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Abstract— A networked control system (NCS) consisting of
cascaded two-port communication channels between the plant
and controller is modeled and analyzed. Towards this end, the
robust stability of a standard closed-loop system in the presence
of conelike perturbations on the system graphs is investigated.
The underlying geometric insights are then exploited to analyze
the two-port NCS. It is shown that the robust stability of
the two-port NCS can be guaranteed when the nonlinear
uncertainties in the transmission matrices are sufficiently small
in norm. The stability condition, given in the form of “arcsin”
of the uncertainty bounds, is both necessary and sufficient.

I. INTRODUCTION

Feedback is widely used for handling modeling uncertain-
ties in the area of systems and control. Within a feedback
loop, communication between the plant and controller plays
an important role in that the achieved control performance
and robustness heavily rely on the quality of communication.
In practice, communication can never be ideal due to the
presence of channel distortions and interferences. In this
study, we analyze the robust stability of a feedback system
involving bidirectional uncertain communication modeled by
cascaded two-port networks.

Most control systems can be regarded as structured net-
works with signals transmitted through channels powered by
various devices, such as sensors or satellites. A networked
control system (NCS) differs from a standard closed-loop
system in that the information is exchanged through a
communication network [1]. The presence of such a network
may introduce disturbances to a control system and hence
significantly compromise its performance.

In this study, we introduce an NCS model, extending
the standard linear time-invariant (LTI) closed-loop system
(Fig. 1) to the feedback system with cascaded two-port
connections (Fig. 2). We assume that the controller and plant
are LTI while the two-port networks involve nonlinear pertur-
bations on their transmission matrices. In terms of commu-
nication uncertainties, we model the transmission matrices
as T = I + ∆, where ∆ is a bounded nonlinear operator.
Our formulation of robust stabilization problem is mainly
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motivated by the application scenario of stabilizing a feed-
back system where the plant and controller do not possess
an ideal communication environment and their input-output
signals can only be sent through communication networks
with several relays, as in, for example, teleoperation systems
[2], satellite networks [3], wireless sensor networks [4] and
so on. Moreover, each sub-system between two neighbouring
relays, representing a communication channel, may involve
not only multiplicative distortions on the transmitted signal
itself but also additive interferences caused by the signal
in the reverse direction, which is usually encountered in a
bidirectional wireless network subject to channel fading or
under malicious attacks [5].

Two-port networks are not a new concept and have been
studied for decades for different purposes. Historically, two-
port networks were first introduced in electrical circuits the-
ory [6]. Later on they were utilized to represent LTI systems
in the so-called chain-scattering formalism [7], which is
essentially a two-port network. Such representations have
also been used for studying feedback robustness from the
perspective of the ν-gap metric [8]. Recently, approaches
based on the two-port network to modeling communication
channels in a networked feedback system is studied in [9]
and [10]. There, uncertain two-port connections are used to
introduce channel uncertainties, based on which we propose
our cascaded two-port communication model with nonlinear
perturbations in this paper.

One of the contributions of our study is a clean result for
analyzing the stability of a feedback system with multiple
sources of uncertainties. A general approach to robust sta-
bilization of LTI systems with structured uncertainties is µ
analysis, which is known to be computationally intractable
in general in the presence of multiple uncertainties [11].
Furthermore, the two-port uncertainties in this study are non-
linear, which bring in an additional obstacle. To overcome
these difficulties, we take advantage of the special two-port
structures and make use of geometric insights on system
stability via an input-output approach. By generalizing the
“arcsin” theorem in [12] for a standard closed-loop system,
we are able to give a concise necessary and sufficient robust
stability condition for the two-port NCS. Moreover, the
stability condition is scalable and computationally friendly,
in the sense that when the topology of the two-port NCS
is changed, the stability condition can be efficiently updated
based only on the modified components. In terms of de-
signing an optimal controller, it suffices to solve an H∞
optimization problem, which is mathematically tractable.

It is worth noting that there exist previous works on
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Fig. 1: A Standard Closed-Loop System

...

Fig. 2: Communication Channels Modeled by Cascaded
Two-port Networks

robust stabilization of NCSs with special architectures and
various uncertainty descriptions. For example, [2] consid-
ers teleoperation of robots through two-port communication
networks with time-delay, [13] considers a plant with para-
metric uncertainties over networks subject to packet loss,
[14] considers a plant with polytopic uncertainties in its
coefficients over a communication channel subject to fadings
and so on. The differences of our work from the previous
ones are that our channel model characterizes bi-directional
communication involving both distortions and interferences
and these uncertainties may be nonlinear.

The rest of the paper is organized as follows. First in
Section II, we define open-loop stability, closed-loop well-
posedness and stability, system uncertainties and some re-
lated properties. Then in Section III, we give a robust stability
condition for a closed-loop system with conelike uncertainty
descriptions. Thereafter in Section IV, we extend the results
on robust stability to cascaded two-port networks. In Section
V, we conclude this study and summarize our contributions.

II. PRELIMINARIES

A. Open-loop Stability

Let Hn2 := {f : [0,∞) → Rn | ‖f‖22 :=
∫∞

0
|f(t)|2 dt <

∞}, where |·| denotes the Euclidean norm. LetRH∞ consist
of all the real rational members of H∞, the Hardy ∞-space
of functions that are holomorphic on the right-half complex
plane.

Denote the time truncation operator at time τ ∈ [0,∞) as
Tτ , such that for u(t) ∈ H2,

(Tτu)(t) =

{
u(t), 0 ≤ t < τ ;
0, Otherwise.

A nonlinear system is represented by an operator P :
dom(P ) ⊂ H2 7→ H2 with domain dom(P ) = {u ∈
H2 | Pu ∈ H2}. We denote its image as img(P ). A physical
system should additionally be causal, which is defined as
follows [15].

Definition 1. A nonlinear system P : dom(P ) ⊂ H2 7→ H2

is said to be causal if for every τ ∈ [0,∞) and u1, u2 ∈
dom(P ),

Tτu1 = Tτu2 ⇒ TτPu1 = TτPu2

We assume P 0 = 0 throughout this study, which means
every nonlinear system we consider has zero output when-
ever the input is zero. The finite-gain stability of a system is
defined as follows [16].

Definition 2. A causal nonlinear operator (system) P is said
to be (finite-gain) stable if dom(P ) = H2 and its operator
norm is bounded, that is

‖P ‖ := sup
06=x∈H2

‖Px‖2
‖x‖2

<∞.

B. Closed-loop Stability

We consider a standard closed-loop system in Fig. 1
with plant P : dom(P ) ⊂ Hp2 7→ Hm2 and controller
C : dom(C) ⊂ Hm2 7→ H

p
2. In the following, the superscripts

of Hm2 and Hp2 will be omitted for notational simplicity.
The graph of P is defined as

GP =

[
I
P

]
dom(P )

and similarly the inverse graph of C is defined as

G′C =

[
C
I

]
dom(C),

both of which are assumed to be closed in this study.
It can be seen in [15]–[17] that various versions of

feedback well-posedness may be assumed based on different
signal spaces and causality requirements. In this study,
we adopt the well-posedness definition from [17] without
appealing to extended spaces, by contrast to, for example,
[15], [16].

Definition 3. The closed-loop system [P ,C] is said to be
well-posed if

FP ,C : dom(P )× dom(C) 7→ H2

:=

[
u1

y2

]
7→
[
d1

d2

]
=

[
I C
P I

] [
u1

y2

]
is causally invertible on img(FP ,C).

Correspondingly, the stability of the closed-loop system is
defined as follows:

Definition 4. A well-posed closed-loop system [P ,C] is
(finite-gain) stable if FP ,C is surjective and F−1

P ,C is finite-
gain stable.

When FP ,C is surjective, the parallel projection operators
[18] along GP and G′C , ΠGP �G′C and ΠG′C�GP , can be
defined respectively as

ΠGP �G′C :

[
d1

d2

]
∈ H2 7→

[
u1

y1

]
∈ GP

=

[
I 0
0 −I

]
F−1

P ,C +

[
0 0
0 I

]
,

(1)
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ΠG′C�GP :

[
d1

d2

]
∈ H2 7→

[
u2

y2

]
∈ G′C

=

[
−I 0
0 I

]
F−1

P ,C +

[
I 0
0 0

]
.

(2)

It follows that every w ∈ H2 has a unique decomposition
as w = m + n with m = ΠGP �G′Cw ∈ GP and n =
ΠG′C�GPw ∈ G′C .

The next proposition bridges the finite-gain stability and
the boundedness of parallel projections [18].

Proposition 1. A well-posed closed-loop system [P ,C] is
stable if and only if FP ,C is surjective and ΠGP �G′C or
ΠG′C�GP is finite-gain stable.

For a finite-gain stable closed-loop system [P ,C], its
stability margin is defined as bP ,C := ‖ΠGP �G′C‖

−1. It
is shown in [18] that if either P or C is linear, then
bP ,C = bC,P .

C. System Uncertainties

A well-known method to introduce system uncertainties is
through various variants of the “gap” or “aperture” between
system graphs [19]. In this study, before characterizing the
uncertainties in two-port networks, we introduce a useful
notion of neighborhood of a certain nominal system’s graph,
which may serve as its uncertainty set. LetM be a manifold
in H2. Define the conelike neighborhood of M as

S(M, r) = {n ∈ H2 : inf
0 6=m∈M

‖n−m‖2
‖m‖2

≤ r} ∪ {0}.

If M is a one-dimensional subspace in R3, the set
S(M, r) is simply a right circular double cone as shown
in Fig. 3. In case of one-dimensional subspace in R2, the
set can be interpreted as doubly sector-bounded area [20].
If M is the graph of certain linear system, it “resembles” a
closed double cone in the space of H2, which provides us
some geometric intuitions on the system uncertainties.

Based on the Hilbert space structure of H2, let θ(x, y)
denote the acute angle between x, y ∈ H2 \ {0} and
θ(x, y) = ∞ if either of x, y is zero almost everywhere
for convenience.

Given r ∈ (0, 1) and a closed conelike neighboring set
M⊂ H2, we have the following useful properties:

Property 1. Let n ∈ H2 \ {0}. Then n ∈ S(M, r) if and
only if αn ∈ S(M, r) for every α ∈ R;

Property 2. S(M, r) = {n ∈ H2 : infm∈M θ(m,n) ≤
arcsin r} ∪ {0}.

Another related neighboring set is defined as follows:

S̃(M, r) := {n ∈ H2 \ {0} : inf
m∈M

‖n−m‖2
‖n‖2

≤ r} ∪ {0}.

Property 3. S(M, r) = S̃(M, r).

The proofs for the above properties are in Appendix I,
which follow from the definition of conelike neighborhoods
directly.

Remark 1. In general, S̃(M, r) 6= S(M, r) for arbitrary
manifold M in H2.

One benefit of defining uncertainties as above is that we
can examine the intersection of two cones simply by studying
the angles between two lines from each of them respectively.
Moreover, the intersection of the graphs may reflect the
instability of a closed-loop system, as is detailed in the next
section.

III. FEEDBACK INTERCONNECTIONS WITH CONELIKE
UNCERTAINTIES

Given a (possibly unstable) LTI nominal closed-loop sys-
tem [P,C] with open-loop system graphs GP and G′C , we
have the following result concerning its robust stability,
whose proof is in Appendix II.

Proposition 2. Given rp, rc ∈ (0, 1), the perturbed system
[P 1,C1] is stable for all GP1

⊂ S(GP , rp), G′C1
⊂

S(G′C , rc) such that FP1,C1
is surjective if and only if

S(GP , rp) ∩ S(G′C , rc) = {0}.

It is known that a standard well-posed LTI closed-loop
system [P,C] is stable if and only if GP ⊕ G′C = H2 ×H2.
As there is no subspace representation for the graph of a
nonlinear system, Proposition 2 generalizes the geometric
insight of complementarity of subspaces. Building on that,
we have the following robust stability condition, which
extends the “arcsin” inequality condition in [12] and [21].

Theorem 1. Assume the LTI nominal closed-loop system
[P,C] is stable. The following statements are equivalent:

1) The perturbed system [P 1,C1] is stable for all GP1
⊂

S(GP , rp), G′C1
⊂ S(G′C , rc) such that FP1,C1

is
surjective;

2) S(GP , rp) ∩ S(G′C , rc) = {0};
3) arcsin rp + arcsin rc < arcsin bP,C .

Proof. The equivalence between 1) and 2) has been estab-
lished in Proposition 2. The direction 1) ⇒ 3) follows
from the “arcsin” theorem in [12] for LTI systems by noting
that standard the gap metric balls B(GP , rp) and B(GP , rc)



are contained in the conelike sets S(GP , rp) and S(G′C , rc),
respectively.

Next we show 3) ⇒ 2). First note that bP,C =
infm∈GP ,n∈G′C sin θ(m,n) from [12]. Given any m1 ∈
S(GP , rp) and n1 ∈ S(G′C , rc), the triangle inequality for
θ(·, ·) gives

θ(m1, n1) ≥ θ(m,n)− θ(m,m1)− θ(n, n1) (3)

for any m ∈ GP and n ∈ G′C .
It follows directly that infm∈GP θ(m,m1) ≤ arcsin rp and

infn∈G′C θ(n, n1) ≤ arcsin rc from Property 2. Let m̄ ∈
arg minm∈GP θ(m,m1) and n̄ ∈ arg minn∈G′C θ(n, n1), in
which the minimums are achieved due to the closedness of
the system graphs. Then inequality (3) implies that

θ(m1, n1) ≥ θ(m̄, n̄)− θ(m̄,m1)− θ(n̄, n1)

≥ θ(m̄, n̄)− arcsin rp − arcsin rc

≥ arcsin bP,C − arcsin rp − arcsin rc =: ε > 0.

Hence it holds that

inf
m1∈S(GP ,rp),n1∈S(G′C ,rc)

arcsin θ(m1, n1) ≥ ε > 0,

which implies

S(GP , rp) ∩ S(G′C , rc) = {0},

as required.

A short summary to the above results follows. A certain
robust stability condition is derived while allowing simul-
taneous perturbations on the plant and controller, in the
expression of an “arcsin” inequality. The uncertainties are
measured with conelike neighborhoods. It is worth noting
that for nonlinear systems, δ-type gaps and γ-type gaps can
be used to characterize the set of all neighboring system
graphs within some radius [19], which defines a set of man-
ifolds. On the other hand, a conelike neighborhood simply
gathers all input-output pairs of a certain distance from the
center, which forms a manifold itself. The advantage of
focusing on input-output pairs instead of system graphs arises
in the case where only partial information about the graph
of a nonlinear system is available, say in the form of some
measured input-output data set, which may not be sufficient
for the purpose of computing the gap-distance, rendering
standard gap-type stability conditions inapplicable. On the
contrary, if the uncertainties are measured with respect to
the available input-output pairs, it is likely that the limited
measured data are sufficient to give a good approximation
of these uncertainties. To verify whether a partially known
perturbed system lies within a conelike neighborhood, it
suffices to check every available input-output pair.

IV. NETWORKED ROBUST STABILIZATION WITH
CASCADED NONLINEAR UNCERTAINTIES

A. Two-Port Networks as Communication Channels

The use of two-port networks as a model of communica-
tion channels is adopted from [9], [10]. Two-port networks
were first introduced and investigated in electrical circuits

(a) A Single Two-Port Network

(b) One-stage Two-Port Connection

Fig. 4: Two-Port Networks: an Illustration

theory [6]. The network N in Fig. 4a has two external ports,
with one port composed of v, w and the other of u, y, and
is called a two-port network. A two-port network N may
have various representations, out of which we choose the
transmission type to model a communication channel. Define
the transmission matrix T as

T =

[
T 11 T 12

T 21 T 22

]
and

[
v
w

]
= T

[
u
y

]
. (4)

When the communication channel is perfect, i.e., commu-
nication takes place without distortion or interference, the
transmission matrix is simply

T =

[
Im 0
0 Ip

]
.

If the bidirectional channel admits both distortions and
interferences, we can let the transmission matrix take the
form

T = I + ∆ =

[
Im + ∆÷ ∆−

∆+ Ip + ∆×

]
,

where I : H2 7→ H2 is the identity operator and

∆ =

[
∆÷ ∆−
∆+ ∆×

]
: H2 7→ H2

satisfies ‖∆‖ ≤ r < 1, which ensures that T is stably
invertible. The four-block matrix ∆ is called the uncertainty
quartet.

B. Graph Analysis on Cascaded Two-Port NCS

It is well known that graphs symbols can be defined for
finite-dimensional LTI systems [11]. For every LTI system
with transfer function P , it admits a right coprime factor-
ization P = NM−1 satisfying XM + Y N = I , where
M,N,X, Y ∈ RH∞. The graph symbol is defined as[

M
N

]
, whereby GP =

[
M
N

]
H2;

see [19, Proposition 1.33].
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Fig. 5: Equivalent Plant and Controller

As illustrated in Fig. 2, the LTI plant P = NM−1 and
LTI controller C = V U−1 communicate with each other
through cascaded two-port networks involving nonlinear
perturbations. In particular, one can characterize the input-
output pairs in the graph of P as[

u
y

]
=

[
M
N

]
x,

where x ∈ H2.
Consider the transmission type representation of the two-

port networks {Nk}lk=1. If the k-th stage of the network
admits a stable nonlinear uncertainty ∆k, then the transmis-
sion matrix is given as T k = I +∆k. Signals in Fig. 5 have
the following relations:[
uk
yk

]
=

 k∏
j=1

T k+1−j

[u
y

]
=

 k∏
j=1

(I + ∆k+1−j)

[u
y

]
,

[
vk
wk

]
=

 l∏
j=k+1

T−1
j

[v
w

]
=

 l∏
j=k+1

(I + ∆j)
−1

[v
w

]
.

If we view P together with {N j}kj=1 as an equivalent
plant P e

k with uncertainties {∆j}kj=1, then the graph of P e
k

is given by

GP e
k

=

 k∏
j=1

(I + ∆k+1−j)

GP . (5)

Similarly, if we view C together with {N j}lj=k+1 as an
equivalent controller Ce

k with uncertainties {∆j}lj=k+1, then
the graph of Ce

k is

G′Ce
k

=

 l∏
j=k+1

(I + ∆j)
−1

G′C . (6)

For convenience, we regard k = 0 as the situation when
P is isolated from the two-port networks and k = l when C
is isolated.

C. Robust Stability Condition

With the equivalent plant and controller representations
derived aforehand, next we extend the definition on the
stability of the two-port NCS in [10] to the nonlinear case.

As shown in Fig. 5, we denote the k-th input pair as Ik :=
[pk, qk]T , the k-th output pair as Ok := [uk, wk]T and the
set of all outputs as O := [u1, w1, u2, w2, . . . , ul, wl]

T . By
the feedback well-posedness assumption, the map from input
Ik to output O exists and we denote it as Ak : Ik ∈ H2 7→
O ∈ H2.

Definition 5. The two-port NCS in Fig. 5 is said to be
stable if the operator Ak is finite-gain stable for every
k = 0, 1, . . . , l.

The following proposition further simplifies the stability
condition.

Proposition 3. The two-port NCS is finite-gain stable if and
only if the equivalent closed-loop system [P e

k,C
e
k] is finite-

gain stable for every k = 0, 1, ..., l.

Proof. Necessity holds trivially. Below we show sufficiency.
Let [P e

k,C
e
k] be finite-gain stable, and thus F−1

P e
k ,C

e
k

is
stable. As ‖∆‖ < 1 by hypothesis, both I + ∆j and (I +
∆j)

−1 are stable. Hence the composite map of F−1
P e

k ,C
e
k

and
I +∆j or (I +∆j)

−1 is stable, which implies the stability
of Ak for all k = 0, 1, . . . l.

With the stability definition at hand, we present next the
main robust stability theorem involving nonlinear perturba-
tions in a two-port NCS.

In the following we assume that every closed-loop system
[P ,C] is well-posed and FP ,C is surjective. Hence from
Proposition 1, the stability of [P ,C] is equivalent to the
finite-gain stability of ΠGP �G′C . Let nominal LTI closed-loop
system [P,C] be stable.

Theorem 2. The two-port NCS is finite-gain stable for all
{∆k}lk=1 subject to ‖∆k‖ ≤ rk if and only if

l∑
k=1

arcsin rk < arcsin bP,C . (7)

From the above theorem, we know the stability margin
bP,C is the same as that in a standard closed-loop system
with “gap” uncertainties [11], [12], [21], hence the synthesis
problem of a two-port NCS can be solved by an H∞ opti-
mization. In addition, the synthesis is irrelevant to detailed
requirements of communication channels between the plant
and controller, such as the number of two-port connections
and how the uncertainty bounds are distributed among all the
channels, which provide more flexibility on the selection of
the communication channels.

Before proceeding to the proof of Theorem 2, we introduce
a useful lemma.

Lemma 1. Given r1, r2 ∈ (0, 1) and a closed conelike
neighborhood M⊂ H2, it holds that

S(S(M, r1), r2) ⊂ S(M, sin(arcsin r1 + arcsin r2)).



Proof. Let M1 = S(M, r1). Let m ∈ M, m1 ∈ M1 and
m2 ∈ S(S(M, r1), r2). Then we have

θ(m2,m) ≤ θ(m2,m1) + θ(m1,m). (8)

Particularly, take m̄1 ∈ arg minm1∈M1
θ(m2,m1). Then

inequality (8) implies that

θ(m2,m) ≤ θ(m2, m̄1) + θ(m̄1,m)

≤ arcsin r2 + θ(m̄1,m).

Taking infimum at the both sides brings about that

inf
m∈M

θ(m2,m) ≤ arcsin r2 + inf
m∈M

θ(m̄1,m)

≤ arcsin r1 + arcsin r2.

Hence, m2 ∈ S(M, sin(arcsin r1 + arcsin r2)), which
completes the proof.

The above lemma characterizes the inclusion relations of
conelike sets. The proof of Theorem 2 is given next.

Proof of Theorem 2. The necessity follows from the “arc-
sin” theorem in [10] for LTI systems by noting that that the
linear two-port neighborhood N (GP , r) is contained in the
conelike set S(GP , r).

Next we prove the sufficiency. Assume we are at the k-th
stage of equivalent closed-loop system as shown in Fig. 5.
Let M = GP and Me

j = GP e
j

, j = 1, 2, . . . , l. Then

Me
j = TMe

j−1 = (I + ∆j)Me
j−1

with ‖∆j‖ ≤ rj . Let n ∈ Me
j \ {0}, there exists an m1 ∈

Me
j−1 such that n = (I + ∆j)m1. Hence we have

inf
06=m∈Me

j−1

‖n−m‖2
‖m‖2

≤ ‖∆jm1‖2
‖m1‖2

≤ ‖∆j‖ ≤ rj .

As a result, Me
j ⊂ S(Me

j−1, rj), j = 2, 3, . . . , k.
From Lemma 1 and by induction, we have

Me
k ⊂ S(Me

k−1, rk) ⊂ · · · ⊂ S(M, sin(

k∑
j=1

arcsin rj)).

Likewise, for the controller part, let N = G′C and N e
j =

G′Ce
j
. Then

N e
j−1 = T−1N e

j = (I + ∆j)
−1N e

j

with ‖∆j‖ ≤ rj . Given any n ∈ N e
j−1 \ {0}, there exists an

m1 ∈ N e
j such that n = (I + ∆j)

−1m1. Hence we have

inf
06=m∈N e

j

‖n−m‖2
‖n‖2

≤ ‖∆jn‖2
‖n‖2

≤ ‖∆j‖ ≤ rj .

By Property 3, we have

N e
j−1 ⊂ S̃(N e

j , rj) = S(N e
j , rj), j = k + 1, . . . , l.

Hence by the same arguments as above, we have

N e
k ⊂ S(N , sin(

l∑
j=k+1

arcsin rj)).

Therefore, from the stability condition (7) and Theorem
1, we know [P e

k,C
e
k] is stable for every k = 0, 1, ..., l.

Combining this with Proposition 3, we obtain the finite-gain
stability of the two-port NCS.

D. Scalability of the Stability Condition

When we are faced with a large-scale network with many
relays and connections, a particular communication link
between a plant and a controller may involve many cascaded
two-port channels. As the topology of an NCS changes, we
need to confirm whether the new two-port communication
link is “healthy” enough to keep the NCS robustly stable.
Revaluating the whole network from the beginning may be
impractical due to the limitations on computational resources
or responding time. In the following, we show this problem
can be solved in the two-port NCS by defining the stability
residue properly.

For a two-port NCS with an LTI plant P and LTI con-
troller C under nonlinear perturbations on its communication
channels, define its stability residue as

RP,C(r1, . . . , rl) := arcsin bP,C −
l∑

k=1

arcsin rk, (9)

which is subsequently written as RP,C without ambiguity.
It follows from Theorem 2 that the two-port NCS is stable
for all stable uncertainties {∆k}lk=1 subject to ‖∆k‖ ≤ rk
if and only if RP,C(r1, . . . , rl) > 0. It is no doubt that the
larger RP,C is, the more robustly stable the NCS will be.

When some new two-port connections are added or some
old ones are modified, checking whether the resulting NCS
remains robustly stable becomes necessary. For this purpose,
one only needs to update the stability residue and check its
feasibility.
• When a new connection T new = I + ∆new satisfying
‖∆new‖ ≤ rnew is added, let

Rnew
P,C ← RP,C − arcsin rnew.

• When an old connection T old = I+∆old with ‖∆old‖ ≤
rold is changed to T new = I+∆new satisfying ‖∆new‖ ≤
rnew, let

Rnew
P,C ← RP,C − arcsin rnew + arcsin rold.

It follows from Theorem 2 and Equation (9) that the new
NCS will be robustly stable if and only if Rnew

P,C > 0 after
sequentially updating RP,C with respect to all the changes.
In other words, the stability condition given in Theorem 1 is
scalable as the network size is enlarged.

V. CONCLUSION

We investigate networked robust stabilization problem
concerning LTI systems perturbed by nonlinear uncertainties.
A special conelike uncertainty set is studied, which bridges
the techniques of handling linear subspaces to those of han-
dling nonlinear uncertainties in cascaded two-port networks.
A necessary and sufficient stability condition is given in the
form of an “arcsin” inequality, which is scalable when the
size of the network is enlarged. As far as control synthesis
is concerned, the problem can be solved through an H∞
optimization of the closed-loop stability margin.
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Fig. 6: Illustration for Proof of Property 3

APPENDIX I
PROOFS OF PROPERTIES 1, 2 AND 3

Proof. From the closedness of the conelike setM⊂ H2, we
can replace “inf” with “min” in the definition of S̃(M, r)
and S(M, r). Next we prove the properties in turns.

For Property 1, it suffices to show for n ∈ S(M, r), it
holds αn ∈ S(M, r) for every α ∈ R. Using the definition,
we have

inf
06=m∈M

‖αn−m‖
‖m‖

= inf
06=αm∈M

‖αn− αm‖
‖αm‖

≤ r,

which establishes Property 1.
For Property 2, let n ∈ S(M, r). It follows that

m̄ ∈ arg min
m∈M

‖n−m‖2
‖m‖2

satisfies n − m̄ ⊥ n, whereby sin θ(m̄, n) = ‖n−m̄‖2
‖m̄‖2 ≤ r.

Consequently, S(M, r) ⊂ {n ∈ H2 : minm∈M θ(m,n) ≤
arcsin r}∪{0}. On the other hand, let n belongs to the latter
set. From Property 1, we can find m̄ ∈ S(M, r) such that
θ(m̄, n) = arcsin r and n− m̄ ⊥ n, which implies that

‖n− m̄‖2
‖m̄‖2

= sin θ(m̄, n) ≤ r.

This completes the proof for Property 2.
For Property 3, given n ∈ S̃(M, r), consider

m̄ ∈ arg min
m∈M

‖n−m‖2
‖n‖2

.

It follows that n− m̄ ⊥ m̄. Denote the acute angle between
n and m̄ as θ0(≤ arcsin r). In the hyperplane determined by
m̄ and n, as shown in Fig. 6, we can extend m̄ to m̄1 ∈M
along m̄ such that n − m̄1 ⊥ n, which is guaranteed by
Property 1. This implies that

min
06=m∈M

‖n−m‖2
‖m‖2

≤ ‖n− m̄1‖2
‖m̄1‖2

= sin θ0 ≤ r.

Consequently, S̃(M, r) ⊂ S(M, r).
On the other hand, given n ∈ S(M, r) and consider

m̄ ∈ arg min
06=m∈M

‖n−m‖2
‖m‖2

,

one can argue likewise that S(M, r) ⊂ S̃(M, r), which
completes the proof.

APPENDIX II
PROOF OF PROPOSITION 2

Proof. We prove both parts by contradiction. The proposition
holds trivially when [P,C] is unstable, thus it suffices to
prove the case when [P,C] is stable. For brevity, define
M := GP , N := G′C , M1 := GP1

and N1 := G′C1
.

Sufficiency:
Let GP1 ⊂ S(GP , rp), G′C1

⊂ S(G′C , rc) and [P 1,C1] be
unstable. It follows that ΠM1�N1

is unbounded. That is to
say, there exists a sequence {ωk}∞k=1 ⊂ H2 \ {0}, such that:
• ‖ωk‖2 ↗∞;

• lim
k→∞

‖ΠM1�N1
ωk‖2

‖ωk‖2
=∞.

By the surjectivity of FP1,C1 , we know that

ωk = ΠM1�N1
ωk + ΠN1�M1

ωk =: mk + nk.

Hence, αk := ‖ωk‖2
‖mk‖2 → 0 as k →∞. From Definition 3, we

know mk, nk ∈ H2 \ {0}, and thus the angle between them
can be computed as

θ(mk, nk) = arccos

∣∣∣∣ 〈mk, nk〉
‖mk‖2‖nk‖2

∣∣∣∣ .
Consequently,

cos θ(mk, nk) =

∣∣∣∣ 〈mk, nk〉
‖mk‖2‖nk‖2

∣∣∣∣
≥
∣∣∣∣ 〈mk, nk〉
‖mk‖2(‖mk‖2 + ‖ωk‖2)

∣∣∣∣
=

1

1 + αk

(
1− |〈mk, ωk〉|

‖mk‖22

)
≥ 1

1 + αk

(
1− ‖mk‖2‖ωk‖2

‖mk‖22

)
=

1− αk
1 + αk

→ 1 as k →∞.

Hence θ(mk, nk)→ 0. Since GP1 and G′C1
are closed sets,

it follows that GP1 ∩ G′C1
6= {0} and therefore S(M, rp) ∩

S(N , rc) 6= {0}, which leads to a contradiction.
Necessity:
Assume there exists a nonzero u satisfying u ∈

S(M, rp)∩S(N , rc). From Property 1 we know {αu : α ∈
R} ⊂ S(M, rp)∩S(N , rc). Construct two scalar sequences
{αk}∞k=1 and {βk}∞k=1 ⊂ R such that
• |αk|, |βk| and |αk

βk
| ↗ ∞;

• βk = αt + (βl − αl) if and only if k = t = l.
Furthermore, construct two graphs M1 := GP1 ⊂

S(M, rp), N1 := G′C1
⊂ S(N , rc), such that {αku} ⊂ M1,

{(βk − αk)u} ⊂ N1 and FP1,C1
is surjective. Hence, for

any ωk = βku ∈ H2, we have the decomposition

ωk = βku = αku+ (βk − αk)u := mk + nk.

Moreover,

lim
k→∞

‖mk‖2
‖ωk‖2

= lim
k→∞

|αk
βk
| =∞.

It follows directly that ΠM1�N1
is unbounded, i.e. [P 1,C1]

is unstable, which leads to a contradiction.
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