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A Hybrid Observer for a Distributed Linear System with a Changing

Neighbor Graph

L. Wang1, A. S. Morse1, D. Fullmer1, and J. Liu2

Abstract— A hybrid observer is described for estimat-
ing the state of an m > 0 channel, n-dimensional,
continuous-time, distributed linear system of the form
ẋ = Ax, yi = Cix, i ∈ {1, 2, . . . ,m}. The system’s
state x is simultaneously estimated by m agents assuming
each agent i senses yi and receives appropriately defined
data from each of its current neighbors. Neighbor relations
are characterized by a time-varying directed graph N(t)
whose vertices correspond to agents and whose arcs depict
neighbor relations. Agent i updates its estimate xi of x at
“event times” t1, t2, . . . using a local observer and a local
parameter estimator. The local observer is a continuous
time linear system whose input is yi and whose output
wi is an asymptotically correct estimate of Lix where
Li a matrix with kernel equaling the unobservable space
of (Ci, A). The local parameter estimator is a recursive
algorithm designed to estimate, prior to each event time tj ,
a constant parameter pj which satisfies the linear equations
wk(tj−τ ) = Lkpj+µk(tj−τ ), k ∈ {1, 2, . . . ,m}, where τ
is a small positive constant and µk is the state estimation
error of local observer k. Agent i accomplishes this by
iterating its parameter estimator state zi, q times within
the interval [tj − τ, tj), and by making use of the state
of each of its neighbors’ parameter estimators at each
iteration. The updated value of xi at event time tj is
then xi(tj) = eAτzi(q). Subject to the assumptions that
(i) none of the Ci are zero, (ii) the neighbor graph N(t) is
strongly connected for all time, (iii) the system whose state
is to be estimated is jointly observable, (iv) q is sufficiently
large and nothing more, it is shown that each estimate xi

converges to x exponentially fast as t → ∞ at a rate which
can be controlled.

I. INTRODUCTION

In a recent paper [1], a distributed observer was

described for estimating the state of an m > 0 chan-

nel, n-dimensional, continuous-time, jointly observable

linear system of the form ẋ = Ax, yi = Cix, i ∈
{1, 2, . . . ,m}. The state x is simultaneously estimated

by m agents assuming each agent i senses yi and

receives the state of each of its neighbors’ estimates.
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An attractive feature of the observer described in [1]

is that it is able to generate an asymptotically correct

estimate of x at a pre-assigned exponential rate, if

each agent’s neighbors do not change with time and

the neighbor graph characterizing neighbor relations

is strongly connected. However, a shortcoming of this

observer is that it is unable to function correctly if the

network changes with time. Changing neighbor graphs

will typically occur if the agents are mobile. A second

shortcoming of the observer described in [1] is that it is

“fragile.” By this we mean that the observer is not able

to cope with the situation when an agent’s neighbors

change. For example, if because of a component failure,

a loss of battery power or some other reason, an agent

drops out of the network, what remains of the observer

will typically not be able to perform correctly and may

become unstable, even if what is left is still a jointly

observable system with a strongly connected neighbor

graph. The aim of this paper is to describe a new type

of observer which overcomes these difficulties.

II. THE PROBLEM

We are interested in a network of m > 0 autonomous

agents labeled 1, 2, . . . ,m which are able to receive

information from their neighbors where by the neighbor

of agent i is meant any other agent in agent i’s reception

range. We write Ni(t) for the set of labels of agent i’s

neighbors at real time t ∈ [0,∞) and we take agent i to

be a neighbor of itself. Neighbor relations at time t are

characterized by a directed graph N(t) with m vertices

and a set of arcs defined so that there is an arc from

vertex j to vertex i whenever agent j is a neighbor of

agent i. Each agent i can sense a continuous-time signal

yi ∈ IRsi , i ∈ m = {1, 2, . . . ,m}, where

yi = Cix, i ∈ m (1)

ẋ = Ax (2)

and x ∈ IRn. We assume throughout that Ci 6= 0, i ∈
m, and that the system defined by (1), (2) is jointly

observable; i.e., with C = [C′
1 C′

2 · · · C′
m ]′, the

matrix pair (C,A) is observable. The problem of interest

is to develop “private estimators”, one for each agent,

which enable each agent to obtain an asymptotically

correct estimate of x.
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A. Background

Distributed state estimation problems have been under

study in one form or another for years. In many cases

system and measurement noise are components of the

problem considered and some form of Kalman filtering

is proposed. The literature on this subject is vast, and

many specialized results exist; see for example, [2]–[10]

and the many references cited therein. However, to the

best of our knowledge, the specific problem we have

posed has not been solved without imposing restrictive

assumptions. One reason for this we think is because

most approaches rely on estimators which are time-

invariant linear systems. We believe that the problem

posed, involving a time-varying neighbor graph, cannot

be solved without qualification, with a time invariant

linear system. It would be especially useful to know

whether or not this conjecture is true.

III. OBSERVER

The idea we are about to present makes use of to two

familiar types of systems. The first type is a classical

observer; such systems enable each agent to generate an

asymptotically correct estimate of the “part of x which

is observable” to that particular agent. The second type

of system is a parameter estimator; using parameter esti-

mators enables each agent to generate an asymptotically

correct estimate of x frozen at a specified time instant by

viewing x at that time as a fixed parameter. The judicious

combination of these two types of systems provides a

straightforward, easy to analyze solution to the problem

we have posed and it is surprising that the idea has not

been suggested before.

The observer to be described consists of m estimators,

one for each agent. Agent i generates an estimate xi

of x with its private estimator Ei which is a hybrid

dynamical system consisting of a “local observer” and

a “local parameter estimator.” Each xi is updated at

event times t1, t2, . . . where tj = jT, j ≥ 1, and T

is a pre-selected positive real number. Between event

times, each xi satisfies ẋi = Axi. Agent i’s local

observer is a continuous time linear system whose input

is yi and whose output wi is an asymptotically correct

estimate of Lix where Li a matrix with kernel equaling

the unobservable space of (Ci, A). The computations

needed to update each agent’s estimate of x at event

time tj are carried out over the time interval [tj −τ, tj);
here τ is a positive number smaller than T which is

chosen large enough so that the computations required

to update each agent’s estimate can be completed in

τ time units. Agent i’s local parameter estimator is a

recursive algorithm designed to estimate on each interval

[tj − τ, tj), a constant parameter pj which satisfies the

linear equations wk(tj−τ) = Lkpj+µk(tj−τ), k ∈ m,

where µk is the state estimation error of local observer

k. Agent i accomplishes this by iterating its parameter

estimator state zi, q times within the interval [tj−τ, tj),
and by making use of the state of each of its neighbors’

parameter estimators at each iteration. The updated value

of xi at event time tj is then xi(tj) = eAτzi(q).

A. Estimator Ei

In this section we give a more detailed description of

agent i’s private estimator. As just stated, the estimator

consists of a local observer and a local parameter

estimator.

1) Local Observer i: Recall that the unobservable

space of (Ci, A), written [Ci|A], is the largest A-

invariant subspace contained in the kernel of Ci. Set

ni = n− dim([Ci|A]) and let Li be any ni × n matrix

whose kernel is [Ci|A]. Then as is well known, the

equations Ci = C̄iLi and LiA = ĀiLi have unique

solutions C̄i and Āi respectively and (C̄i, Āi) is an

observable matrix pair. By a local observer for agent

i is meant any ni dimensional system of the form

ẇi = (Āi +KiC̄i)wi −Kiyi (3)

where Ki is a matrix to be chosen. It is easy to verify

that the local observer estimation error µi
∆
= wi − Lix

satisfies

µi(t) = e(Āi+KiC̄i)t(wi(0)− Lix(0)), t ∈ [0,∞)

Moreover, since (C̄i, Āi) is observable, Ki can be se-

lected so that µi(t) converges to 0 exponentially fast at

any pre-assigned rate. We assume that each Ki is so

chosen. Since

wi(t) = Lix(t) + µi(t), t ∈ [0,∞) (4)

wi can be thought of as an asymptotically correct

estimate of Lix.

2) Local Parameter Estimator i: The starting point

for the development of the local parameter estimators is

the observation that for each event time tj , the system

of equations

wi(tj − τ) = Lipj + µi(tj − τ), i ∈ m (5)

has a unique solution, namely pj = x(tj − τ). This

is a consequence of (4) and the joint observability

assumption. It is useful to think of the estimation of

pj as a parameter estimation problem. One algorithm

for computing pj which would give an asymptotically

correct result in an infinite number of steps if each

µk(tj−τ) were zero, is the algorithm described in [11].

In this paper we will make use of this algorithm but

will only iterate q > 0 steps where q is an integer-

valued design constant which is chosen large enough

to ensure exponential convergence; we assume that the



local processers are sufficiently fast so that each can

execute q iterations in τ time units. The local parameter

estimator for agent i as defined as follows. For each

event time tj ,

zi(0) = xi(tj − τ) (6)

zi(k) = z̄i(k − 1)

−Qi(Liz̄i(k − 1)− wi(tj − τ)), k ∈ q (7)

xi(tj) = eAτzi(q) (8)

where k ∈ q
∆
= {1, 2, . . . , q}, Qi = L′

i(LiL
′
i)

−1, and

z̄i(k − 1) =
∑

s∈Ni(τk)

zs(k − 1).

Here

τk = tj −
(
1− (k − 1)

q

)
τ

and mi(k) is the number of labels in Ni(τk). Note that

the same symbols zi(k − 1) and τk are used on each

interval [tj − τ, tj), j ≥ 1, without explicitly showing

their dependence on j.

One way to modify the above algorithm without

changing its essential features, is to redefine each Qi

in (7) as Qi = L′
iGi where Gi is any positive definite

matrix for which the spectrum of L′
iGiLi is contained in

the open half interval (−1, 1]. It is known that with this

modification, the algorithm has the same convergence

properties as the original but perhaps with a faster

convergence rate if the Gi are chosen appropriately [11].

IV. MAIN RESULT

The main result of this paper is as follows.

Theorem 1: Suppose that (1), (2) is jointly observ-

able, that Ci 6= 0, i ∈ m, and that the neighbor graph

N(t) is strongly connected for all t ∈ [0,∞). Then for

appropriately chosen T, τ, q, and Ki, i ∈ m, there

exist positive constants g and λ for which the following

statement is true. For each initial process state x(0),
each initial local observer state wi(0), i ∈ m, and each

estimate xi(0), i ∈ m,

|xi(t)− x(t)|2 ≤ e−λt(δx + δµ), t ≥ 0, i ∈ m (9)

where

δx = max
i∈m

|xi(0)−x(0)|2, δµ = gmax
i∈m

|wi(0)−Lix(0)|2

and | · |2 is the standard two norm.

It is possible to give a formula for λ. Towards this

end, assume that q has been chosen large enough so

that

q >


1 +

ζT

ln
(

1
γ

)


 ((m− 1)2 + 1) (10)

where ζ is the largest eigenvalue of 1
2 (A + A′), and γ

is the positive number defined by (21) in Proposition 1;

note that γ is less than 1 and depends only on m and

the Li which in turn depend only on A and the Ci. Next

let ω be any positive number such that

ω + ζ >
r

T
ln

(
1

γ

)
(11)

where r is the unique integer quotient of q divided by

(m−1)2+1. Assume that the Ki used in the definitions

of the local observers, have been chosen so that each

local observer estimation error decreases in norm as fast

as e−ωt does. A formula for λ is then

λ =
r

T
ln

(
1

γ

)
− ζ (12)

Note that so long as (10) holds, λ > 0. Note also that

the formula for γ in Proposition 1 is conservative and

consequently so is the above formula for λ.

A. Example

The following example illustrates how the observer

performs when applied to an unstable system. Consider

the three channel, four-dimensional, continuous-time

system described by the equations ẋ = Ax, yi =
Cix, i ∈ {1, 2, 3}, where

A =




0 0.4 0 0
0 0 0 0
0 0 0 2
0 0 −2 0.2




C1 = [ 1 0 0 0 ]

C2 = [ 0 1 0 0 ]

C3 = [ 0 0 1 1 ]

Note that A has two eigenvalues at 0 and a pair of

complex eigenvalues at 0.1± j2.00. While the system is

jointly observable, no single pair (Ci, A) is observable.

For this example N1 = {1, 2}, N2 = {1, 2, 3},

N3 = {2, 3}, T = 1, τ = 0.5, γ = 0.975 and ζ = 0.2.

To satisfy (10), q is chosen as q = 45 and r = 9. To

satisfy (11), ω is chosen as ω = 2. The local observers

for the three agents are constructed using the following

matrices.

For agent 1:

C̄1 = [ 0 1 ] , Ā1 =

[
0 0
0.4 0

]
,

L1 =

[
0 1 0 0
1 0 0 0

]
, K1 = −

[
20
6

]

For agent 2:

C̄2 = 1, Ā2 = 0, L2 = [ 0 1 0 0 ] , K2 = −2

For agent 3:

C̄3 = [ 0
√
2 ] , Ā3 =

[
0.1 −1.9
2.1 0.1

]
,

L3 =

[
0 0 −

√
2
2

√
2
2

0 0
√
2
2

√
2
2

]
, K3 = −

[
0.85
3.68

]



In all three cases the convergence rate is 2. Finally, for

this example (12) gives an overall convergence rate of

λ = 0.025.

This system was simulated with x(0) =
[ 3 2 4 1 ]′ as the initial state of the process,

w1(0) = [ 2 4 ]
′
, w2(0) = [ 3 ], and w3(0) = [ 1 2 ]

′

as the initial states of the three local observers, and

x1(0) = x2(0) = x3(0) = − [ 4 4 4 4 ]′ as the

initial estimates of the three local estimators. The two

traces in Figure 1a show the simulation result for the

third components of x1 and x respectively, namely

x
(3)
1 and x(3). The trace in Figure 1b shows the error

x
(3)
1 − x(3) while the trace in Figure 1c, shows the

two-norm of the error x1 − x.
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Fig. 1. Simulation Results

To study the effect of an unmeasured disturbance

driving the process dynamics, a second simulation was

performed using the same observer as above applied to

the modified state equation system ẋ = Ax+ bν where

b = [ 1 1 1 1 ]′ and ν = 7 cos 10t. The resulting

traces are shown in Figures 2a, 2b, and 2c respectively.

V. ANALYSIS

Fix j > 0. Our immediate aim is to analyze the

behavior of the parameter estimators on the time interval

[tj − τ, tj) . Towards this end, for each i ∈ m let ǫi
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Fig. 2. Simulation Results with System Noise

denote the parameter estimation error ǫi(k) = zi(k) −
pj , k ∈ {0, 1, . . . , q}. We claim that

ǫi(0) = eA(T−τ)(xi(tj−1)− x(tj−1)) (13)

ǫi(k) =
1

mi(k)
Pi

∑

s∈Ni(τk)

ǫs(k − 1)

+Qiµi(tj − τ), k ∈ q (14)

xi(tj)− x(tj) = eAτ ǫi(q) (15)

where t0 = 0, and Pi is the orthogonal projection matrix

Pi = I − L′
i(LiL

′
i)

−1Li. To establish (13), note that

ǫi(0) = xi(tj − τ) − x(tj − τ) because of (6), the

definition of ǫi and the fact that pj = x(tj − τ); (13)

follows at once. The recursion in (14) is an immediate

consequence of (5) and (7). To establish (15), note that

xi(tj) − x(tj) = eAτzi(q) − x(tj) because of (8); but

x(tj) = eAτx(tj − τ) = eAτpj . Therefore (15) is true.

To proceed define x̂ = [x′
1 x′

2 · · · x′
m ]

′
, x̄ =

[x′ x′ · · · x′ ]′ and ǫ = [ ǫ′1 ǫ′2 · · · ǫ′m ]
′
. Write

Fj(k) for the “flocking matrix” determined by N(τk);
i.e., Fj(k) = D−1

N(τk)
A′

N(τk)
where DN(τk) is the diagonal

matrix of in-degrees of the vertices of N(τk) and AN(τk)

is the adjacency matrix of N(τk). Then it is easy to verify

that

ǫ(0) = eĀ(T−τ)(x̂(tj−1)− x̄(tj−1))



ǫ(k) = P (Fj(k)⊗ I)ǫ(k − 1)

+Qµ(tj − τ), k ∈ q

x̂(tj)− x̄(tj) = eĀτ ǫ(q)

where µ = [µ′
1 µ′

2 · · · µ′
m ]

′
, Ā =

block diagonal{A, A, . . . , A}, P =
block diagonal{P1, P2, . . . , Pm}, Q =
block diagonal{Q1, Q2, . . . , Qm}, ⊗ is the

Kronecker product, and I is the n × n identity matrix.

From these equations it follows that

x̂(tj)− x̄(tj) = Ωj(x̂(tj−1)− x̄(tj−1)) + Θjµ(tj − τ)
(16)

where

Ωj = eĀτP (Fj(q)⊗ I)

P(Fj(q−1)⊗I)· · ·P(Fj(1)⊗I)eĀ(T−τ)(17)

and

Θj = eĀτ

(
q∑

s=2

P(Fj(q)⊗I)P(Fj(q−1)⊗I)· · ·P(Fj(s)⊗I)+I

)
Q(18)

Suppose that with some suitably defined norm, the norm

of each Ωj is less than one and Θj is uniformly bounded

as a function of j. Then the sequence x̂(tj)−x̄(tj), j ≥ 1
will converge to zero at a exponential rate, because

the sequence µj(tj − τ), j ≥ 1 converges to zero

at an exponential rate. Because of this and the fact

that the time between successive event times is T , x̂(t)
will converge to x̄(t) exponentially fast. In view of

the definitions of x̂ and x̄, it is obvious that each xi

will converge to x exponentially fast. So establishing

convergence boils down to establishing the aforemen-

tioned properties of the Ωj and Θj sequences. For this

a suitably defined matrix norm is needed. Such a norm,

termed a mixed-matrix norm,” has been defined before

[12] and is described below.

Let | · |∞ denote the standard induced infinity norm

and write IRmn×mn for the vector space of all m ×m

block matrices M = [Mij ] whose ijth entry is a matrix

Mij ∈ IRn×n. As in [12] we define the mixed matrix

norm of M ∈ IRmn×mn, written ||M ||, to be

||M || = |〈M〉|∞ (19)

where 〈M〉 is the matrix in IRm×m whose ijth entry is

|Mij |2. It is very easy to verify that || · || is in fact a

norm. It is even sub-multiplicative [12].

Corollary 1 of [12] and its proof imply the following.

Proposition 1: Let P1, P2, . . . , Pm be any set of n×n

orthogonal matrices for which ∩i∈m kerPi = 0. Let

N1, N2, · · · , N(m−1)2 be any sequence of self-

arced, strongly connected, directed graphs on m vertices;

for i ∈ m, write Fi for the flocking matrix Fi =

D−1
i A′

i where Di is the diagonal matrix of in-degrees

of vertices of Ni and Ai is the adjacency matrix of

Ni. Let C denote the compact set of products of form

Pj1 , Pj2 , · · · , Pj(m−1)2
where each of the Pi, i ∈ m,

occurs in the product at least once. Then,

||P (F(m−1)2⊗I)P (F(m−1)2−1⊗I) · · ·P (F1⊗I)P || ≤ γ

(20)

where

γ = 1− (m− 1)(1− ρ)

m(m−1)2
(21)

and ρ = max
C

|Pj1Pj2 · · ·Pj(m−1)2
|2. Moreover, ρ < 1

and γ < 1.

With Proposition 1, the following property of the Ωj

sequence can be derived.

Lemma 1: Let ζ be the largest eigenvalue of matrix
1
2 (A + A′). Suppose that q > (m − 1)2 + 1 and that

N(t) is a self-arced, strongly connected neighbor graph

for all t ≥ 0. Then ‖Ωj‖ ≤ eζTγr where r is the unique

integer quotient of q divided by (m− 1)2 + 1.

Proof of Lemma 1: Since N(t) is strongly connected

for all time, within each time interval [tj − τ, tj), the

graphs of the sequence N(τ1), N(τ2), . . . , N(τq) are all

strongly connected. Also the graphs of the sequence are

all self-arced. By Proposition 1 and sub-multiplicativity

of the mixed-matrix norm,

‖P (Fj((m− 1)2 + c+ 1)⊗ I)

P (Fj((m+ 1)2 + c)⊗ I) · · ·P (Fi(c)⊗ I)‖ ≤ γ

for any positive integer c. Thus we have

‖P (Fj(q)⊗ I)P (Fj(q − 1)⊗ I)

· · ·P (Fj(1)⊗ I)‖ ≤ γr (22)

By [13], we know |eAt|2 ≤ eζt which means

‖eĀt‖ = |eAt|2 ≤ eζt (23)

By combining (22) and (23), we get

‖Ωi‖ ≤ eζτγreζ(T−τ)

≤ eζTγr

which completes the proof.

Now, with Lemma 1, convergence from x̂ to x̄ can be

derived.

Proof of Theorem 1: As a first step, we find the

constraint for q such that ‖Ωj‖ < 1. By Lemma 1,

‖Ωj‖ ≤ eζTγr ∆
= β where ζ is the largest eigenvalue

of 1
2 (A + A′). It is sufficient to ensure β < 1. Thus

we get that if q holds for (10), β < 1 holds. If all the

eigenvalue of A is negative, the right hand side of the

above inequality is less than zero and it is trivial to set

q = 0.

Second, since µ(t) converges to zero at a pre-assigned

rate, let ‖µ(t)‖ ≤ ‖̄µ(0)‖g1e−wt where w can be any



positive numbers, and ḡ1 is a positive constant. That

is equivalent to ‖µ(tj − τ)‖ ≤ ‖µ(0)‖g1α τ

T
+j , where

α = e−wT and g1 is positive.

Choose w such that α < β. From (16), we get

x̂(tj)− x̄(tj) = ΩjΩj−1 · · ·Ω1(x̂(0)− x̄(0))

+

j∑

s=1

ΩjΩj−1 · · ·Ωs+1Θsµ(ts − τ)

Let g2
∆
= maxs ‖Θs‖. Then

‖x̂(tj)− x̄(tj)‖ ≤ ‖x̂(0)− x̄(0)‖‖ΩjΩj−1 · · ·Ω1‖

+‖µ(0)‖g1g2
j∑

s=1

‖ΩjΩj−1 · · ·Ωs+1‖α
T

τ
+s

≤ ‖x̂(0)− x̄(0)‖βj + ‖µ(0)‖g1g2
j∑

s=1

βj−sα
T

τ
+s

=

(
‖x̂(0)− x̄(0)‖+ ‖µ(0)‖ g1g2

β − α

)
α

T+τ

τ βj

−‖µ(0)‖ g1g2

β − α
α

T+τ

τ αj

≤
(
‖x̂(0)− x̄(0)‖+ ‖µ(0)‖ g1g2

β − α
α

T+τ

τ

)
βj

Since β < 1, all xi(tj) will converge to the real state

x(tj) exponentially fast whose rate is bounded by β.

Thus we can get the result that

|xi(t)− x(t)|2 ≤ e−λt(σx + σµ), t ≥ 0, i ∈ m

where

σx = ‖x̂(0)− x̄(0)‖, σµ = ‖µ(0)‖ g1g2

β − α
α

T+τ

τ

and λ = − 1
T
lnβ which is equivalent to (12). Note

‖µ(0)‖ = max
i∈m

|wi(0)− Lix(0)|2, and

g
∆
=

g1g2

β − α
α

T+τ

τ

is a positive constant which completes the proof.

VI. CONCLUDING REMARKS

One of the nice properties of the hybrid observer

discussed in this paper is that it is resilient. By this we

mean that under appropriate conditions it will be able to

continue to provide asymptotically correct estimates of

x, even if one of the agents leave the network. To give an

example of this, suppose that N(t) is a constant, strongly

connected, self-arced four vertex graph N with arcs in

both directions between each pair of vertices except for

the vertex pair (1, 4). Then N will remain self-arced and

strongly connected after the removal of any one vertex

v and all arcs either leaving or arriving at v. Suppose

the system whose state is to be estimated is a jointly

observable four channel system which remains jointly

observable after any one measurement yi is removed.

Suppose that agent k leaves the network. It is clear that

any properly designed hybrid observer for this system

will be able generate asymptotically correct estimates

of x not only for all four agents but also for the three

which remain after agent k leaves. Further research is

needed to more fully understand resilient observers.

Generally one would like to choose T “small” to

avoid unnecessarily large error overshooting between

event times. Meanwhile, since r is the unique integer

quotient of q divided by (m − 1)2 + 1, it is obvious

from (12) that the larger the number of iterations q

on each interval [tj − τ, tj) the faster the convergence.

Two considerations limit the value of q - how fast

the parameter estimators can compute and how quickly

information can be transmitted across the network. We

doubt the former consideration will prove very important

in most applications, since digital processers can be quite

fast and the computations required are not so taxing. On

the other hand, transmission delays will almost certainly

limit the choice of q. A model which explicitly takes

such delays into account will be presented in another

paper.

A second practical issue which this paper does not

address is the question of synchronization. Like just

about all published papers on distributed estimation, this

paper implicitly assumes that all agents share a common

clock. This is undoubtedly an unrealistic assumption

for many applications. The tools to study this type of

observer in an asynchronous setting already exist [14]

and we anticipate applying them in the future.

A third practical issue is that the development in this

paper does not take into account measurement noise. On

the other hand, the observer provides exponential con-

vergence and this suggests that if noisy measurements

are considered, the system the observer’s performance

will degrade gracefully with increasing noise levels. Of

course one would like an “optimal” estimator for such

situations in the spirit of a Kalman filter. Just how to

formulate and solve such a problem is a significant issue

for further research.
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