state X ∈ N
n

. Any solution

to (CME) corresponds to a sample from P(x, t). Exact

closed-form solutions to (CME) can only be obtained under

rather restrictive assumptions, wherefore most works focus

on exact numerical methods, so-called stochastic simulation

algorithms (SSAs), approximate numerical methods, e.g., the

τ -leap algorithm [29], [30], or solving approximations to the

CME such as the chemical Langevin equation [27].
Gillespie proposes two Monte Carlo SSAs for exact numer-

ical solution of (CME): the first reaction method (FRM) [28]

and the direct method (DM) [31]. The methods are equivalent

since they give the same probability distributions for the first

reaction to occur, and the time until its occurrence. The so-

called next reaction method (NRM) allows for more efficient

execution of the first reaction method [32]. However, [32]

underestimated the complexity of the NRM by omitting the

cost of managing a priority queue of reaction times [33].

An optimized version of the DM (ODM) turns out to be

more efficient than the NRM [33]. Additional SSAs have been

proposed since then. This paper utilizes the ODM.

B. The Ras/cAMP/ PKA pathway in S. cerevisiae

The Ras/cAMP/PKA pathway is involed in the regulation of S.

cerevisiae metabolism and cell cycle progression. A realistic

CRN model of 30 proteins and metabolites undergoing 34

reactions is proposed by Cazzaniga et al. [23], [34], see Table

I. See [35] for a deterministic ODE model of the pathway.

The pathway is regulated by several control mechanisms,

such as the as the feedback cycle ruled by the activity of

phosphodiesterase. Feedback and feedforward, i.e., directed

loops, are common network motifs which pose challanges

for many GRN inference algorithms [7], [8]. The notation

• in Table I indicates that two molecules are chemically

bound and form a complex. Each complex is treated as a

separate variable. For example GDP, Cdc25, Ras2 • GDP and

Ras2 • GDP • Cdc25 are four separate variables, three of which

appear in reaction one. Ras2 is however not a variable in

this model, as it only appears as part of complexes. The

superindex p indicates that a protein is phosphorylated [26].

Note that one effect of the chain of reactions R1–R34 in

Table I is to phosphorylate Cdc25.
Cazzaniga et al. use the τ -leap algorithm of Gillespie

[29], [30] to solve the CRN model in Table I approximately.

The stochastic reaction constants in Table I have been tuned

relatively to each other, but not absolutely wherefore the

time-scale of the simulations is given in an unspecified unit

[23]. We prefer to use a known time-scale since the minimum

sample time is bounded below for in vivo experiments.

Experimental results establish that cAMP initially rises to a

maximum and then decreases to steady-state with a settling

time of 3-5 minutes [36]. By repeating that experiment in

TABLE I. Stochastic model of the Ras/cAMP/PKA pathway [23].
Each row of the table represents a reaction on the form of (1).

Reaction Reactants Products Constant

R1 Ras2 • GDP + Cdc25 Ras2 • GDP • Cdc25 1e 0
R2 Ras2 • GDP • Cdc25 Ras2 • GDP + Cdc25 1e 0
R3 Ras2 • GDP • Cdc25 Ras2 • Cdc25 + GDP 1.5e 0
R4 Ras2 • Cdc25 + GDP Ras2 • GDP • Cdc25 1e 0
R5 Ras2 • Cdc25 + GTP Ras2 • GTP • Cdc25 1e 0
R6 Ras2 • GTP • Cdc25 Ras2 • Cdc25 + GTP 1e 0
R7 Ras2 • GTP • Cdc25 Ras2 • GTP + Cdc25 1e 0
R8 Ras2 • GTP + Cdc25 Ras2 • GTP • Cdc25 1e 0
R9 Ras2 • GTP + Ira2 Ras2 • GTP • Ira2 3e-2
R10 Ras2 • GTP • Ira2 Ras2 • GDP + Ira2 7e-1
R11 Ras2 • GTP + Cyr1 Ras2 • GTP • Cyr1 1e-3
R12 Ras2 • GTP • Cyr1 + ATP Ras2 • GTP • Cyr1 + cAMP 1e-5
R13 Ras2 • GTP • Cyr1 + Ira2 Ras2 • GDP + Cyr1 + Ira2 1e-3
R14 cAMP + PKA cAMP • PKA 1e-5
R15 cAMP + cAMP • PKA (2cAMP)• PKA 1e-5
R16 cAMP + (2cAMP)• PKA (3cAMP)• PKA 1e-5
R17 cAMP + (3cAMP)• PKA (4cAMP)• PKA 1e-5
R18 (4cAMP)• PKA cAMP + (3cAMP)• PKA 1e-1
R19 (3cAMP)• PKA cAMP + (2cAMP)• PKA 1e-1
R20 (2cAMP)• PKA cAMP + cAMP • PKA 1e-1
R21 cAMP • PKA cAMP + PKA 1e-1
R22 (4cAMP)• PKA 2C + 2(R • 2cAMP) 1e 0
R23 R • 2cAMP R + 2cAMP 1e 0
R24 2R + 2C PKA 1e 0
R25 C + Pde1 C + Pde1p 1e-6
R26 cAMP + Pde1p cAMP • Pde1p 1e-1
R27 cAMP • Pde1p cAMP + Pde1p 1e-1
R28 cAMP • Pde1p AMP + Pde1p 7.5e 0
R29 Pde1p + PPA2 Pde1 + PPA2 1e-4
R30 cAMP + Pde2 cAMP • Pde2 1e-4
R31 cAMP • Pde2 cAMP + Pde2 1e 0
R32 cAMP • Pde2 AMP + Pde2 1.7e 0
R33 C + Cdc25 C + Cdc25p 1e 1
R34 Cdc25p + PPA2 Cdc25 + PPA2 1e-2

silico, [23] establish that 3–5 minutes correspond to 1000

units of simulation time. The in vivo experiment included

15 samples from the evolution of cAMP over 7 minutes

[36]. LCSB experimentalists confirm that we can sample in

vivo systems at most twice per minute due to technological

limitations, corresponding to at most 6–10 samples per 1000

units of simulation time.

The initial molecule copy numbers from [23] are given in

Table II. The numbers reflect realistic assumptions regarding

the contents of a single cell of S. cerevisiae based on calcu-

lations and experimental data. However, in high throughput

gene sequencing experiments, a large number of cells are

sampled from a culture and destroyed in the process [37].

The molecule counts in each sample correspond to a sum of

around 50 000 to 100 000 cells. Since any two cells can be in

different stages of the S. cerevisiae cell cycle, their molecule

counts may not agree aside from the approximately 10%

difference that is due to intrinsic stochastic variation [38].

This problem is addressed by synchronizing the cell cycles

to evolve in phase, for which a number of techniques are

available [39]. Under the assumption of in vivo data being

from a synchronized processes, it is thus justified to study a

single cell in silico.



TABLE II. Initial values of molecule copy numbers [23]. Species not listed start at zero molecules.

Species Cyr1 Cdc25 Ira2 Pde1 PKA PPA2 Pde2 Ras2 • GDP GDP GTP ATP

Number 2e2 3e2 2e2 1.4e3 2.5e3 4e3 6.5e3 2e5 1.5e6 5.0e6 2.4e7

C. Network inference method

GRN inference problems involve many species but few sam-

ples and is thus underdetermined [21]. A well established

network motif, sparsity, i.e., that each species interact with

only a few other species, is imposed to reduce the number

of solutions [38]. Sparsity also protects the inferred model

against overfitting without having to deal with the combi-

natorial explosion that other methods for model selection

such as those based on the Akaike or Bayesian information

criteria face. A basic problem in compressive sampling, to

find the sparsest solution to a linear system of equations in

terms of the number of nonzero entries, is NP-hard [40] and

difficult to approximate [41] wherefore the use of convex

relaxations and other heuristic methods is commonplace [24].

A dynamical system is usually not the object of study in

compressive sampling [42], although techniques from that

field can be used for GRN inference. To adopt a convex

relaxation of the sparse approximation technique to time-

series we use the idea of minimizing an error.

To explain the discrete GRN data X(t) ∈ N
n

for all t ∈
[0,∞), we adopt a discrete-time system model,

X̂k+1 = f (∆tk, X̂k) + εk,

where X̂k ∈ R
n

models X(tk), ∆tk = tk+1 − tk, and εk is

white noise. For the sake of simplicity we take f : Rn → R
n

to be a linear function, i.e.,

X̂k+1 = A(∆tk)X̂k + εk. (3)

Since the propensity functions (2) of the CME are nonlinear,

the model (3) will not capture all the species interdependen-

cies and we cannot expect a zero error in the limit of infinite

samples. However, rather than adding a large dictionary of

terms that are linear in parameters but nonlinear in the

explanatory variables we prefer to adopt a minimal model.

The limit would anyhow not be approached in practice due

to the low temporal resolution of data, and there is merit to

using linear models since certain nonlinear GRN models are

prone to overfitting [9]. Since the Ras/cAMP/PKA pathway is

part of a cell cycle, we take the advice of [1] and adopt a

uniform sample rate, i.e., ∆tk = ∆t ∈ (0,∞) in (3). This

requires some post-processing of the SSA data.

The output of the SSA consists of the molecule count

numbers and time instances for each reaction during a

timespan [0, T ]. To create discrete-time samples (X(tk))
N−1
k=0

with t0 = 0, tk = T , ti+1−ti = ∆t, for all i = 0, . . . , N−1
we use the MATLAB function interp1 that interpolates

linearly based on the data obtained from the SSA and rounds

each sample to the nearest point in N
n

. The output from the

SSA contains a number of time-points on the order of 108

whereas T is on the order of 103, so any error due to the

interpolation and rounding is negligible. Since the molecule

count numbers vary greatly in order of magnitude, see Table

II, we introduce new variables by scaling each time series

(Xi(tk))
N−1
k=0 by a constant equal to one over maxk Xi(tk)

to facilitate the optimization [43]. For future reference, we

let the rescaling be given by a diagonal matrix D ∈ R
n×n

.

Assume that the output of the previous steps is given

by (Yk)
N−1
k=0 , where Yk = H(DX(tk)), and that we are

interested in modeling the evolution of Zk = G(Yk),
where both H : R

n → R
q

and G : R
q → R

p
are

linear ‘permutation’ maps that may exclude some elements.

The maps are given the following interpretation: H selects

the species that correspond to actual measurements, while

the matrix G selects the species whose interdependencies

we wish to infer. This allows us to remove species whose

dynamics are faster than we can realistically sample, which

behave as a constant with added white noise in steady

state. Such species are detected by their time-series having

a constant mean and approximately zero autocorrelation. In

theory, a distinction is made between the cases of full state

measurements for which good theoretical results exists and

the case of hidden nodes which is more difficult [44]. For

in vivo experiments, the case of hidden nodes is prevalent.

Indeed, the real Ras/cAMP/PKA pathway is influenced by

species which are not represented in Table I [23], [34].

Let ‖ · ‖1 : Rn×n → [0,∞) denote the entry-wise matrix

1-norm given by ‖A‖1 =
∑

i,j |Aij |, while ‖ · ‖2 : Rn →
[0,∞) denote the Euclidean vector norm. The least absolute

shrinkage and selection operator (LASSO) is an algorithm for

solving sparse linear systems of equations and a key tool in

compressive sensing. Using the model (3) to create an error

to be minimized, the model is fitted to the data (Z(tk))
N−1
k=0

by solving LASSO in the Lagrangian form

min
B∈R

p×p

1

N

N−1∑

k=0

‖Zk+1 −∆tBZk‖
2
2 + λ‖B‖1, (LASSO)

where the regularization parameter λ ∈ [0,∞) affects,

roughly speaking, the trade-off between the goodness of fit

and the sparsity of the regression parameters B ∈ R
p×p

.

The matrix B is a submatrix of A in (3), up to a change of

basis. The 1
N

and ∆t parameters are included to reduce the

sensitivity of B to changes in the sample rate.

Consider that M replicates of an experiment has yielded

M datasets Ii, i = 1, . . .M , to be used for identification. For

each Ii, we infer a set of models B(Ii, λ) using the LASSO

method for a range [0, b] of values of λ. To determine the

best value of the regularization parameter λ, we compare the

ability of the models B(Ii, λ) to predict the time-evolution

of a validation data set Vj(i), j(i) ∈ {1, . . . ,K}, where j(i)
is selected at random. The validation data Vj(i) is the output

of an experiment where the model organism is subjected to

somewhat different conditions than for Ii. For each set Ii,



we select the model that satisfies

λ = argmin
µ∈[0,b]

N−1∑

k=0

‖Zk+1(Vj(i))−∆tB(Ii, µ)Zk(Vj(i))‖
2
2,

where Zk(Vj(i)) is data from Vj(i). In an in vivo setting, this

approach corresponds to the common practice of a replicate

experiment used to validate the original. Experiments that

involve synchronization, in particular, should be repeated at

least twice using different methods of synchronization since

the process may induce artifacts in the cells [39].

D. Modelling causal relations

We wish to study causal relations in the GRN. From the

output of the in silico experiment, all we know are changes in

the molecule count numbers. A manipulation and invariance

view of causality is hence appropriate: if, roughly speaking,

after changing one gene we measure a change in the molecule

count number of a protein, the gene is a direct or indirect

cause of that change [45]. This idea is epitomized by the gene

knock-out experiment, i.e., the procedure of deactivating one

or more genes at a time. However, such experiment designs

suffer from a combinatorial explosion as we increase the

number of genes to be manipulated, and does not account

for redundancies in gene functionality [45]. As such, it is

desirable to be able to reliably infer regulatory interactions

from time-series data of e.g., cell cycles rather than gene

knockout experiments.

The causal relations underlying the reactions in Table I

can be visualized using a hypergraph H where each reaction

corresponds to a hyperedge, see Fig. 1. Note in particular that

the graph is rather sparse, as is consistent with the assump-

tion of Section III-C. To translate the ground truth into the

modeling framework that we have adopted, i.e., equation (3),

corresponds to converting the directed hypergraph in Fig. 1

into a directed graph with self-loops,

D = (V ,F), (4)

where V = {1, . . . , 30} represents all the species in Table I

and F = ∪3
i=1Ai, where

A1 = {(i, j) ∈ V × V |niSi + . . .
ck−→njPj + . . . , i 6= j},

A2 =



(i, j) ∈ V × V |niSi + njSj . . .

ck−→
∑

l 6=i

nlPl



 ,

A3 = {(i, i) ∈ V × V}.

Each arc in A1 represents a reactant and a product, each

arc in A2 two reactants of which at least one is consumed

during the reaction, and each self-loop in A3 represent the

fact that species which do not react persist existing. Note

that one difference between the causality represented by H
and D: all species on the left-hand side of a reaction must

be present for it to occur, but that requirement cannot be

captured by a system of the form (3). This would require (3)

to include terms that are bilinear in the explanatory variables.

We adopt the following approach to approximately infer

the GRN topology. Given estimated values of the regression

parameters B, we assign a topology G(r) = (V , E(r)),
where U = {u1, . . . , uq} corresponds to the set of measured

species, V = {v1, . . . , vp} ⊆ U is the set of species whose

dynamics we wish to infer, E(r) = {(i, j) ∈ U ×U | |Bij | ≥
r} are the causal relations, and r ∈ [0,maxi,j |Bij |] is a

threshold. By varying the threshold different causal models

are obtained. The matrix B relate to (X(tk))
N−1
k=0 via the

rescaling matrix D which is required for the optimization

solver to converge. We could remove this dependence but it

is our experience that the validation procedure gives a better

result if we rescale Vj(i) (see Section III-C) rather than B.
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Fig. 1. Directed hypergraph H of the causal relations expressed by
reactions R1–R34 in Table I. The hyperedges go from the reactants
(no arrow) to the products (arrow). Hyperedges with arrows at both
ends indicate that a reaction Ri is reversed by another reaction Rj ,
for some i, j ∈ {1, . . . , 34}.

E. Performance measure

To evaluate the performance of the network inference al-

gorithm we focus on the relation of the inferred network

topology to that of the ground truth D given by (4). We use

a criteria known as the area under the precision-recall curve

(AUPR). Given an inferred representation of causal relations

G(r) and the ground truth D, we can calculate the ratio

of true positives to all estimated positives (precision, |{e ∈
E(r) ∩F}|/|E(r)|) and that of true positives to all positives

(recall, |{e ∈ E(r) ∩ F}|/|F|). These are coordinates in

PR-space, i.e., the unit square [0, 1]2 with precision on the

ordinate and recall on the abscissa. By varying r ∈ [0,∞)
we obtain a right to left curve from the point (1, |F|/|V|2)
to some point in set {(0, s) | s ∈ [0, 1]}. The area under this

curve is the AUPR. By plotting the AUPR against the number

of samples, we establish how the quality of inference depends

on the temporal resolution of data, i.e., the trade-off function.

Let us make these notions more precise. A partition

P = (tk)
N−1
k=0 of a time interval [0, T ] is a sequence of real

numbers such that t0 = 0 < t1 < . . . < tN−1 = T [46].

Consider a number of partitions P1, . . . ,Pl of [0, T ] and the



data corresponding to each partition Ii = (X(tk))tk∈Pj
. The

trade-off function is the discrete graph of the AUPR obtained

from inferring a model B(Ij) which can be thresholded into

a network G(r) over the sampling frequency |Pj |/T . In this

paper T is constant, wherefore we plot the AUPR against

the number of samples |Pj |. Although we define the trade-

off function without specifying all details, it is clear that it

depends on the GRN inference method, in our case LASSO.

Aside from the trade-off function that each experiment

yields, we can consider a sample median trade-off function

as the median over multiple experiments, and a true median

trade-off function. The true trade-off function depends on the

method used for inference. It is however clear that its value

for zero samples is zero, and it seems likely that it converges

to a constant in the limit of infinite samples although

performance may deteriorate due to numerical reasons. If

we know that to be the case, we can always prune samples

and thereby reduce the sample rate to some practical value.

As such, we expect the trade-off function to increase from 0

to some value in [0, 1] as |Pj | → ∞, or at least to increase

in the case of sufficiently many samples.

Although the AUPR is popular, it should be noted that there

are other goodness of fit indices, e.g., ROC curves [47], or

three-way ROCs [48] and their respective integrals. We prefer

the AUPR since it is known to give a more realistic measure of

performance than the ROC when the distribution of positive

and negative instances is heavily skewed [25]. This is the

case for GRN inference due to the sparseness of the network.

Random performance for the AUPR is given by the number

of true instances divided by the total number of instances,

i.e., |F|/|V|2. An issue that benchmark and comparative

studies face is that different methods are to some extent

complimentary, and their ranking depends e.g., on the type of

network considered [7], [8]. In this paper, we are interested

in studying the performance of an algorithm relative to the

quality of its input, i.e., relative to itself. Fortunately, this

relative performance should be less sensitive to the choice

of inference algorithm, goodness of fit index, type of model,

and type of network than is the benchmark of one algorithm

or comparative studies that benchmark multiple algorithms.

IV. RESULTS

We simulated 40 cells using the ODM, each run encom-

passing 108 reactions, resulting in datasets whose time span

include [0, 3000]. We keep the first 1500 time units, which

correspond to 4.5–7.5 minutes [23]. Realistically, this implies

that we may sample 9–15 times at most (see Section III-B).

The output of the simulation in the case of 15 samples is

given in Fig. 2. The intrinsic noise does not influence the

overall shape of the trajectories, rather it is most pronounced

in the species with low molecule count numbers such as

Pde1p and Cdc25p. Fig 3 depicts a second set of 3 cells that

is used as validation data (see Section III-C). The validation

data is simulated from the glucose starved S. cerevisiae

cell condition obtained by setting the initial value of the

metabolite GTP to 1.5 · 106 instead of 5 · 106 [23].

The species in the CME model evolve over different

time intervals, wherefore some are dormant or have already

reached steady-state while others go through a transient

state. This is typical of the S. cerevisiae cell cycle, where

different genes are expressed during different phases. While

the dense data (Xi(τk))
10

8
−1

k=0 from the SSA is not white

noise on [100, 1500], the autocorrelation dissipate with time

wherefore the sampled data (Xi(tk))
N−1
k=1 on a time par-

tition of length N may be white noise. Species that are

either white noise (Ras2 • GDP, Cdc25, Ras2 • GDP • Cdc25,

Ras2 • GTP • Cdc25, Ras2 • GTP, Ira2, Ras2 • GTP • Ira2, Cyr1,

Ras2 • GTP • Cyr1, R), constant or practically constant after

rescaling (Ras2 • Cdc25, GDP, GTP, PPA2), on (tk)
N−1
k=1 are

removed from the GRN inference and evaluation process,

compare with the 15 point time-series in Fig. 2–3. It is

possible to build a model of e.g., Cdc25 given sufficently

many samples from the interval [0, 100], but that would not

be consistent with our assumption of slow sampling, i.e., at

most two samples per minute.
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Fig. 2. Twenty five draws from the solution to (CME) for the
reactions given by Table I–II sampled 15 times uniformly over
[0,1500].

Fig. 4 displays the trade-off function for the cases of 3–

25 samples. The performance of a random classifier over this

data yields an AUROC of approximately 0.2. For the cases of

3–6 samples, we note that LASSO performs on par with the

random classifier. The performance in case of 7–15 samples

is better than average with at least 95% certainty (pointwise

for each number of samples). Note that there is a trend of

increasing performance with increasing samples. Cases of

comparatively good or poor performance, like that of 7 and

14 samples respectively can partly be explained by variation

in the data. Although not displayed in Fig. 4, more than 25

samples give diminishing returns with respect to the AUROC.

By identifying the true trade-off function with the sample

medians, we could imagine that the shape of the trade-off

function is approximately captured by a continuous sigmoid

curve.

Consider the inclusion or exclusion of a phosphoproteomic

study, i.e., whether the species Pde1p, cAMP • Pde1p, and



Cdc25p are measured or not. Fig. 4 is based on in silico

experiments that include phosphoproteomics. The regression

parameters B of the best performing model with an AUPR

of 0.41 is displayed in Fig. 5. Note that neither Pde1p could

not be explained using the other data (last row have no true

positives), nor is it helpful in explaining the other variables

(last column is zero). The protein Pde1p contributes a true

positive (cAMP • Pde1p in its column) but it is mostly white

noise followed by a short and noisy evolution. While the

trajectory of Pde1p is discernable in Fig. 2, care must be

taken as it becomes less so when the number of samples are

reduced. However, cAMP • Pde1p is well explained with all

positives identified on its row, and also manages to explain

the evolution of AMP, with two out of four true positives in

its column. To have a true positive on the diagonal may not

seem impressive, but it is valuable since it indicates that the

model makes sense, i.e., that it has some explanatory power

aside from mere data fitting.

About 80% of microarray time series in 2006 were short

with lengths of 3–8 time points [49]. For a study of the

Ras/cAMP/PKA pathway in S. cerevisiae where GRN inference

is done using the LASSO method, such time-series would

not suffice to infer the topology of the underlying network.

It may still be possible to predict how the organism would

react to changes in its environment, such as the difference

between normal and low glucose levels as represented by

the trajectories in Fig. 2 and Fig. 3 respectively. However,

that model would not give us clues about the regulatory

interactions inside the cell. In theory, it would be possible

for an experimentalist that desires such an understanding to

consult Fig. 4 and read off the minimum number of samples

required to achieve a certain value of the AUPR. In practice,

the generality of our results need to be increased before it

can become a useful tool in the laboratory.

V. DISCUSSION

This paper studies the trade-off between quality of inferred

gene regulatory network models versus the temporal res-

olution of data in the case of full and partial state mea-

surements corresponding to an experiment setup that either

includes or excludes phosphoproteomics. The goodness of

fit is characterized using the area under the curve of the

precision-recall curve (AUPR). In theory, experimentalists

who desires a particular AUPR value may consult our graph

of the trade-off function to see how many samples are

needed to achieve that quality of inference. They can also

determine if an increase in the number of samples, or the

inclusion of phosphoproteomics, is worthwhile compared

to their additional marginal and fixed experimental costs

respectively. In practice, it is however clear that additional

studies are needed before such a tool becomes mature enough

to be of actual use in the laboratory. This paper should be

considered as a proof-of-concept study. As such, its purpose

is to establish a framework, showcasing how a study of the

aforementioned trade-off can be conducted from simulation

of data to the evaluation of an inference algorithm.
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Fig. 3. Three draws from the solution to (CME) for the reactions
given by Table I–II, except the initial value of GTP is set to 1.5 · 10

6
,

sampled 15 times uniformly over [0,1500].
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