Loading [a11y]/accessibility-menu.js
Estimating the distribution of unlabeled, correlated point sets | IEEE Conference Publication | IEEE Xplore

Estimating the distribution of unlabeled, correlated point sets


Abstract:

In this paper we introduce the a fortiori expectation-maximization (AFEM) algorithm for computing the parameters of a distribution from which unlabeled, correlated point ...Show More

Abstract:

In this paper we introduce the a fortiori expectation-maximization (AFEM) algorithm for computing the parameters of a distribution from which unlabeled, correlated point sets are presumed to be generated. Each unlabeled point is assumed to correspond to a target with independent probability of appearance but correlated positions. We propose replacing the expectation phase of the algorithm with a Kalman filter modified within a Bayesian framework to account for the unknown point labels which manifest as uncertain measurement matrices. We also propose a mechanism to reorder the measurements in order to improve parameter estimates. In addition, we use a state-of-the-art Markov chain Monte Carlo sampler to efficiently sample measurement matrices. In the process, we indirectly propose a constrained k-means clustering algorithm. Simulations verify the utility of AFEM against a traditional expectation-maximization algorithm in a variety of scenarios.
Date of Conference: 12-15 December 2017
Date Added to IEEE Xplore: 22 January 2018
ISBN Information:
Conference Location: Melbourne, VIC, Australia

Contact IEEE to Subscribe

References

References is not available for this document.