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On imitation dynamics in potential population games

Lorenzo Zino, Giacomo Como, and Fabio Fagnani

Abstract— Imitation dynamics for population games are stud-
ied and their asymptotic properties analyzed. In the considered
class of imitation dynamics —that encompass the replicator
equation as well as other models previously considered in
evolutionary biology— players have no global information
about the game structure, and all they know is their own current
utility and the one of fellow players contacted through pairwise
interactions. For potential population games, global asymptotic
stability of the set of Nash equilibria of the sub-game restricted
to the support of the initial population configuration is proved.
These results strengthen (from local to global asymptotic
stability) existing ones and generalize them to a broader class
of dynamics. The developed techniques highlight a certain
structure of the problem and suggest possible generalizations
from the fully mixed population case to imitation dynamics
whereby agents interact on complex communication networks.

I. INTRODUCTION

Imitation dynamics provide a powerful game-theoretic
paradigm used to model the evolution of behaviors and
strategies in social, economic, and biological systems [1],
[2], [3]. The assumption beyond these models is that in-
dividuals interact in a fully mixed population having no
global information about the structure of the game they are
playing. Players just measure their own current utility and, by
contacting other individuals, they get aware of the the action
currently played by them and of the associated utility. Then,
in order to increase their utility, players may revise their
action and adopt the one of the contected fellow players.

We focus on the asymptotic behavior of such imitation
dynamics. Available result in this area can be found in [4],
[5], [6], [7]. In particular, [7] contains a study of local
stability and instability for the different kinds of rest points of
such dynamics. These results, however, deal only with local
stability, therefore one can not conclude global asymptotic
stability. Indeed, only for specific dynamics, such as the
replicator equation, and for some specific classes of games, a
global analysis has been carried on [8], [9], [10], [11], [12].

This work contributes to expanding the state of the art
on the analysis of the asymptotic behavior of imitation
dynamics. For the important class of potential population
games, we obtain a global convergence result, Theorem [6}
that is stronger and more general than the results presented
in the literature. Another novelty of this work consists in the
definition of imitation dynamics, that is more general than
the classical one [7].
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The paper is organized as follows. Section [lI] is devoted
to the introduction of population games and to the definition
of the class of imitation dynamics. Both these concepts are
presented along with some explanatory examples. Thereafter,
the main results on the asymptotic behavior of the imitation
dynamics are presented and proved in Section Examples
of the use of these results will then be presented in Section
Finally, Section E] discusses some future research lines.

Before moving to the next section, let us define the
following notation: §() denotes a vector of all zeros but a 1 in
the ¢th position. We denote the sets of reals and nonnegative
reals by R and Ry = {z € R: z > 0}, respectively.

II. POPULATION GAMES AND IMITATION DYNAMICS

Throughout the paper we study imitation dynamics in
continuous population games. In such setting, a continuum
of players of total unitary mass choose actions from a finite
set A and the reward r;(x) of all those players playing
action ¢ € A is a function of the empirical distribution x
of the actions played across the population. Formally, let
X ={zeR{: Y, 4z =1} be the unitary simplex over
the action set .4 and refer to vectors = € X as configurations
of the population. If the population is in configuration x € X,
then a fraction x; of the players is playing action 4, for i € A.
Let 7 : X — RA be reward vector function whose entries
r;(x) represent the reward received by any player playing
action ¢ € A when the population is in configuration = € X.
Throughout, we assume the reward vector function r(z) to
be Lipschitz-continuous over the configuration space X. Let

7(z) = Z i1 ()

i€ A

ry(x) := maxr;(z
(@) = maxri(a),
stand for the maximum and, respectively, the average rewards

in a configuration z € X. Then, the set of Nash equilibria
of the considered continuous population game is denoted by

N={zeX:z;>0=r(z)=r"(2)}. (1)

As is known, every continuous population game admits a
Nash equilibrium [7, Theorem 2.1.1], so N\ is never empty.

Example 1 (Linear reward population games): A class of
continuous population games is the one where the rewards
are linear functions of the configuration, i.e., when

r(z) = Rz, )

for some reward matrix R € R4*4. Linear reward pop-
ulation games have a standard interpretation in terms of
symmetric 2-player games [1] played by each player against



the average population [13]. Population games with binary
action space A = {1,2} and linear reward function () with

a b
] e

c

can be grouped in the following three classes:

(i) for @ > cand d > b, one has binary coordination games
[14], [15] (such as the stag hunt game [16]), where the
set of Nash equilibria N = {§(1), §(2)| T} comprises the
two pure configurations and the interior point  with

T1=1—-Zy=(d—-b)/(a—c+d—Db);

(i) for a < ¢ and d < b, one has anti-coordination games
(including hawk-dove game [17], [18]), where the only
Nash equilibrium is the interior point T as above;

(iii) for other cases of the parameters (e.g., in the Prisoner’s
dilemma [15]), there is one of the two actions ¢ that is
(possibly weakly) dominating the other one j, and the
pure configuration 6(*) is the only Nash equilibrium.

Larger action spaces admit no as simple classifications.

In this paper, we are concerned with imitation dynamics
arising when players in the population modify their actions
in response to pairwise interactions [3]. We assume that the
population is fully mixed so that any pairs of players in
the population meet with the same frequency [19]. Upon a
possible renormalization, the overall frequency of pairwise
interactions between agents playing actions ¢ and j can
then be assumed equal to the product x;z; of the fraction
of players currently playing actions ¢ and j, respectively.
When two players meet, they communicate to each other the
action they are playing and the rewards they are respectively
getting. Then, depending on the difference between the two
rewards and possibly other factors, each interacting player
either keeps playing the same action he/she is playing, or
updates his/her action to the one of the other player.

Definition 1 (Imitation dynamics): A (deterministic,
continuous-time) imitation dynamics for a continuous
population game with action set A and reward function
vector r(x) is the system of ordinary differential equations

C'CiZHCinj (fii(x) = fij(x)) i€ A, “)
jEA
where, for i,j € A, the function f;;(x) is Lipschitz-
continuous on the configuration space X and such that

sgn (fij(x) = fii(x)) = sgn(rj(z) —ri(x)), z€X. (5)
Equivalently, the imitation dynamics @) may be rewritten as
i = diag (2)(F7(2) - F(a))a, ©)

where F'(z) = (fi;(x));,; is a matrix-valued function on X.

Observe that, in order to satisfy @ the functions fi;s
should clearly depend on the difference between the rewards
ri(x) — rj(x) in such a way that f;;(x) = fj;(x), for every
configuration = such that r;(x) = r;(x). In principle, these
functions can possibly depend on the whole configuration x

in a non-trivial way. However, while our results hold true
in such greater generality, we are mostly concerned with the
case where the functions f;;(z) only depend on the rewards’
differences 7;(x) — r;(z), possibly in a different way for
each different pair of actions 4,j € A. In fact, in this case,
the considered imitation dynamics model makes minimal
assumptions on the amount of information available to the
players, i.e., they only know their own current action, the
one of the other player met, and difference of their respective
current rewards. In particular, players need not to know any
other information about the game they are engaged in, such
as, e.g., the current configuration of the population, the form
of the reward functions, or even the whole action space.

Remark 1: This class of imitation dynamics generalize the
ones considered in many papers [7], which satisfy

ri@) 2 ri(2) = fuale) — fal@) > fig(@) - finla),
(7N
for every i,j,k € A. In fact, it is straightforward to check
that (7) is in general more restrictive than (), that is obtained
from (7)) in the case k = j. Notably, (7) induces an ordering
of the actions such that, when comparing two of them, the
one with the larger reward should always result the more
appealing to any third party, quite a restrictive condition that
is not required in our more general formulation. Example 3]
which follows, is a concrete example of a realistic situation
in which our relaxed condition (8) holds and (7) does not.

We now present two examples of imitation dynamics.
Example 2 (Replicator Dynamics): In the case when

L (@) - ri(2)).

fij(x) = 5 (rj(2) i,j €A,
or, equivalently, F(z) = % (1r”(z) — r(2)17), the imita-
tion dynamics reduces to the replicator equation

ieA. (8)

& = x; (ri(z) —7(z)) ,

Hence, imitation dynamics encompass and generalize the
replicator equation, for which an extensive analysis has been
developed, see, e.g., [1], [13], [20], [21].

Example 3 (Stochastic Imitation Dynamics): Let

fij(x) = % + %arctan(Kij(rj(x) —ri(x))), 9

for i,j € A, where K; ; > 0. Such [0, 1]-valued functions
fij(x) have an immediate interpretation as probabilities that
players playing action ¢ switch to action j when observing
others playing such action j. Therefore these dynamics
might be used when modeling mean-filed limits of stochastic
imitation dynamics [22]. If the positive constants [K;; are
not all the same, the associated imitation dynamics may not
satisfy , but still fit in our framework.

We now move on to discussing some general properties of
imitation dynamics in continuous population games. To this
aim, we first introduce some more notions related to Nash
equilibria. For a nonempty subset of actions S C A, let

XSZ{I‘GX:,ZQZO,VZ'GA\S}



be the subset of configurations supported on S and let
Ns={ze€Xs: 2z, >0=ri(z)>r;jz),VjeS} (10)

be the set of Nash equilibria of the population game restricted
to S. Clearly, X4 = X and N4 = . Finally, we define the
set of critical configurations as

z= |J Ns.
P£SCA

Observe that Z includes the set of Nash equilibria N and
can equivalently be characterized as

(11

Z={xeX: z;>0=ri(z)=7T(x)}. (12)

Remark 2: The set Z always includes the vertices § (i), 1€
A, of the simplex X. In fact, in the case when |A| = 2, the
set of critical configurations consists just of the two vertices
of X and the possible interior Nash equilibria of the game.
For |A| > 3, the set of critical configurations Z includes,
besides vertices of X and Nash equilibria of the game, all
Nash equilibria of the sub-games obtained by restricting the
action set to a non-trivial action subset S C A.

Some basic properties of the imitation dynamics (@) are
gathered in the following Lemma. These results are already
proven in [7] under the more restrictive condition on the
dynamics. For the proof in our more general setting is
included in the Appendix.

Lemma 2: For any imitation dynamics (@) satisfying (3):

(i) if 2(0) € Xs for some nonempty subset of actions S C
A, then z(t) € Xs for all t > 0;

(ii) if x;(0) > 0 for some i € A, then z;(t) > 0 for ¢ > 0;

(iii) every restricted Nash equilibrium x € Z is a rest point.

III. ASYMPTOTIC BEHAVIOR OF IMITATION DYNAMICS
FOR POTENTIAL POPULATION GAMES

The main results of this work deal with the global asymp-
totic behavior of the imitation dynamics (@) for potential
population games. Therefore, before presenting these results,
we briefly introduce the notion of potential game [23] in the
context of continuous population games.

Definition 3: A population game with action set A and
Lipschitz-continuous reward function vector r : X — R4
is a potential population game if there exists a potential
function ® : X — R that is continuous on X, continuously
differentiable in its interior, with gradient V®(z) extendable
by continuity to the boundary of X', and such that

0 0
—rilw) = 0@ - 5o
i [

rj(z) ®(x), (13)

for 7,5 € A, and almost every z € X.

The asymptotic analysis of imitative dynamics for poten-
tial population games begins by proving that the potential
function ®(z) is never decreasing along trajectories of the
imitation dynamics (@) and it is strictly increasing whenever
x does not belong to the set Z of critical configurations. This
result, already known for more specific classes of dynamics

[7], is thus generalized in the following result, whose proof
is reported in the Appendix.

Lemma 4: Let r : X — R be the reward function vector
of a potential population game with potential ® : X — R.
Then, every imitation dynamics (@) satisfying (3)) is such that

d(z) =Vd(z) >0, forallze X, (14)

with equality if and only if x € Z, as defined in (T1).

An intuitive consequence of Lemma [] and point (iii) of
Lemma [2] is that every imitation dynamics in a potential
continuous population game has w-limit set coinciding with
the set of critical configurations Z. As we shall see, our
main result, beyond formally proving this intuitive statement,
consists in a significant refinement of it.

Observe that, from (1) and (12), the set B := Z \ N of
critical configurations that are not Nash equilibria satisfies

B={zeX: z;>0=r(z)=7(x) <rx)}. 15)

In other terms, critical configurations x that are not Nash
equilibria have the property that all actions played by a
non-zero fraction of players in the population (i.e., those
i € A such that x; > 0) give the same average reward
(ri(x) = 7(x)), that is strictly less than the maximum
reward (F(xz) < r.(x)). This implies that r,(x) is necessarily
achieved by some action that is not adopted by anyone, i.e.,
7(z) < r«(z) = r;(z) for some j € A such that z; = 0.

Notice that, in particular, 5 is a subset of the boundary of
X, since critical configurations that are not Nash equilibria
necessarily have at least one zero entry. The following
result states that, in potential population games, every such
configuration € 3 has an interior neighborhood in X where
the potential is strictly larger than in . This result is the main
novelty of this work, being the key Lemma to prove global
asymptotic stability results for the imitation dynamics.

Lemma 5: Let r : X — R4 be the reward function vector
of a potential population game with potential ® : X — R.
Let B = Z \ N be the set of critical configurations that are
not Nash equilibria. Then, for every T € B, there exists some
€ > 0 such that ®(z) > &(z) for all z € X such that

llz —Z|| < e and Z
i€ A:r; (T)=r.(T)
Proof: Forz € B, letZT :={i € A: r(T) = r.(T)}
and 7 =A\Z={ie A: r,(%) <r.(x)}. From (13),
0o (z) 0%(z)

m := min —— — max =
i€  Ox; jeg  Ox;

z; >0. (16)

«(T)— () >0.
r.(&) — maxr, ()

By continuity of V®(x), there exists € > 0 such that

. 0D(x) o®(x) _ m
min ax > —,
i€l Oxy jeg  Oxj

Z 5 a7

for every x € X such that ||z —Z|| < e. Then, fix any z € X
satistying (I6), let z = z — T, and observe that

a::Zzi:—sz>0.

€T JjET

(18)



It then follows from and (T8) that, for every point
yt)=7+t2,  tel0,1],

along the segment joining T and x, one has that

0 0
Vo) 2= Y 2ip—0y(t) = Y 25 -2((t)

ieT 82 jeg 8J

> i - —

> amin o5 -®(y(t)) - amax &ch)(y(t))
am

> a8

- 2

so that

B(z) = @(z)+/0 (VO(y(t)) - 2) dt > B(@)+7- > B(@).

|
In order to understand the novelty of this result we
consider that in [7], where the stability of points in Z is
analyzed for a subclass of imitation dynamics, it is proven
that all the points in B are unstable, whereas a subset of the
points in A, coinciding with the local maximizers of ® are
stable. However, these two results deal with local stability
and their mere combination is not sufficient to prove global
asymptotic stability. On the contrary, our characterization of
the instability of the rest points in B through the analysis
of the value of the potential function in their neighborhood,
paves the way for our main result, which characterizes the
global asymptotic behavior of solutions of a broad class of
imitation dynamics in potential population games.
Theorem 6: Consider a potential population game with
action set A and configuration space X. Let (z(t));>0 be
a solution of some imitation dynamics (@) satisfying (©) and

S={ie A: z;(0) > 0}
be the support of the initial configuration. Then,
tilgrnoo dist(z(t),Ns) = 0.

In particular, if z;(0) > 0 for every ¢ € A, then x(t)
converges to the set A of Nash equilibria.

Proof: By Lemma 2] part (i) there is no loss of general-
ity in assuming that S = A, i.e., 2:;(0) > 0 for every i € A.
Let r(z) be the reward vector function of the considered
population game and let ®(z) be a potential. Observe that
®(x) is continuous over the compact configuration space X,
so that

A =max ®(z) — min ¢(z) < +oo.
zeX zeX

Then, for every ¢ > 0 we have that
t
/ ®(z(s))ds = ®(x(t)) — ®(2(0)) < A < 400
0

Since @(r) > 0 for every x € X by Lemma 4] the above
implies that )

t_l}gloctb(x(t)) =0.
Then, continuity of ®(z) and the second part of Lemma @
imply that x(t) converges to the set Z, as ¢ grows.

We are now left with proving that every solution z(¢) of
an imitation dynamics with z;(0) > 0 for every i € A
approaches the subset N' C Z of Nash equilibria. By
contradiction, let us assume that 3¢ > 0 such that V¢* > 0
there exists some ¢ > t* such that dist(z(¢),N) > e.
Since xz(t) approaches Z as t grows large, this implies
that for every ¢ > 0 and every large enough t* there
exists ¢ > t* such that dist(x(t),B) < e. It follows that
there exists a sequence of times t; < to < ... such that
dist(x(tn), B) "ZE9 (). Since the configuration space X’ is
compact, we may extract a converging subsequence z(ty, )
with limit T € B. Now, observe that Lemma [2] part (ii)
implies that z;(t) > 0 for every action ¢ € A. Then, Lemma
[3 implies that there exists ko > 1 such that

B(a(ty) > (@),  VE>ko.

Hence, the fact that ®(x(¢x)) is never decreasing as stated
in Lemma [} would lead to

(@) = lim ®(z(tn,)) 2 P(x(tn,,)) > (T),

k——+oco

a contradiction. Hence, lim dist(z(t), N') = 0. [
t——+o0

IV. EXAMPLES

In this section we present some applications of the results
from Section For the imitation dynamics from Example
E] (with all K;; sampled from independently and uniformly
from [0, 1]), we compare the analytical results obtained
from Theorem [6] with some numerical simulations of the
dynamics, in order to corroborate our theoretical results.

A. Linear reward population games

We present some examples of binary games as in Example
and of pure coordination games.

Example 4 (Binary linear reward games): First of all, it
is straightforward to prove that all binary games are potential
games. In fact, from a 2 x 2 reward matrix R, as defined in
(3), we can immediately obtain a potential function, that is

1

6(@) = 5 ((a = )2 + (d— b)a3).

Notice that is not true that a generic linear reward game is
potential, for example a ternary game such as Rock-Scissors-
Paper is known to be not a potential game [7].

In the following, three short examples of binary linear
potential population games will be presented. Let us consider
the following three reward matrices:

R<1>:H0 ‘”R@):[g Z]R@:[Q 0},

19)

3 1

(20)
Matrix R™) leads to a coordination game. Trajectories con-
verge to one of the three Nash equilibria: the global minimum
of the potential function, attained in an interior point Z, and
the two vertices of the simplex. Moreover, from Lemma [Z_f[,
we deduce that all trajectories with x1(0) < Z; converge to
(0,1), all trajectories with x1(0) > Z; converge to (1,0),
whereas Z is an unstable equilibrium.
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(a) Coordination

(b) Anti-coordination (c) Dominated action

Fig. 1: Potentials of the games from Example 4| Crosses
are Nash equilibria, circles are Nash equilibria for restricted
games.

time time time

(a) Coordination (b) Anti-coordination  (c) Dominated action

Fig. 2: Trajectories of the imitation dynamics (9) for the
games from Example ] Solid lines are asymptotically stable
equilibria, dotted lines are unstable.

Matrix R(® leads to an anti-coordination game, where
the Nash equilibrium Z is unique and it is an interior point.
Therefore, if the support of the initial condition is .4, then
Theorem [f] guarantees convergence to it.

Matrix R leads to a game with a dominated action. In
this case, the potential is a monotone increasing function
in xo. Therefore its maximum is attained in § (2), that is the
only Nash equilibrium. Theorem [6] guarantees all trajectories
with x2(0) > 0 to converge to it. Fig. [l| shows the plot of
the potential functions of the three games and Fig. [2] shows
examples of trajectories of the imitation dynamics (9).

Example 5 (Pure coordination games): Another class of
potential games are the linear reward pure coordination
games [14], in which the reward matrix R is a diagonal
positive (entry-wise) matrix. It is straightforward to check
that a potential function is given by

d(x) = % > Ry}, (21)
i=1

Being ®(x) convex, its minimum is attained in an interior
point Z, and all the vertices of the simplex are local maxima
of the potential function. All the other critical points are
minima of the potential subject to belong to the boundaries.
All of these points are Nash equilibria. Therefore Theorem
|§| guarantees asymptotic convergence to them. In the ternary
case |A| = 3, a complete analysis can be carried out. Without
any loss in generality, we can set R1; = 1 and name Roy = b
and R33 = c. Then, analyzing ®(z) = § (21 + bz + cx3),
we explicitly compute the seven Nash equilibria: §(1), §(2),
and 63, the global minimum of the potential

o be c b
T b+c+bc'b+c+bc’b+c+bc)’

it
y SN

(@Ab=2,¢c=3 b)b=0.2,¢c=5

Fig. 3: Potential of the pure coordination games from Ex-
ample [5] and velocity plot of imitation dynamics (9) from
Example [3] for them. The unstable nodes and the saddle
points are denoted by white circles.

and the three minima on the boundary of X:

L 0eb) o (601 g (51,0
b+c

)

c+1"’ b+1

Through Lemma E| we conclude that Z is an unstable node,
the three points on the boundaries ('), z(*), and z(® are
saddle points, whose stable manifolds actually divide the
basins of attraction of the three asymptotically stable nodes
6, 62 §3) Fig. [3| shows two examples of potential and
velocity plots of the imitation dynamics (9) for these games.

B. Congestion games

Another important class of potential games are conges-
tion games [24], [23]. Let A = {1,...,l} be a set of
resources and A € {0,1}!*™ be the adjacency matrix
of a bipartite graph connecting agents with resources. Let
us introduce [ continuous functions, collected in a vector
() = (W1(-),..., (), where the generic ¥ (y) is the
reward for agents that use resource k, when the resource
is used by a fraction y of agents. The reward vector func-
tions for these games are simply 7(z) = AT+ (Az) and a
straightforward computation shows that congestion games
are always potential games, with

k=l

O(x) =Y U((Ax)p), (22)
k=1

where Uy, is an anti-derivative of ).

Often, the functions ;s represent a cost for the use of
the resources, so they are monotone decreasing functions. In
this case, the potential function ®(z) is concave, possessing
a global maximum Z, that is the only Nash equilibrium of
the game. Depending on A, Z can be an interior point,
or it can belong to the boundary of the simplex. As the
other critical points are considered, 5@ are minima of the
potential, whereas local maxima are present on the boundary,
that are Nash equilibria for restricted games. Theorem [6]
guarantees therefore that trajectories with 2(0) > 0 (entry-
wise) converge to Z, that is an asymptotically stable node.
The Nash equilibria of the restricted games are saddle points
(i.e., stable on the respective boundaries) and the vertices that
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(b) 2% from Ex. (c) @3) from Ex.

(a) Ex. |§|

Fig. 4: Potential of the congestion games from Example |§|
(withm = 3, ¢; = 1, c2 = 2, and ¢3 = 3) and from Example
[l respectively, and velocity plot of imitation dynamics ()
from Example (3) for them. The unstable nodes are denoted
by white circles, saddle points by gray circles, and black
circles denote the only asymptotically stable equilibrium.

are not in one of the previous set are unstable nodes. Fig.
[] shows the velocity plots of the imitation dynamics for the
following examples of congestion games.

Example 6 (Exponential costs game): Let A = I and let
the cost be ;(z;) = exp(cizy), for ¢; > 0. Then, the
maximum of the potential ®(z) = — 31", c% exp(—c;x;)
is achieved in an interior point Z, that is the unique Nash
equilibrium of the game.

Example 7 (Dominated strategy): We construct now two
examples of congestion games in which the Nash equilibrium
of the dynamics is on the boundary. Let I = 2, 1;(y) = —v,
and let us consider the following two adjacency matrices:

1 0 1 11 1
A1_<011) A2_<011)' (23)

The potential functions are, respectively:

Bi(0) =1 (o1 + 0l + (@2 b 20?) )

1
Py(z) = fi(xg + x3)2. (25)

As A; is considered, the Nash equilibrium of the dynamics
isin Zz = (1/2,1/2,0), whereas A has its Nash equilibrium
in the vertex §(1).

V. CONCLUSION AND FURTHER WORK

In this work we analyzed the asymptotic behavior of
imitation dynamics in potential population games, proving
convergence of the dynamics to the set of Nash equilibria of
the sub-game restricted to the set of actions used in the initial
configuration of the population. This results strengthen the
state of the art, both ensuring global stability to the Nash
equilibria, and generalizing the result to a class of dynamics
that encompasses the replicator dynamics and the class of
imitation dynamics considered in many previous works.

The main research lines arising from this work point in
two directions. On the one hand, taking advantage on the
techniques developed in this work, our analysis has to be
extended to the case in which the population is not fully
mixed and agents interact on a non-complete communication
network, similar to what have been done for other learning
mechanisms, such as the replicator and logit choice [25],

[12], or to cases in which the learning process interacts
with the dynamics of a physical system [26]. On the other
hand, stochasticity in the revising of the agent’s opinion
should be included into the imitation dynamics. This leads
to model imitation dynamics with Markovian stochastic
processes, paving the way for the study of several interesting
open problems in the relationships between the asymptotic
behavior of the new stochastic process and the one of the
deterministic process analyzed in this work.
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APPENDIX

Lemma 2: For any imitation dynamics (@) satisfying (3):

(i) if z(0) € Xs for some nonempty subset of actions S C
A, then z(t) € Xs for all t > 0;

(i) if x;(0) > 0 for some action i € A, then z;(t) > 0 for
every t > 0;

(iii) every restricted Nash equilibrium x € Z is a rest point.
Proof:

(i) It follows from the fact that any solution of @) with
x;(0) = 0 for some i € A is such that z;(t) = 0,
vVt > 0.

(i) Since #;(t) > —C;z;(t), where C; = | A| max{|r;(z) :
x € X|}, Gronwall’s inequality implies that x;(¢) >
7;(0)e= %t > 0.

(iii) Forevery z € Z and ¢, j € A, one has that z;x; (r;(z)—
rj(x)) = 0. Then, 3) implies that z;z;(fi;(z) —
fii(x))) = 0.

|

Lemma 4: Letr : X — RA be the reward function vector
of a potential population game with potential function & :
X — R. Then, every imitation dynamics (d) satisfying (3]
is such that

d(z) =Vd(z) >0, forallze X, (26)
with equality if and only if z € Z, as defined in (TT).
Proof: For every x € X, we have
d(z) = Vo(z) -
= V®(z) - diag (z)(F'(z) — F(x))z
0d
= > B D (1(a) - fusle)
T (o) oni
1 T T
— 3 X ey (G - ) (1) - (o)
) i,jEA ¢ J
=5 > wiwy (ri(@) = r5(@) (F(@) = fis (@)
i,jEA
27)

where the last identity follows from (13). It now follows
from property (3) of the imitation dynamics that, Vi, j € A,

(ri(z) —rj(@)) (fi(x) — fij(z)) = 0.
Being all entries of a configuration x € X are non-negative,
—ri(@)) (fii(z) — fij(2)) > 0.
Combining the above with (27), we get that <I>(x) > 0 (thus

proving (26)). Finally, ®(z:) = 0 if and only if all the terms
iy (ri(z) —rj(@)) (fi(z) = fij(2)) =0,

ziz; (ri()

(28)

Vi,j € A. Using again (3)), we have that
(ri(z) —rj(@)) (f5i(@) = fij(2)) = 0 = ri(z) = r;(2).
Then (28) is equivalent to

zixj(ri(z) —rj(z)) =0. (29)

To conclude the proof, we are simply left with showing that a
configuration x € X’ satisfies (29) if and only if it is critical,
i.e., it belongs to Z. Indeed, if € Ns for some nonempty
subset of actions S C A, then necessarily r;(z) = r;(x)
for every i,j € A such that z;z; > 0. On the other hand,
for any = € X satisfying (29), it is immediate to verify that
x € Ng, where S = {i € A: x; > 0} is its support. [ |
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