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Abstract— We consider the problem of shaping the distribution
of the state of a discrete time linear system subject to a station-
ary disturbance so as to optimize a performance index while
satisfying probabilistic constraints involving control input and
state. The state is not available and a disturbance compensator
is designed via a one-shot off-line computational approach
to optimally operate the system in stationary conditions. The
resulting control strategy is easy to implement, able to handle
probabilistic constraints and guarantees optimality in the long
run. Moreover, it does not require the on-line (re)computation
of the control parameters. Interestingly, problems where the
disturbance is cyclostationary and/or the control is periodic
can be embedded in our formulation. This is the case of the
numerical example presented in the paper, where the proposed
methodology is applied to stochastic periodic control of a
battery for peak shaving of the solar energy produced by a
photovoltaic panel installation.

I. INTRODUCTION

We consider a discrete time linear time invariant system
affected by a stationary additive disturbance. Our goal is
to design a control strategy so as to optimize the system
performance and satisfy some probabilistic constraint when
the system is operating in stationary conditions. This involves
characterizing the stationary state process and optimally
shaping its distribution.
The problem formulation resembles that of minimum vari-
ance (MV), originally introduced in [1], and generalized
minimum variance approaches (GMV), [2], [3], [4], [5],
[6], [7], [8]. In GMV, actuation constraints are typically
accounted for through the introduction of suitable weights in
the cost function, [9]. The problem addressed in this paper is
more general in that other performance indices than variance
can be considered and joint state and input constraints are
directly accounted for, via a chance constrained problem
formulation, with constraints imposed in probability.
In this paper, we are concerned with the case when the
state is not available for control input design, while instead
disturbance measurements are. A disturbance compensator is
thus designed to shape the stationary distribution. The com-
pensator parameters are computed once, off-line, and then
the compensator is implemented on-line, without requiring
any (re)computation of its parameters. Once the controlled
system has reached steady-state conditions, the resulting sta-
tionary state process is guaranteed by construction to satisfy
the probabilistic constraints and to optimize the performance.
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The off-line computation of the compensator parameters is a
hard problem, in general, due to the presence of probabilistic
constraints. In our set-up, the problem is even harder since
the probability appearing in the constraints refers to the
whole disturbance process. In this case, analytic methods for
approximating the probabilistic constraints, [10], [11], [12],
as well as randomized methods, [13], [14], [15], [16], are not
directly applicable. The main theoretical contribution of this
paper is the extension of the scenario theory results on chance
constraints feasibility to the proposed setting, by approximat-
ing the stationary state distribution and accounting for the
introduced approximation error via constraint tightening.
The considered control set-up is particularly appealing for
those applications where the state is hardly available, because
of, e.g., the lack of suitable sensors. We actually developed
this work motivated by an energy management application
and, in particular, the cooling of buildings in a microgrid
with common resources like thermal storages, [17], [18]. To
model the inertia of the building, which acts as a passive
storage, a high dimensional model is introduced where the
building walls are sliced in layers, and the temperatures of
all layers are taken as state variables. It is clear then, that in
this problem the state is not available, while measurements
of the disturbances as given by outside temperature and solar
irradiation are easily obtained.
It is worth noticing that outside temperature and solar irradia-
tion are typically cyclostationary processes, not stationary as
required by our approach. A stationary set-up can however be
recovered by unrolling the system dynamics and referring to
a time interval length of one-day period as time step for the
state evolution. This finally leads to a stochastic periodic con-
trol solution, as shown in the numerical example presented
in the paper, where a simpler application to peak shaving of
solar energy production using a battery is addressed.
The rest of the paper is organized as follows. We first
provide some notations. The problem addressed is precisely
formulated in Section II. Our scenario-based solution and
the main result on chance constraints feasibility are stated in
Section III. A numerical example is illustrated in Section IV.
Finally, some concluding remarks are drawn in Section V.

Notation: A discrete time process {vk, k ∈ Z}, is also
denoted as v, while its probability distribution is Pv . Cor-
respondingly, the expected value with respect to Pv is
denoted by Ev[ · ]. I denotes the identity matrix, S =
diag(s1, . . . , sm) the diagonal matrix built from the scalars
s1, . . . , sm, and J = blkdiag(J1, . . . , Jm) the block diag-
onal matrix built from the square matrices J1, . . . , Jm. We
denote by ρX = max{|λ| : det(λI −X) = 0} the spectral
radius of a square matrix X , and by ‖ · ‖p the matrix norm



induced by the p-norm for vectors. Finally, L1

→, L2

→, and
P→ denote mean absolute value convergence, mean square
convergence, and convergence in probability.

II. PROBLEM FORMULATION

Consider a linear system where the state xk ∈ Rnx evolves
according to the discrete-time equation

xk+1 = Axk +Buk +Wdk, (1)

where uk ∈ Rnu and dk ∈ Rnd represent the control input
and an additive stochastic disturbance, respectively. A, B,
W are matrices of appropriate dimensions.
Throughout, we make the following assumptions.
Assumption 1 (Asymptotic stability): All the eigenvalues of
matrix A are strictly contained in the unit circle centered in
the origin of the complex plane, i.e., ρA < 1.
Assumption 2 (Disturbance): The stochastic process d is
strictly stationary with zero mean and well-defined and
known second order moment.
The zero mean assumption is without loss of generality,
because if this is not the case, we can introduce

x̄k+1 = Ax̄k +Wd̄,

where d̄ = Ed[dk], and reformulate the problem in terms of
∆xk = xk+1 − x̄k, which evolves according to

∆xk+1 = A∆xk +Buk +W∆dk,

where ∆dk = dk − d̄ is zero mean.
Assumption 3 (Information structure): At time k ∈ Z, the
value taken by dk is available for compensation purposes.
The state process x, instead, is not available.
Let the control input uk be parameterized as the following
static function of dk

uk = γ + ϑdk, (2)

where γ and ϑ are the controller parameters taking values
in the convex and compact sets Γ ⊂ Rnu and Θ ⊂ Rnu×nd ,
respectively. By plugging the disturbance compensator (2)
into (1), we obtain

xk+1 = Axk +Bγ + (Bϑ+W )dk. (3)

Given an integer M ∈ N, let us define process xM =
{xk,M , k ∈ Z} where

xk,M = (I −A)−1Bγ +

M−1∑
s=0

As(Bϑ+W )dk−1−s. (4)

Under Assumptions 1 and 2, by [19, Theorem 1.4 (p. 80)],
∀k there exists a xk,∞ such that xk,M

L2

→ xk,∞ (i.e. xk,M
is mean-square convergent to xk,∞) as M →∞. Moreover,
xk,∞ is a measurable function of process {. . . , dk−2, dk−1},
so that the probability distribution of xk,∞ is induced
from that of {. . . , dk−2, dk−1}, and the process x∞ =
{xk,∞, k ∈ Z} satisfies (3) and is strictly stationary with
well-defined finite first and second order moments.
Our goal is to shape the distribution of the stationary state
xk,∞ by choosing the compensator parameters γ and ϑ so as
to optimize some performance criterion while satisfying state
and input constraints. In this respect, it is worth noticing that,

although the disturbance dk is available (see Assumption 3),
it is typically not possible to cancel out its contribution on the
state dynamics (1) by means of the term Buk, also because
uk may be subject to constraints.
Here, we focus on the following formulation of the problem

min
γ∈Γ,ϑ∈Θ,h

h (5)

subject to: Pdk

{
`(xk,∞, γ + ϑdk, dk) ≤ h,

∧ f(xk,∞, γ + ϑdk) ≤ 0
}
≥ 1− ε.

where ε ∈ (0, 1) is a user-chosen probability level and Pdk is
the probability distribution of process dk = {. . . , dk−1, dk}.
Function `(x, u, d) ∈ R associates a cost to the state and
control input pair (x, u) when the disturbance value is d,
whereas function f(x, u) ∈ R defines a joint constraint
on (x, u). The fact that f(·) is a single constraint function
is without loss of generality because if multiple constraint
functions f1(·), . . . , fm(·) are present, then, we can redefine
f(·) as their maximum. In (5), we are then minimizing the
cost while satisfying the joint state and input constraint for
all disturbance realizations except for a set of probability at
most ε.
Both functions `(x, u, d) and f(x, u) are evaluated in station-
ary conditions, i.e., with x set equal to the stationary state
xk,∞ and with u given by the disturbance compensator in (2).
By the joint stationarity of processes x∞ and d, the solution
to (5) is optimal and satisfies the probabilistic constraint
in (5) for all time instants k ∈ Z. This is particularly
appealing because the control law can be computed once
(off-line), and, then, be applied at each time step without
solving any further on-line optimization problem. Optimality
and feasibility, however, are guaranteed for all k only when
the system is operating in stationary conditions. In practice,
thanks to Assumption 1, stationarity is always reached in the
long run, with a convergence rate that depends on ρA.
The following assumptions on the cost function `(·) and
on the constraint function f(·) are required to develop our
resolution approach to (5).
Assumption 4 (Convexity): The cost function `(x, u, d) and
the constraint function f(x, u) are convex with respect to
(x, u) ∈ Rnx×nu .
Assumption 5 (Lipschitz continuity): The cost function
`(x, u, d) and the constraint function f(x, u) are Lipschitz
continuous in x ∈ Rnx , with Lipschitz constant L, for any
(u, d) ∈ Rnu×nd .
Remark 1 (average cost): It is perhaps worth mentioning
that the results of the paper have more general valid-
ity than for the problem considered in (5). In particu-
lar, one can also minimize the average cost J(γ, ϑ) =
Edk [`(xk,∞, γ + ϑdk, dk)] leading to

min
γ∈Γ,ϑ∈Θ

J(γ, ϑ)

subject to: Pdk{f(xk,∞, γ + ϑdk) ≤ 0} ≥ 1− ε.

In this case, the convexity assumption is required for J(·)
and f(·), while the Lipschitz continuity assumption for f(·)
only. The theory developed next would still apply to this
set-up with minor modifications.



Remark 2 (Stochastic periodic control): Optimal stochastic
periodic control can be embedded in our framework by
adopting the so-called lifting transformation, i.e., by un-
rolling the original system dynamics over a time window
of length equal to the periodicity T and referring to the
system dynamics sampled at a slowest rate. The stationarity
of x∞ then maps back into the cyclostationarity of the
original state process with period T . This can be particularly
useful, for instance, when dealing with a system affected
by a cyclostationary disturbance and/or a control problem
with cost and input/state constraints that refer to some finite
time horizon. An instance of this kind of problem will be
described in Section IV.

III. PROPOSED SOLUTION AND MAIN RESULT

Chance constrained problems like (5) are generally challeng-
ing to solve, because of the probabilistic constraint which
can make the optimization problem non convex even under
Assumption 4 on the convexity of both `(·) and f(·), [20],
[21]. A further difficulty that we need to face in our set-up is
that Pdk is the distribution of the process dk, which includes
all variables dk−s, s = 0, 1, . . . .
In this section, we head for an approximate solution to
(5), which relies on the randomization of the probabilistic
constraint according to the so called scenario approach, [15],
[16], [14], [13], and the approximation of the stationary
process x∞ via its truncated counterpart xM .
These two approximations combined together lead to a
computationally tractable convex optimization problem re-
formulation, with a solution that can be proven to be feasible
for the original chance constrained optimization problem (5),
with high probability.
Consider a set {d(i)

k−s, s = 0, . . . ,M}Ni=1 of N independent
realizations of length M + 1 of the disturbance process
dk (“scenarios”). Then, we can formulate the following
randomized and approximated version of (5):

min
γ∈Γ,ϑ∈Θ,h

h (6)

subject to: `(x(i)
k,M , γ + ϑd

(i)
k , d

(i)
k ) ≤ h− δ

f(x
(i)
k,M , γ + ϑd

(i)
k ) ≤ −δ

x
(i)
k,M =(I−A)−1Bγ +

M−1∑
s=0

As(Bϑ+W )d
(i)
k−1−s

i = 1, . . . , N

where δ > 0 represents a tightening of the constraints that
are probabilistically posed in (5).
Note that, under Assumption 4, the scenario optimization
problem (6) is convex and can be efficiently solved via
standard convex optimization techniques, [22]. In particular,
when `(·) and f(·) are linear function of their first two
arguments, and Γ and Θ are box-sets, (6) is even an LP
program.
We next introduce an assumption that is quite standard in
scenario-based optimization (see, e.g., [14], [23]).
Assumption 6 (Feasibility): For any N , for any sample of
disturbance realizations, the constrained optimization prob-
lem (6) is feasible and its feasibility set has a nonempty
interior. Moreover, its solution exists and is unique.

Let (γ?, ϑ?, h?) be the optimal solution to (6). The fol-
lowing theorem provides guarantees about the feasibility of
(γ?, ϑ?, h?) for the original problem (5).
Theorem 1 (Guarantees): Choose a confidence parameter
β ∈ (0, 1) and suppose that M ∈ N and δ > 0 are chosen
so that

ε̃ = ε− KM
δ

> 0, (7)

where KM > 0 is a given exponentially decaying to zero
function of M that is defined in [24]. Suppose also that the
multi-sample size N is chosen so as to satisfy1

n∑
i=0

(
N

i

)
ε̃i(1− ε̃)N−i ≤ β, (8)

where n is the number of scalar optimization variables in the
controller parameters (γ, ϑ) in problems (5) and (6).
Then, if Assumptions 1-6 hold, the solution (γ?, ϑ?, h?) of
the scenario program (6) is feasible for the original chance
constrained problem (5) with probability larger than or equal
to 1− β, i.e.,

PNdk
{Pdk{`(x?k,∞, γ? + ϑ?dk, dk) ≤ h? (9)

∧ f(x?k,∞, γ
? + ϑ?dk) ≤ 0} ≥ 1− ε} ≥ 1− β,

where x?k,∞ is the stationary process defined as the mean
square limit of xk,M in (4) as M → ∞, with (γ, ϑ) set
equal to (γ?, ϑ?).

Proof: Consider the following optimization problem

min
γ∈Γ,ϑ∈Θ,h

h (10)

subject to: Pdk{g(xk,M , γ + ϑdk, dk, h) ≤ −δ} ≥ 1− ε̃,

where xk,M is defined in (4), ε̃ is defined in (7), and

g(x, u, d, h) = max{`(x, u, d)− h, f(x, u)}. (11)

Since `(x, u, d) ≤ h and f(x, u) ≤ 0 if and only if
g(x, u, d, h) ≤ 0, it follows from [14, Theorem 2.4] that
the solution (γ?, ϑ?, h?) to the scenario program (6) with N
satisfying (8) is a feasible solution for the chance constrained
problem (10) with probability at least 1− β. Equivalently,

PNdk
{Pdk{g(x?k,M , γ

? + ϑ?dk, dk, h
?) > −δ} ≤ ε̃} ≥ 1− β,

(12)

where x?k,M is as in (4) with (γ, ϑ) = (γ?, ϑ?).
Consider now the original chance constrained optimiza-
tion problem (5), and notice that the left-hand side of its
probabilistic constraint evaluated for (γ?, ϑ?, h?), namely,
Pdk{g(x?k,∞, γ

? + ϑ?dk, dk, h
?) > 0} ≤ ε, can be upper

bounded as follows

Pdk{g(x?k,∞, γ
? + ϑ?dk, dk, h

?) > 0}
= Pdk{g?k,M + δ + g?k,∞ − g?k,M − δ > 0}
≤ Pdk{g?k,M > −δ ∨ g?k,∞ − g?k,M > δ}
≤ Pdk{g?k,M > −δ}+ Pdk{g?k,∞ − g?k,M > δ}, (13)

where we adopted the shorthand notations g?k,∞ =
g(x?k,∞, γ

? + ϑ?dk, dk, h
?) and g?k,M = g(x?k,M , γ

? +
ϑ?dk, dk, h

?).

1See [25] for an explicit though slightly loose expression of N as a
function of n, ε̃, and β, satisfying (8).



The second term in (13) can be bounded by means of the
following chain of inequalities:

Pdk{g?k,∞ − g?k,M > δ} ≤ Pdk{|g?k,∞ − g?k,M | > δ}

≤
Edk

[
|g?k,∞ − g?k,M |

]
δ

≤ KM
δ
, (14)

where the second inequality is the Chebyshev’s inequality
and the proof of the last inequality is given in [24, Propo-
sition 2] and not reported here due to space limitations.
Combining (13) with (12) and (14), we obtain that

PNdk

{
Pdk{g(x?k,∞, γ

? + ϑ?dk, dk, h
?) > 0} ≤ ε̃+

KM
δ

}
≥ 1− β,

which is (9) in Theorem 1, given the definition of ε̃ in (7)
and the definition of g in (11). This concludes the proof.
Note that the solution (γ?, ϑ?, h?) to the scenario program
(6) is a random quantity and, hence, the feasibility result in
Theorem 1 holds with a certain probability 1− β. Since the
dependence of N on β is logarithmic, very small values of β
such as 10−6 or even 10−9 can be enforced without affecting
N too much, while providing a feasibility statement that, in
practice, holds beyond any reasonable doubt.
Theorem 1 provides a similar result to the standard scenario
theory. Indeed, in [14, Theorem 2.4] the same condition (8)
on the multi-sample size is given except that ε is used in
place of ε̃, thus getting a lower value for N . We actually need
to tighten the probability level from ε to ε̃ by subtracting
KM
δ from ε to account for the approximation of xk,∞ by its

truncated version xk,M .
The presence of δ > 0 introduces some conservatism in two
ways: i) tightening of the constraints, and ii) adoption of a
smaller violation parameter ε̃ to determine the multi-sample
size N . Decreasing δ reduces the conservatism in i) and
increases that in ii). By different choices of δ we can trade-
off between i) and ii); none of them can be completely ruled
out though.
The introduced conservatism can be effectively reduced by
improving the quality of the approximation, which can be
done at the expense of increasing the length M of the
disturbance realizations. Increasing M mainly amounts of
extracting longer disturbance realizations, which can be
performed in most cases at low computational effort because
neither the number of decision variables nor the number of
constraints in problem (6) are affected. Therefore, by using
large values of M , we allow to set δ close to zero and still
get ε̃ close to ε.

IV. NUMERICAL EXAMPLE

To show the efficacy of the proposed procedure we apply
it to a realistic – though simplified – energy management
problem. Consider a photovoltaic panel installation that is
connected to the utility grid. Clearly, the amount of energy
produced depends on the solar irradiation, which is unpre-
dictable and can thus deviate significantly from a nominal
production. Hence, a direct injection of the solar energy
production to the grid may cause unpredictable fluctuations,
and even abrupt changes in the network energy flow. To
alleviate this issue, a battery is introduced to act as a buffer

between the photovoltaic panel installation and the grid: in
case of a mismatch between the actual and the nominal
production profile, the battery can be charged/discharged to
compensate.
Due to the daily periodicity of the solar irradiation and
related energy production, the strategy to manage the battery
is naturally designed by referring to a one-day time horizon.
We next apply the approach presented in the paper to design
a disturbance compensator off-line (and we need to do it
only once!), with precise guarantees on its performance in
the long run. More specifically, we are interested in managing
the battery so as to minimize the maximum gap between the
actual energy injected into the grid and a nominal profile
within a one-day time frame. The latter will also be opti-
mized and presented to the grid operator as a reference daily
production profile together with deviation margins certified
in probability.
To this end, we discretize the one-day time horizon in T =
144 time slots of 10 minutes each. In each time slot t ∈ N,
the energy balance equation Eg(t) = Ep(t) − Eb(t) must
hold, where Eg(t) is the energy exchanged with the grid,
Ep(t) is the solar energy production, and Eb(t) is the amount
of energy exchanged with the battery (i.e., Eb(t) > 0 if the
battery is charged and Eb(t) < 0 if it is discharged). The
battery is modeled as first order dynamical system described
by the recursive equation ξ(t + 1) = aξ(t) + Eb(t), where
ξ(t) ∈ R represents the energy stored in the battery at the
beginning of the time slot t, and a = 0.998 is a coefficient
taking into account self-discharging losses per time slot t.
We assume that the solar energy production Ep(t) is a strictly
cyclostationary process with period T , and known first and
second order moments. Let k be the day index and dk =
[Ep(kT ) · · · Ep((k+1)T−1)]>−µp, the daily solar energy
production fluctuations with respect to the average profile
µp = [Ēp(kT ) · · · Ēp((k + 1)T − 1)]>. This entails that
the introduced discrete time stochastic process d satisfies
Assumption 2.
We can now write the day-by-day dynamics of the battery by
first defining the battery energy content xk = ξ(kT ) at the
beginning of day k and the battery charge/discharge com-
mands during day k uk = [Eb(kT ) · · · Eb((k+1)T −1)]>,
and then rewriting the recursive equation for the battery as
xk+1 = Axk +Buk, with A = aT and B = [aT−1 · · · a 1].
Note that A satisfies Assumption 1 since a < 1.
The disturbance does not enter the system dynamics but it
does enter the control input uk = γ+ϑdk, where γ ∈ RT and
ϑ ∈ RT×T . The goal of minimizing the maximum deviation
of the actual energy exchanged with the grid dk + µp − uk
(derived from the energy balance equation) during day k
from its nominal daily profile µp − γ, is encoded by the
following cost function

`(xk, uk, dk) = ‖dk + µp − uk − (µp − γ)‖∞
= ‖(I − ϑ)dk‖∞.

Also, constraints on the energy stored in the battery and
on the energy exchanged with the battery per time slot
t are present. To guarantee the causality of the control
action within the day, the amount of energy exchange with
the battery Eb(t) at time t cannot depend on current and



future values of the solar energy production Ep(τ), τ ≥ t.
Therefore, ϑ must have a strictly lower triangular structure,
with zeros on the main diagonal. In order to keep low
the number of optimization variables entering the bound in
Theorem 1, only the first r subdiagonals of ϑ are different
from zero, with all elements on the same subdiagonal being
equal, and the nominal compensation term γ taken as a re-
scaled version of the nominal energy production profile µp,
i.e., γ = cγµp with cγ ∈ R.
The control design problem is then formulated as the fol-
lowing chance constrained optimization problem

min
cγ∈Γ,ϑ∈Θ,h

h (15)

subject to:
Pdk{‖(I − ϑ)dk‖∞ ≤ h, |cγµp + ϑdk| ≤ smax,

ξmin ≤ ATxk,∞ +BT (cγµp + ϑdk) ≤ ξmax} ≥ 1− ε

where ξmin = 3MJ and ξmax = 57MJ are the minimum
and maximum values for the battery energy content (which
we set to be equal to 5% and 95% of the battery total
capacity of 60MJ), smax = 1MJ is the maximum amount of
energy that can be exchanged with the battery in one time
slot, and AT and BT are suitable matrices of the unrolled
battery dynamics such that AT ξ(kT ) +BT (cγµp + ϑdk) =
[ξ(kT ) · · · ξ((k + 1)T )]>.
As for the constant η in [24, Proposition 1] that enters the ex-
pression of KM in Theorem 1, we have that ‖Bϑ+W‖1 ≤
‖B‖1‖ϑ‖1 = ‖ϑ‖1 because W = 0 and ‖B‖1 = 1. If we
then add ‖ϑ‖1 ≤ r as a further (convex) constraint to specify
Θ, η can be finally upper bounded by r.
Notice that the evolution of the battery content ξ(t), t =
kT + 1, . . . , (k + 1)T , within day k is determined by its
value xk at the beginning of the day and the control input
uk, which comprises the charge/discharge commands Eb(t),
t = kT, . . . , (k+1)T −1. Since uk depends on the cyclosta-
tionary process Ep(t), then, the joint stationarity of (x∞,d)
implies the cyclostationarity of ξ(t) with daily period T . The
constraints are linear in x with Lipschitz constant L = 1 and
the disturbance dk is such that σ = 22.9971.
Problem (15) fits the framework of (5), therefore it can be
solved via the proposed methodology and comes with the
guarantees provided by Theorem 1. Setting r = 3 the overall
number of decision variable is n = 4. To get a violation of
ε = 0.1 with a confidence level of β = 10−3 it suffices
to follow these simple steps: i) set δ = 10−2 so as not to
overtighten the constraints; ii) use the expression of KM to
find M = 52 so as to have, according to (7), ε̃ = 0.0915
close enough to ε; iii) use (8) to get N = 138 via bisection.
Solving the corresponding scenario program we get c?γ =
0.1473 and ϑ?1 = 1.0084, ϑ?2 = −0.6104, ϑ?3 = 0.1126, and
h? = 0.6253. Thus, with confidence 1 − β, the probability
that the actual energy exchange with the grid Eg(t) belongs
to the tube of width 2h? centered on the nominal profile
µp − γ? = (1− c?γ)µp for all t, is greater than 1− ε.
To validate the approach we run Nv = 104 simulations each
one up to day k = M starting from day k = 0, using
new realizations of the solar energy production disturbance
(different from those adopted for the control policy design).
In order to study the transient behavior of the system, we
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set the initial battery energy content equal to 30MJ (50% of
its capacity) in all runs. For ease of exposition we plot the
battery State Of Charge (SOC) in percentage.
In Figure 1 we can see the evolution of the histograms of
the SOC as days progress. Plots refer to five days, the initial
day k = 0 and then those with k = 1, 2,M − 1,M . As it
can be seen from the picture, thanks to Assumptions 1 and 2,
convergence to the stationary distribution is reached in about
M days (the histograms for days M−1 and M are basically
identical).
Figure 2 instead shows some possible realizations of the bat-
tery SOC profile within the M -th day. As can be seen, the de-
signed compensator keeps the battery energy content within
the prescribed limits, yet different qualitative behaviors can
be observed that reflect the different possible realizations
of the solar energy production disturbance dk within day
k = M . The cyclostationarity of such a disturbance causes
the distribution of ξ(t) to be non-stationary within the day.
To the purpose of showing the benefits of introducing the
battery, we solved problem (15) setting γ = 0 and ϑ = 0,
which resulted in an optimal value for h of h?wo = 1.1615,
almost double with respect to the value h? obtained operating
the battery according to the optimal compensation policy.
Note that, in order to have results with the same level of ε
for both cases, the number of scenarios N to be extracted to
compute h?wo is lower than 138. Moreover, since there is no
battery, there is no stationary distribution to approximate and
the standard scenario theory applies. In fact, the N for the
case without the battery can be obtained via bisection using
(8) with n = 0 and ε in place of ε̃, which gives N = 66.
Moreover, in Figure 3, the reader can appreciate how the
proposed approach is able to shape the distribution of the
maximum deviation of the energy exchanged with the grid
from its nominal daily profile, in order to squeeze its support
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Fig. 3. Distribution of the maximum deviation of the energy exchanged
with the grid from its nominal daily profile estimated by using Nv

realization of the solar energy production disturbance dk , operating the
battery with the optimal stationary policy (blue histogram) and without using
the battery (orange histogram).
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Fig. 4. Tubes of width 2h? and 2h?wo, centered in the nominal production
profiles µp−γ? and µp, for the cases with and without battery (blue narrow
tube and orange wide, respectively), together with a two-day long realization
of the energy exchanged with the main grid (solid blue line when the battery
is present and optimally operated, and dashed red line with no battery).

towards zero.
Finally, in Figure 4, we report a two-day long realization
of the energy exchanged with the main grid together with
the tubes of width 2h? and 2h?wo, centered in the nominal
production profiles µp−γ? and µp, respectively, for the cases
with (solid blue line) and without (dashed red line) battery.

V. CONCLUSION AND FUTURE WORK

In this paper, we address the design of a disturbance compen-
sator for a discrete time linear system with non measurable
state so as to optimize its performance in stationary regime
while satisfying probabilistic joint state/input constraints.
The proposed design strategy rests on the randomized so-
lution to the chance constrained optimization program via
the scenario approach, which is tailored to our framework in
that only scenarios of a truncated version of the stationary
state process of interest can be extracted. The effectiveness
of the approach is illustrated on a simple energy management
application example, where the designed compensator results
in a periodic stochastic controller. We are currently work-
ing on the application of the approach to building energy
management. We are also investigating the case when the
disturbance is Gaussian, where the probability distribution
of the stationary state admits an analytic expression and no
truncation is hence needed.
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