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Abstract— We propose novel iterative learning control algo-
rithms to track a reference trajectory in resource-constrained
control systems. In many applications, there are constraints on
the number of control actions, delivered to the actuator from
the controller, due to the limited bandwidth of communica-
tion channels or battery-operated sensors and actuators. We
devise iterative learning techniques that create sparse control
sequences with reduced communication and actuation instances
while providing sensible reference tracking precision. Numer-
ical simulations are provided to demonstrate the effectiveness
of the proposed control method.

Index Terms— Iterative learning control; Sparse control;
Convex optimization

I. INTRODUCTION

A multitude of techniques are now available in the litera-
ture for precise control of mechatronic systems; see, e.g., [1].
Iterative Learning Control (ILC) is one of the well-known
techniques for accurately tracking reference trajectories in
industrial systems, which repetitively executes a predefined
operation over a finite duration; see, e.g., [2]–[4]. The key
idea of iterative learning control relies on the use of the infor-
mation gained from previous trails to update control inputs
to be applied to the plant on the next trial. Iterative learning
control was first introduced by Arimoto et al. [5] to achieve
high accuracy control of mechatronic systems. Since the
original work was published in 1984, it has been successfully
practiced in various areas, including additive manufacturing
machines [6], robotic arms [7], printing systems [8], electron
microscopes [9], and wafer stages [10].

Modern industrial systems, which employ a large number
of spatially distributed sensors and actuators to monitor and
control physical processes, suffer from resource – control,
communication, and computation – constraints. To provide
a guaranteed performance or even preserve the stability
of the closed-loop systems, it is necessary to take these
limitations into account while designing and implementing
control algorithms. Sometimes the limited bandwidth of
legacy communication networks imposes a constraint on
the rate of data transmissions. Besides, when the feedback
loop is closed over wireless networks, a further resource
constraint becomes apparent due to the use of battery-
powered sensors and actuators [11]. The reduced actuator
activity also prolongs the lifetime of actuators or improves
the fuel efficiency. Therefore, it is desirable to have either
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sparse or sporadically changing control commands to reduce
the use of actuators.

Sparsity-promoting techniques, which is borrowed from
compressive sensing literature, have been successfully ap-
plied to a number of control problems to tackle the resource
constraints mentioned above; see e.g., [12]–[17]. The authors
of [12]–[14] modified the original model predictive control
cost with an `1-penalty term to promote the sparsity in the
control input trajectory. The authors of [15]–[17] designed
energy-aware control algorithms to limit the actuator activity
while providing an attainable control performance. Their
design is also based on sparse optimization using `1-norm.
To the best of our knowledge, the design of iterative learning
control algorithms for resource-constrained systems has not
been addressed in the literature and is subject of this paper.

Contributions. In this paper, we develop a Sparsity-
promoting Iterative Learning Control (S-ILC) technique for
resource-constrained control systems. The main departure
from the standard ILC approach is that we introduce a
regularization term into the usual `2-norm cost functions to
render the resulting control inputs sparse. The sparsity here
is in the cardinality of changes in control values applied to a
finite horizon. Moreover, we include additional constraints to
model the practical limits on the magnitude of applied control
signals. The resulting control problem is then solved using a
backward-forward splitting method which trades off between
minimizing the tracking error and finding a sparse control
input that optimizes the cost with respect to regularizer term.
We demonstrate the monotonic convergence of the technique
in lack of modeling imperfections. Moreover, we develop an
accelerated algorithm to reduce the number of trials required
for S-ILC to converge to optimality.

Outline. The remainder of this paper is organized as
follows: Section II introduces the problem definition. Sec-
tion III presents the sparse iterative learning control problem
and associated algorithms to solve it. A numerical study
is performed in Section IV. Finally, Section V presents
concluding remarks. The appendix provides proofs of the
main results

Notation. The n-dimensional real space is represented by
Rn. E denotes a finite dimensional euclidean space with
inner product 〈·, ·〉. For u ∈ Rn, its `1 and `2 norms are

‖ u ‖1:=

n∑

i=1

|ui| , ‖ u ‖:=

(
n∑

i=1

u2i

) 1
2

.

The spectral radius of the real square matrix M ∈ Rn×n is
denoted by ρ(M). The Euclidean projection of u ∈ Rn into
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the compact convex set U is denoted by ΠU (·).

II. PROBLEM FORMULATION

A. System model

We consider the following discrete-time, single-input-
single-output (SISO), stable, linear time-invariant (LTI) sys-
tem P (z) with state space representation:

xk[t+ 1] = Axk[t] +Buk[t] , (1)
yk[t] = Cxk[t] , (2)

where t ∈ N0 is the time index (i.e., sample number),
k ∈ N0 is the iteration number, xk[t] ∈ Rn is the state
variable, uk[t] ∈ R is the control input, yk[t] ∈ R is the
output variable, and A, B and C are matrices of appropriate
dimensions. The initial condition x[0] = x0 is also assumed
to be given, and these initial conditions are the same at the
beginning of each trial. The input-output behavior of the
system in (1) and (2), can be described via a convolution
of the input with the impulse response of the system:

yk[t] = CAtx0 +

t−1∑

τ=0

CAt−τ−1Buk[τ ] . (3)

The coefficients CAtB for any t ∈ {0, 1, · · · ,T} are referred
to as the Markov parameters of the plant P (z), provided
in (1) and (2).

B. Lifted system model

Since we focus on a finite trial length T, it is possible to
evaluate (3) for all t ∈ {0, 1, · · · ,T} and, similar to [18],
write its lifted version as

yk = Guk + d , (4)

where

G =




CAt
∗−1B 0 · · · 0

CAt
∗
B CAt

∗−1B · · · 0
...

...
. . .

...
CAT−1B CAT−2B · · · CAt

∗−1B


 ,

d =
[
CAt

∗
x0 CAt

∗+1x0 · · · CATx0
]>

.

The vectors of inputs and output series are defined as

uk =
[
uk[0] uk[1] · · · uk[T− t∗]

]>
,

yk =
[
yk[t∗] yk[t∗ + 1] · · · yk[T]

]>
.

The relative degree of the transfer function P (z) is denoted
by t∗ > 0. Notice that the matrix G has a Toeplitz structure.

C. Trajectory tracking problem

In this paper, we focus on the reference trajectory tracking
problem. It is assumed that a reference trajectory r[t] is given
over a finite time-interval between 0 and T. The objective
is, here, to determine a control input trajectory {u[t]}T−t

∗

t=0

that minimizes the tracking error:

‖ e ‖2 , ‖ r − y ‖2 = ‖ r −Gu ‖2 , (5)

where

r =
[
r[t∗] r[t∗ + 1] · · · r[T]

]>
,

ek =
[
ek[t∗] ek[t∗ + 1] · · · ek[T]

]>
.

The control sequence, which results in an output sequence
{y[t]}Tt=t∗ that perfectly tracks the reference trajectory
{r[t]}Tt=t∗ , can be computed via solving the linear equation:

u? = G−1(r − d) . (6)

Without loss of generality, one can assume that x0 = 0, and,
equivalently, d = 0. Hence, (6) can be rewritten as

u? = G−1r . (7)

As argued in [19], the direct inversion of G is not practical
in general since it requires having the exact information of
G. Besides, instead of inverting the entire matrix G, it is
sufficient to compute the pre-image of r under G.

D. Gradient-based iterative learning algorithm

There are various techniques in the literature to solve
the unconstrained optimization problem (5) iteratively. The
gradient-based iterative learning control algorithm has been
received an increasing attention (see, e.g., [18]–[20]) due
to its simplicity and light-weight computations compared to
higher-order techniques. This algorithm generates the control
inputs to be used in the next iteration using the relation:

uk+1 = uk + γG>ek ,

where γ > 0 is the learning gain. Using this update law, the
error evolves as

ek+1 =
(
I − γGG>

)
ek.

Using the norm inequality, provided in [21], we have:

‖ ek+1 ‖ = ‖ (I − γGG>)ek ‖ ≤ ‖ I − γGG> ‖‖ ek ‖ .

For minimum phase systems, the smallest singular value of
the matrix G is nonzero and if one picks 0 < γ ≤ 2/ρ(GG>),
then ‖I−γGG>‖ < 1 holds. Consequently, ‖ek‖ converges
to zero linearly as k →∞.

It is worth noting that, for non-minimum phase systems,
the matrix G has some singular values that are very close
to zero; therefore, it might be significantly ill-conditioned,
leading ‖I − γGG>‖ to become nearly one. Taking into
account the typical rounding errors that exists in numerical
solvers, it is safe to assume that the matrix G has zero
singular values in order to avoid convergence issues due to
mis-estimation of the optimal learning gain parameter.

E. Trajectory tracking problem with sparsity constraint

Trading off the accuracy of trajectory tracking for the
sparsity in control signals amounts to solve

minimize
1

2
‖ r −Gu ‖2

subject to ‖ Tu ‖0≤M
u ∈ U ,

(8)



where M ≤ N with M ∈ N0 and T ∈ RN−1×N is the
difference matrix

T =




−1 1 0 0 · · · 0 0
0 −1 1 0 · · · 0 0
0 0 −1 1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · −1 1



,

and U is a compact and convex set which represents the
practical limits on the input signal. For example, limits on
the magnitude of input signal can be modeled by either by
a box constraint or an upper bound on `∞-norm of control
input u. With the cardinality constraint in (8), one limits the
number of changes in control input values compared to the
initial value u[0], thereby promoting sparsity in the frequency
of applying control input .

However, due to the cardinality constraint, the problem (8)
is non-convex and difficult to solve. A common heuristic
method in the literature relies on the `1-regularized problem

minimize 1
2 ‖ r −Gu ‖

2 +λ ‖ Tu ‖1 ,
subject to u ∈ U , (9)

where the second term is referred as total variation of signal
u and the problem (9) is often called total variation denoising
in signal processing literature [22].

III. SPARSE ITERATIVE LEARNING CONTROL

In this section, we develop a first-order method to solve
the regularized control problem, proposed in (9), itera-
tively. Our technique is based on backward-forward splitting
method [23], which is applied to the composite problem:

minimize F (u) := f(u) + g(u) (10)

where f : E → R is a differentiable convex function with
Lipschitz continuous gradient L satisfying

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ E,

and g : E → (−∞,+∞] a proper closed convex function.
Given a scalar t > 0 the proximal map associated to g is
defined as

proxt(g)(x) := argmin
u

{
g(u) +

1

2t
‖u− x‖2

}
. (11)

An important property of the proximal map is that this point
(for any proper closed convex function g) is the unique
solution to the associated minimization problem, and as a
consequence, one has [24, Lemma 3.1]:

(I + t∂g)−1(x) = proxt(g)(x), ∀x ∈ E. (12)

This result can be used to find the following optimality
condition for (10)

0 ∈ t∇f(x?) + t∂g(x?)

x? = (I + t∂g)−1(I − t∇f)(x?),

and then further developed to obtain a backward-forward
splitting based method to solve (10)

xk+1 =proxγ(g)(xk − γ∇f(xk))

=argmin
x

{
g(x) +

1

2γ
‖x− (xk − γ∇f(xk))‖2

}
.

(13)
For instance, if f = ‖Ax − b‖2 and g = ‖x‖1, then the fa-
mous Iterative-Shrinkage-Thresholding Algorithm (ISTA) is
recovered; see e.g., [25]. We use backward-forward splitting
method to solve (9). In particular, let

f(u) :=
1

2
‖Gu− r‖2, g(u) := λ‖Tu‖1 + IU (u), (14)

with IU denoting the indicator function on U ; i.e., IU (u) = 0
if u ∈ U and IU (u) =∞ otherwise. Applying the backward-
forward splitting, the sparse ILC update rule is given by

uk+1 = proxλ/γ(g)(uk + γG>ek)

= argmin
u

{
‖Tu‖1 + IU (u) +

1

2λγ
‖u− (uk + γG>ek)‖2

}

(15)
Unlike the ISTA algorithm with simple `1-norm regulariza-
tion, the sparse ILC iterations (15) involve a proximal map
that does not admit a closed-form solution. To tackle this
problem, we develop an iterative dual-based approach for
the proximal step. In particular, we are interested in solving

minimize
u∈U

{
λ‖Tu‖1 +

1

2
‖u− b‖2

}
, (16)

by using a first-order method. We have the following result:

Lemma 1 Denote Pn−1 ⊂ Rn−1 as the n− 1 dimensional
real space bounded by unit infinity norm (i.e., p ∈ Pn−1
then ‖p‖∞ ≤ 1) and L ∈ Rn×n−1 given as

L =




1 0 0 · · · 0
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · −1



.

Let p ∈ Pn−1 be the optimal solution of

minimize
p∈Pn−1

h(p) := −‖ΠU (b− λLp)− (b− λLp)‖2

+ ‖b− λLp‖2 .
(17)

Then, the optimal solution of (16) is given by

u = ΠU (b− λLp). (18)

Next, we present the smoothness properties of (17).

Lemma 2 The cost function in (17) is continuously differ-
entiable, and its gradient is given by

∇h(p) := −2λL>ΠU (b− λLp) . (19)

Moreover, its Lipschitz constant is bounded by

‖∇h(p)−∇h(p′)‖ ≤ 2λ2‖L>‖2‖p− p′‖
= 2λ2ρ(L>L)‖p− p′‖, ∀p, p′ ∈ Pn−1. (20)



Moreover, it follows ρ(L>L) ≤ 4.

We are now ready to form an accelerated projected
gradient-based method to solve (17) and (18). Algorithm 1
solves the problem by employing a Nesterov-like accelera-
tion applied to the dual domain. The technique offers a better
convergence rate O(1/k2) as opposed to a gradient-based
technique that converges at rate O(1/k); see e.g., [24].

Algorithm 1 Accelerated Projected Gradient
1: Let (N,λ, b) be given as input. Set q1 = 0.
2: for k = 1, . . . , N compute do
3:

pk = ΠPn−1

[
qk +

1

λρ(L>L)
L>ΠU (b− λLqk)

]

tk+1 =
1 +

√
1 + 4t2k
2

qk+1 = pk +
tk − 1

tk+1
(pk − pk−1)

where ΠPn−1(x)i =
xi

max{1, |xi|}
for i = 1, . . . , n− 1.

4: end for
5: Return (x?, p?) = (ΠU (b− λLpN ), pN ).

One can implement the sparse iterative learning control
updates uk+1 in (15) by first taking a gradient step on
uk and then computing the proximal step via Algorithm 1.
Algorithm 2 proposes the gradient-based S-ILC method.

Algorithm 2 Gradient-based S-ILC
1: Let (N1, N2, λ,U) be given as input. Set u0, e0 to vector

0, and γ = 1/ρ(G>G).
2: for k = 1, . . . , N1 do
3: Set bk = uk−1 + γG>ek−1.
4: Run Algorithm 1 with (N2, γλ, bk,U) and obtain
uk ∈ U .

5: Apply uk to the plant and receive ek.
6: end for
7: Return u? = uN1

.

Next lemma confirms that the gradient-based S-ILC results
in a non-increasing sequence.

Lemma 3 Consider the sequence {uk}k≥0 generated by S-
ILC. The associated functional values

F (uk) :=
1

2
‖Guk − r‖2 + λ‖Tuk‖

is non-increasing. That is, for all k ≥ 1,

F (uk+1) ≤ F (uk).

Moreover, from [24, Theorem 3.1], it follows that

F (uk)− F (u?) ≤ ρ(G>G)‖u0 − u?‖
2k

, u0 ∈ U ;

where u? is the optimal control input while k ≥ 1 is the
number of outer-loop iterations in the gradient-based S-ILC.

To accelerate the convergence of Algorithm 2, Nesterov-
like iterations can be applied to its outer-loop. The straight-
forward application of the Nesterov’s method leads to the
following updates:

bk = yk − γG>(Gyk − r),

yk+1 = uk +
tk − 1

tk+1
(uk − uk−1),

(21)

where uk is the control input obtained from inner-loop Al-
gorithm 1. However, this requires the access to the reference
signal r, which is not practical in ILC application. We rewrite
these updates to find a feasible formulation for ILC. Let
∆ek := ek − ek−1 and yk+1 := uk + τk+1∆uk where
τk+1 := (tk − 1)/tk+1 and ∆uk = uk − uk−1. Now, we
rewrite the bk-th update in (21) as

bk+1 = yk+1 − γG>(Gyk+1 − r)
= uk + τk+1∆uk − γG>(Guk + τk+1G∆uk − r),
= uk + τk+1∆uk + γG>(ek + τk+1∆ek),

which relates the auxiliary variable bk to – the readily
available – control input and error signals.

Algorithm 3 Accelerated S-ILC
1: Let (N1, N2, λ,U) be given as input. Set u−1, u0, e−1, e0

to vector 0, t0 = 0, t1 = 1, and γ = 1/ρ(G>G).
2: for k = 1, . . . , N1 do
3: Set

tk =
1

2
+

1

2

√
1 + 4t2k−1, τk =

tk−1 − 1

tk
,

bk = uk−1 + τk∆uk−1 + γG>(ek−1 + τk∆ek−1).

4: Run Algorithm 1 with (N2, γλ, bk,U) and obtain
uk ∈ U .

5: Apply uk to the plant and receive ek.
6: end for
7: Return u? = uN1

.

Algorithm 3 presents the accelerated Nesterov-like iterates
to solve S-ILC. From [26, Theorem 4.4], it yields

F (uk)− F (u?) ≤ 2ρ(G>G)‖u0 − u?‖
(k + 1)2

, u0 ∈ U ;

where k ≥ 1 is the outer-loop counter of Algorithm 3.

IV. NUMERICAL EXAMPLE

To demonstrate the effectiveness of S-ILC algorithms, we
consider a robot arm ( see [7]) with one rotational degree-of-
freedom as schematically shown in Fig. 1. The input is the
torque τ applied to the arm at the joint and is limited to the
range of ±12 Nm, whereas the output θ is the angle of the
arm measured as seen in Fig. 1. The dynamics of the robotic
arm can be described by the following differential equation:

θ̈ = −g
l

sin θ − c

ml2
θ̇ +

1

ml2
τ , (22)

where the arm length is l = 1.0 m, the payload mass is m =
1.0 kg, the viscous friction coefficient is c = 2.0 Nms/rad,
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Fig. 1. A schematic drawing of the robot arm.

and the gravitational acceleration is g = 9.81 m/s2. Changing
the variables x(1) , θ, x(2) , θ̇, u , τ , and y , θ, the
nonlinear system (22) is sampled by using zero-order-hold
and a sampling time of Ts = 0.005 s. The resulting discrete-
time system becomes

x(1)[t+ 1] = x(1)[t] + Tsx
(2)[t] ,

x(2)[t+ 1] = − gTs
l

sin(x(1)[t]) +

(
1− cTs

ml2

)
x(2)[t]

+
Ts
ml2

u[t] ,

y[t] = x(1)[t] .

To construct the gradient of the cost function (5), which
is equal to G>, the discrete-time non-linear plant model is
linearized around the stationary point x(1) = θ = 0, resulting
in the linear approximation:

x[t+ 1] =

[
1 Ts
− gTs

l 1− cTs

ml2

]
x[t] +

[
0
Ts

ml2

]
u[t] , (23)

y[t] =
[
1 0

]
x[t] . (24)

Note that the linearized plant model is used to compute the
gradient of the cost function (5), whereas the nonlinear model
is employed in actual trials. The trial length is 6 s and the
desired trajectory of the robot arm, illustrated in Fig. 2, is

r[t] =
π

5
sin

(
πTst

3

)
+

2π

25
sin
(
πTst

)

for all t ∈ {0, 1, · · · , 1200}.

TABLE I
COMPARISON OF REGULARIZATION PARAMETERS

λ/ρ
(
G>G

)
‖ r −Gu ‖2 ‖ Tu ‖1 ‖ Tu ‖0

0 1.0694 42.4495 1155
0.5 1.0845 38.0014 799
2.5 1.1406 34.5145 754
5 1.2117 33.0654 463

The simulation is carried out over 50 trials, and the
results are displayed in Fig. 2. The optimization problem (9)
becomes a least square problem with a box constraint when
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Fig. 2. Tracking performance of the S-ILC algorithm for various values
of the regularization parameter λ.

λ = 0. The resulting control input sequence provides the
smallest tracking error possible. As seen in Fig. 2, when
the regularization parameter λ increases, the control input
sequence becomes more and more sparse at the expense of
the increased tracking error. Similarly, Table I numerically
illustrates the trade-off between the sparsity and the tracking
performance. These experiments also demonstrate robustness
against non-linearities of the plant. The change in the dynam-
ics does not result in a divergence of the S-ILC algorithm.

Fig. 3 shows the error decay rate of the gradient-based
and accelerated S-ILC algorithms over 50 trials. More-
over, we tried a multi-step technique called the heavy-ball
method which is obtained by adding a momentum term
β(uk − uk−1) to the bk+1-update in Algorithm 2 where
β ∈ [0, 1) is a scalar parameter. The superior convergence
properties of the heavy-ball method compared to the gradient
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Fig. 3. The convergence of the error residual for different S-ILC methods.

method is known for twice continuously differentiable cost
functions [27]. For the class of composite convex cost func-
tions (10), however, the optimal algorithm parameters and as-
sociated convergence rate of the heavy-ball technique is still
unknown [28]. Here, we evaluated the heavy-ball algorithm
with β = 0.4. Numerical tests indicate that both Nesterov
based (Algorithm 3) and heavy-ball methods improve the
convergence of the gradient-based S-ILC Algorithm 2.

It is noteworthy to mention that unlike the gradient-
based algorithm, the accelerated and heavy-ball methods
are not monotonic, that is, the function values (10) are
not guaranteed to be non-increasing. In our evaluations, we
observed if the inner-loop Algorithm 1 is performed for a few
iterations (so that it does not reach close to optimality), then
the accelerated S-ILC problem (Algorithm 3) might become
significantly non-monotonic to the point that it might diverge.
Finding a monotone converging accelerated S-ILC algorithm
is an interesting open problem.

V. CONCLUSIONS

This paper has presented novel iterative learning algo-
rithms to follow reference trajectories under a limited re-
source utilization. The proposed techniques promote sparsity
by solving an `2-norm optimization problem regularized by
a total variation term. With proper selection of regularization
parameter, our algorithms can strike a desirable trade-off
between the accuracy of target tracking and the reduction
of variations in actuation commands. Simulation results
validated the efficacy of the proposed methods.

VI. APPENDIX

Proof of Lemma 1: The result can be derived in a similar
way as [24, Proposition 4.1]. Here, for completeness, we
include the proof. First, note |x| = maximize

p
{px : |p| ≤ 1},

and, similarly, ‖Tu‖1 =
∑n−1
i=1 |ui−ui+1| can be written as

maximize
p

{
n−1∑

i=1

pi(ui − ui+1) : |pi| ≤ 1} = maximize
p∈Pn−1

Lp>u.

Accordingly, the problem (16) becomes

minimize
u∈U

maximize
p∈Pn−1

1

2
‖u− b‖2 + λLp>u.

Since this problem is convex in u and concave in p, the order
of minimization and maximization can be changed to obtain

maximize
p∈Pn−1

minimize
u∈U

1

2
‖u− b‖2 + λLp>u.

Using the basic relation

‖x− b‖2 + 2c>x = ‖x− b+ c‖2 − ‖b− c‖2 + ‖b‖2,

with x = u and c = λLp results in the equivalent form

maximize
p∈Pn−1

minimize
u∈U

‖u− (b− λLp)‖2 − ‖b− λLp‖2 + ‖b‖2.

The optimal solution of the minimization problem, readily,
is given by (18). Instituting the optimal value of u, we arrive
at the following dual problem

maximize
p∈Pn−1

‖ΠU (b− λLp)− (b− λLp)‖2 − ‖b− λLp‖2 ,
(25)

which completes the proof. �

Proof of Lemma 2: Denote s(x) :=
1

2
‖x − ΠU (x)‖2

and note that according to the proximal map the following
identity holds:

s(x) = infy{ΠU (y) +
1

2
‖y − x‖2}.

From [24, Lemma 3.1] it follows that s(·) is continuously
differentiable with

∇s(x) := x−ΠU (x). (26)

The gradient of h(p) then reads

∇h(p) = ∇(−2s(b− λLp) + ‖b− λLp‖2)

= 2λL>(b− λLp−ΠU (b− λLp))− 2λL>(b− λLp)
= −2λL>ΠU (b− λLp).

For any p, p′ ∈ Pn−1 we have

‖∇h(p)−∇h(p′)‖
= ‖2λL>(ΠU (b− λLp)−ΠU (b− λLp′))‖
≤ 2λ‖L>‖‖ΠU (b− λLp)−ΠU (b− λLp′)‖
≤ 2λ2‖L>‖‖L(p− p′)‖
≤ 2λ2‖L>‖‖L‖‖p− p′‖
= 2λ2ρ(L>L)‖p− p′‖.

The matrix L>L ∈ Rn−1×n−1 is given by

LᵀL =




2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
...

...
...

...
...

0 0 0 · · · 2 −1
0 0 0 · · · −1 2



.

Following the Gershgorin circle theorem [21] one concludes
the largest eigenvalue of this matrix follows ρ(L>L) ≤
maxi

∑n−1
j=1 |[L>L]ij | ≤ 4. �



Proof of Lemma 3: Let f(u) and g(u) be defined as (14)
and

Pλ/ρ(u) := proxλ/ρ(G>G)(g)(u− 1

ρ(G>G)
G>(Gu− r)).

Then the S-ILC algorithm (with converging inner-loop and
no modeling error) can be rewritten as

uk+1 = Pλ/ρ(uk).

For a convex Lipschitz continuous gradient function f and
convex function g, define [26]:

QL(x, y) = f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2 + g(x)

Then, it can be seen that Pλ/ρ(u) = argmin
x

Qλ/ρ(x, u).

Furthermore, we have

F (uk) ≥ Qλ/ρ(uk, uk) ≥ Qλ/ρ(Pλ/ρ(uk), uk)

= f(uk) + 〈∇f(uk), Pλ/ρ(uk)− uk〉

+
ρ(G>G)

2
‖Pλ/ρ(uk)− uk‖2 + g(Pλ/ρ(uk))

≥ f(Pλρ(uk)) + g(Pλ/ρ(uk))

= F (uk+1),

where the last inequality holds for Lipschitz continuous f .
�
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