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Estimating the Region of Attraction Using Polynomial Optimization: a

Converse Lyapunov Result

Hesameddin Mohammadi, Matthew M. Peet

Abstract— In this paper, we propose an iterative method for
using SOS programming to estimate the region of attraction of
a polynomial vector field, the conjectured convergence of which
necessitates the existence of polynomial Lyapunov functions
whose sublevel sets approximate the true region of attraction
arbitrarily well. The main technical result of the paper is the
proof of existence of such a Lyapunov function. Specifically, we
use the Hausdorff distance metric to analyze convergence and in
the main theorem demonstrate that the existence of an n-times
continuously differentiable maximal Lyapunov function implies
that for any ε > 0, there exists a polynomial Lyapunov function
and associated sub-level set which together prove stability of a
set which is within ε Hausdorff distance of the true region
of attraction. The proposed iterative method and probably
convergence is illustrated with a numerical example.

I. INTRODUCTION

In this paper we consider the problem of estimating

the region of attraction of systems of nonlinear Ordinary

Differential Equations (ODE) of the form

ẋ = f (x), x(0) = x0, (1)

where f :Rn →R
n is the vector field and x0 ∈R

n is the initial

condition. If we define g(x, t) as the associated solution map

and suppose f (0) = 0, then the Region of Attraction (ROA)

is defined as

S f := {x ∈ R
n : lim

t→∞
g(x, t) = 0}. (2)

Accurate estimates of the ROA are necessary for such

problems as, e.g. flight control verification and validation [1]

and determining the range of concentration over which a

biological system takes on a certain set of steady state

concentrations corresponding to a preferred phenotype [2].

Existing approaches to approximating the ROA can be

divided into Lyapunov and non-Lyapunov based categories.

Among the non-Lyapunov based approaches, we find the use

of occupation measures to outer-approximate the ROA of

polynomial vector fields as in [3]. Unfortunately however,

these outer-approximations are not themselves stable and

furthermore the method is restricted to certain classes of

vector field. Some non-Lyapunov based approaches exist

which, although not categorized as Lyapunov, still make use

of Lyapunov based arguments; examples include a trajectory

reversing method by backward integration of the vector

field for a number of stable initial conditions as in [4] and

advecting a stable sub-level set of a polynomial backward in

time as introduced in [5]. However, both these approaches

require an initial stable set which is typically obtained using

Lyapunov based methods.

By constrast, almost all Lyapunov-based methods for

estimating the ROA are based on the search for a Lyapunov

function V (x) and for a positive scaler b such that V̇ (x)
is negative over the sub-level set C := {x : V (x) ≤ b} [6].

Given such V and b, it can be shown that the connected

component of C containing the equilibrium is an inner-

approximation to the ROA. Neglecting accurate estimates of

the ROA momentarily, if we are interested in establishing the

existence of a Lyapunov function which is decreasing over

some bounded set, then the problem is convex and for a

polynomial vector field, there are a number of recent results

which use convex optimization-based approaches to search

for a polynomial Lyapunov function. See, e.g. [7] and [8]

or the Sum-of-Squares based open source toolboxes for con-

structing polynomial Lyapunov functions in SOSTOOLS [9]

and Yalmip [10]. Alternatives to the SOS approach can be

found in [11].

If we return to the problem of estimating the region of

attraction, however, then the problem of searching for a

polynomial LF with maximal sublevel sets is a bilinear Sum

of Squares (SOS) program as shown in. e.g. [12] and [13]. To

deal with this bilinearity, researchers have turned to Genetic

Algorithms and fuzzy modeling, examples of which can be

found in [14] and [15], respectively. Extensions to nonlinear

systems with uncertainties can also be found in [16] and [17].

One approach to overcoming this bilinearity, as proposed

in Section VI, is to increase the diameter of the region on

which the Lyapunov function is decreasing. As the region ap-

proaches the true ROA, the problem approaches infeasibility.

We have conjectured that this asymptotic infeasibility is then

helpful, in that it implicitly constrains the polynomial Lya-

punov function to approximate a maximal Lyapunov function

and hence approximate its sublevel sets and hence provide

asymptotically accurate estimates of the region of attraction.

However, this conjecture is purely speculative and, in fact, is

based on the assumption that polynomial Lyapunov function

can estimate the domain of attraction arbitrarily well. In this

paper, we examine the assumption that polynomial Lyapunov

functions can estimate the domain of attraction arbitrarily

well and show that, in fact, polynomial Lyapunov functions

can estimate the ROA as well as continuously differentiable

maximal Lyapunov functions.

Results on the existence of Lyapunov functions estab-

lishing stability of ODEs and estimates of the ROA are

classified as converse Lyapunov theorems [18]. Among the

class of converse Lyapunov results, there are two sub-

types we will use in this paper and are discussed in Sec-

tion IV. The first , Massera-type [18] establishes existence
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of smooth Lyapunov functions on bounded subsets of the

ROA with quantitative upper and lower bounds. The second,

maximal-type, establish Lyapunov functions which approach

infinity at the boundary of the ROA and whose level sets

form asymptotically accurate inner-approximations to the

ROA [19]. However, despite extensive literature on converse

Lyapunov theory, there are very few results on the existence

of polynomial Lyapunov functions and in particular, it has

never been shown that for any desired accuracy ε > 0,

there exists a polynomial LF for which a sub-level set is

within the Hausdorff ε-distance of the ROA. Furthermore,

there is reason to doubt the existence of such polynomial

Lyapunov functions. For instance, in [20] we find an example

of a globally asymptotically stable polynomial system for

which there exists no polynomial LF proving the global

stability of the system. These counter examples motivate us

to investigate the conditions under which the sub-level sets

of polynomial LF can accurately approximate the ROA of

nonlinear systems.

The goal of this paper, then, is to resolve the problem of

whether the sub-level sets of polynomial Lyapunov functions

can provide arbitrarily accurate inner-approximations to the

ROA. For this purpose, we will combine the approximation

results on the existence of polynomial LF from [21] and

the idea of maximal LF introduced in [19] to propose

sufficient conditions that guarantee the sub-level sets of

polynomial LF provide inner-approximations to the ROA

arbitrarily well in the sense of Hausdorff distance. The first

of these results, as shown in [21], is that polynomials can

approximate sufficiently smooth functions with a point-wise

weight on the error given by 1/xT x in the Sobolov space

and as an important implication, for any sufficiently smooth

LF proving exponential decay on a bounded region, there

exists a polynomial LF on the same region which proves

the same exponential decay over a neighborhood U of the

equilibrium. The second result, as stated in [19], is that under

mild conditions on the vector field, there exists a maximal

LF V : S → R satisfying

lim
x→y

V (x) = ∞, ∀y ∈ ∂S f ,

where ∂S denotes the boundary of the region of attraction

S f given in Eq. (2).

The main result of this paper, then, and as stated in

Theorem 4, is that if S f is bounded and there exists a

sufficiently smooth maximal LF V (x), which is defined over

S f and proves exponential decay over each of the sub-level

sets

{x : V (x)≤ α}, α ∈ [0,+∞),

then for any desired accuracy ε > 0, there exists a polynomial

LF Pε(x) with a sub-level set {x : Pε(x) ≤ a} for which the

connected component containing the equilibrium, denoted by

Dε satisfies

1) H(Dε ,cl(S f )≤ ε ,

2) Pε proves exponential decay over Dε ,

where cl(S f ) is the closure of S f and H(A,B) denotes the

Hausdorff distance between the sets A and B.

The paper is organized as follows. Notation is introduced

in Sec. II. A few basic definitions and preliminary lemmas

are presented in Sec. III. The mathematical formulation of the

problem and corresponding theorems and assumptions are

stated in Sec. IV. The main result of the paper is presented

and proved in Sec. V. We give our proposed method for

estimating the ROA and apply it to a numerical example in

Sec. VI. Finally, we conclude in Sec. VII.

II. NOTATION

The set of n-tuples of nonnegative natural numbers is

denoted by N
n. Let R+ and R

− be the sets of positive and

negative real numbers, respectively. We denote the closed

ball of radius r ∈ R
+ centered at c ∈ R

n as Br(c) := {x ∈
R

n : ‖x− c‖2 ≤ r} with the unit ball centered at the origin

B := B1(0). For any subset, D, of a normed space, we use Do

to denote the interior of D and ∂D to denote the boundary

of D and cl(D) := D∪∂D to denote the closure of D.

For operators gi : X → X , we denote the composition

Πi gi := g1 o . . .o gm. For any suitably differentiable function

f : Rn →R
n and α ∈N

n, we adopt the multi-index differen-

tial notation

Dα f (x) :=
∂ α

∂xα
f (x) =

n

∏
i=1

∂ αi

∂x
αi
i

f (x),

where, ∂ 0/∂x0
i f (x) := f . The gradient operator then is given

by

∇ :=







D(1,0,...,0)

...

D(0,...,0,1)






.

For any k ∈ N and Ω ⊂ R
n, let Ck

1(Ω) be the set of all

functions f : Ω → R
n such that Dα f (x) is continuous for

any α with ||α||1 := ∑n
j=1 α j ≤ k. Let Zn := {α ∈ N

n|αi ∈
{0,1}, i = 1, . . . ,n}.

Finally, for any f : D → R and a ∈ R, we use L( f ,a) :=
{x ∈ D| f (x)≤ a} to denote the a− sub-level set of f .

III. BASIC SET NORMS AND OPERATIONS

The technical contribution of this paper is to show that

polynomial Lyapunov functions can be used to estimate the

Region of Attraction arbitrarily well for suitably differential

vector fields. This existence result requires approximation not

just of the Lyapunov function and its derivatives, but the sub-

level sets of the Lyapunov function as well. For this reason,

we require a distance metric on sets for which we define

convergence. The set distance we use is the Hausdorff metric

which, for any two compact sets D1,D2 ⊂ R
n, is defined as

H(D1,D2) := max{ζ (D1,D2),ζ (D2,D1)},

where

ζ (D1,D2) := max
x∈D1

min
y∈D2

||x− y||.

Intuitively ζ (D1,D2) is the farthest distance of any point

in D1 from the set D2. The Hausdorff metric, then is the

farthest distance from any point in either set to some point

in the other set. Of course, if D1 is a subset of D2, then



ζ (D1,D2) = 0 and in this case we would have H(D1,D2) =
ζ (D2,D1).

In the following lemma, we see that sequential subsets

satisfy something akin to the triangle inequality in Hausdorff

metric.

Lemma 1: Let X ,Y and Z be compact subsets of Rn such

that X ⊂ Y ⊂ Z. Then,

H(X ,Z)≥ max{H(X ,Y ),H(Y,Z)}.
Proof: Since X ⊂ Y ⊂ Z, we have

H(X ,Y ) = ζ (Y,X) : = max
y∈Y

min
x∈X

||x− y||

≤ max
z∈Z

min
x∈X

||x− z||

= H(X ,Z).

Therefore, H(X ,Y ) ≤ H(X ,Z). The proof of H(Y,Z) ≤
H(X ,Z) is similar.

IV. DEFINITIONS, ASSUMPTIONS, AND CONVERSE

LYAPUNOV THEORY

In this paper, we consider nonlinear differential equations

of the form

ẋ(t) = f (x(t)), x(0) = x0, t ∈ [0,∞), (3)

where f : Rn → R
n and f (0) = 0. For simplicity, in the

following we will assume that the solution map for Eq. (3)

is well defined. That is, for any x0 ∈ R
n, there exists a

unique function g(x, t) such that ∂tg(x, t) = f (g(x, t)) and

g(x,0) = x0.

Definition 1: We say a set U ⊂R
n is asymptotically stable

for Eq. (3) if

• U contains a neighborhood of the origin.

• For any x ∈ U , g(x, t) ∈ U for all t ≥ 0 and

limt→∞ g(x, t) = 0,
Definition 2: We say that W ⊂ R

n is an exponentially

stable set for Eq. (3) if there exist µ > 0, δ > 0 such that

for any x ∈W ,

||g(x, t)|| ≤ µ ||x||exp(−δ t).
The Region of Attraction of Eq. (3) is defined as follows

Definition 3: The Region of Attraction (ROA) of the origin

for Eq. (3) is the asymptotically stable set S such that for any

asymptotically stable set U , U is contained in S. That is, S

is the union of all asymptotically stable sets, S = ∪Uis ASU .

For convenience, we will henceforth denote the ROA for f

as S f .

Note that ROA is an open set.

In this paper, we assume that S f exists and is bounded.

Furthermore, without loss of generality, we assume S f is

contained in the unit ball - i.e. S f ⊂ B.

Assumption 1: S f exists and S f ⊂ B.

Lyapunov Theorem

Theorem 1: Let V be a continuously differentiable func-

tion, a,β ,γ,δ > 0, and D be the connected component of

L(V,a). Further suppose

β ||x||2 ≤V (x)≤ γ||x||2,

∇V (x)T f (x) ≤−δ ||x||2,

for all x∈D. Then D is an exponentially stable set for Eq. (3),

as in Definition 2.

Converse Lyapunov Results There are two converse Lya-

punov results which are of particular interest to this paper.

The first, Massera-type, result states that if Dα f is con-

tinuous and f is exponentially stable on D, then there

exists a Lyapunov function V such that DαV is continuous.

Furthermore, there exists β ,γ,δ > 0 such that

β‖x‖2 ≤V (x)≤ γ‖x‖2, ∇V (x)T f (x) ≤ γ‖x‖2

Theorem 2: Consider ODE (3) and suppose f is k−times

continuously differentiable, for some k ∈ N. Suppose there

exists constants λ , µ , δ , r > 0 such that

||g(x, t)|| ≤ µ ||x||exp(δ t),∀t ≥ 0, ∀x ∈ Br(0), (4)

||∇ f || ≤ λ , ∀x ∈ Bµr(0). (5)

Then there exist a k−times continuously differentiable func-

tion W : Rn →R and constants α,β ,γ,µ > 0 such that

α||x||2 ≤W (x)≤ β ||x||2, ∀x ∈ Br(0), (6)

∇W (x)T f (x) ≤−γ||x||2, ∀x ∈ Br(0). (7)

The second is a maximal Lyapunov function result which

says that there exists some Lyapunov function V and a

positive definite function φ such ∇V (x)T f = −φ(x) for all

x ∈ S f . Furthermore, the Lyapunov function is maximal in

the sense that for any y ∈ ∂S, lim
x→y

V (x) = +∞.

Theorem 3: Consider ODE (3) and suppose f is Lipschitz

continuous on S f . Then there exist a continuous function

V : S f → R
+ ∪{0} and a positive definite function φ such

that

V (0) = 0, V (x)> 0, ∀x ∈ S f \{0},

V̇ (x) =−φ(x), ∀x ∈ S f .

lim
x→y

V (x) = ∞, ∀x ∈ S f , ∀y ∈ ∂S f
.

A maximal Lyapunov function, V , has the advantage that

for any desired accuracy, ε > 0, there exists a sublevel set

L(V,a) ⊂ S f of V with H(S f ,L(V,a)) ≤ ε in the Haussdorf

metric.

Under Assumption 1, from [19] we can conclude that if

f is continuously differentiable, then there exists a continu-

ously differentiable maximal Lyapunov function V : S f →R
+

which decreases over the trajectories of the system and

satisfies

lim
x→y

V (x) = +∞, ∀ y ∈ ∂S.

Furthermore V (x) proves exponential decay over each of the

sub-level sets of V (x) and these sublevel sets can approxi-

mate S f as accurately as desired.

In the following assumption, we combine the maximal and

quadratic results to simply assume that for any ε > 0, there

exists a quadratically upper and lower bounded Lyapunov

function, with quadratically upper bounded derivative and

which is maximal. This slightly strong assumption can be

relaxed at the cost of increasing the complexity of the proof.

Assumption 2: Let S be the ROA of Eq. (3). There exists

a function V : S → R s.t.



1) DαV ∈C2
1(S f ), ∀ α ∈ Zn,

2) lim
x→y

V (x) = +∞, ∀ y ∈ ∂S f ,

3) for all y ∈ S f :

a) L(V,V (y)) is compact.

b) There exist βy,γy,δy ∈ R
+ s.t.

βy||x||
2 ≤V (x)≤ γy||x||

2, ∀ x ∈ L(V,V (y)),

∇V (x)T f (x)≤−δy||x||
2, ∀ x ∈ L(V,V (y)).

Note that these assumptions are NOT mutually exclusive, as

the upper and lower bounds only apply on a strict subset of

the ROA. Furthermore, as indicated in the following lemma,

these assumptions guarantee the existence of a decreasing

Lyapunov function V whose sub-level sets can approximate

the ROA, S f for any desired level of accuracy in the

Haussdorf metric.

Lemma 2: Suppose S f is the ROA of Eq. (3) as per

Definition 3 and let V : S f → R be any function satisfying

the conditions in Assumptions 1 and 2. For any ε > 0, there

exists some r > 0 such that

H(cl(S f ),L(V,r))≤ ε.

Proof: By definition, 0 ∈ int(S f ). Now let Sε be any

compact set such that 0∈ Sε and Sε ⊂ S f with H(Sε ,cl(S))≤
ε . Define

x∗ := argmax
x∈Sε

V (x),

and r∗ := V (x∗). By the definition of x∗, Sε ⊂ L(V,r∗) ⊂ S.

Therefore, if we let

X := Sε , Y := L(V,r∗), Z := cl(S),

then X ⊂ Y ⊂ Z and by Lemma 1,

H(cl(S),L(V,r∗)) = H(Z,Y )≤ H(X ,Z) = H(Sε ,cl(S))≤ ε.

In fact, under Assumptions 1 and 2, a stronger notion

of stability over the ROA can be verified. That is, let S f

be the ROA of Eq. (3) and V : S → R be a function for

which the conditions in Assumptions 1 and 2 are satisfied.

Then Theorem 1 implies that for any y ∈ S, L(V,V (y)) is

an exponentially stable set for Eq. (3). We also notice that

a straightforward implication of the exponential stability of

the sets L(V,V (y)) is that V (0) = 0, V (x) > 0, ∀x ∈ S\{0}
and the sets L(V,V (y)) are connected.

V. THE MAIN RESULT

We start this section by recalling the goal of the paper

that is to determine conditions that guarantee the sub-level

sets of polynomial LFs can alone inner-approximate the ROA

up to any desired accuracy. The main result shows that this

guaranty can be provided under Assumptions 1 and 2.

Before presenting the main result, we give a slight modifi-

cation of a result in [21], wherein it was shown that polyno-

mial Lyapunov functions could approximate twice continu-

ously differential Lyapunov functions with a quadratic upper

bound on the error.

Lemma 3: Suppose S f is the ROA of Eq. (3) as in

Definition 3 and V : S f → R satisfies the conditions in

Assumptions 1 and 2. Then for any ε > 0 and c > 0, there

exists a polynomial Lyapunov function P and positive scalers

β ,γ and δ s.t.

β ||x||2 ≤ P(x)≤ γ||x||2,

∇P(x)T f (x)≤−δ ||x||2,

|P(x)−V(x)| ≤ ε,

for all x ∈ L(V,c).
See the Appendix for a Proof.

Theorem 4: Let S f be the ROA of Eq. (3) as in Def-

inition 3 and V : S f → R be any function for which the

conditions in Assumptions 1 and 2 are satisfied. For any

ε > 0, there exists a polynomial Lyapunov Function P and

a sub-level set L(P,a) such that if we define D to be the

connected component of L(P,a) containing the origin, then

1) H(D,cl(S f ))≤ ε ,

2) There exist scalers β ,γ,δ ∈ R
+ such that

β ||x||2 ≤ P(x)≤ γ||x||2,

∇P(x)T f (x) ≤−δ ||x||2,

for all x ∈ D.

This theorem states that P can be used to prove stability on a

set D which is arbitrarily close to S f in the Haussdorf norm.

Proof: In this proof, we combine the fact that the sub-

level sets of a maximal LF can inner-approximate the ROA

as in Lemma 2, and the fact that any sufficiently smooth

maximal Lyapunov function V can be approximated by

polynomial LF on each of the sub-level sets L(V,a), ∀a > 0

as in Lemma 3, to show that under Assumptions 1 and 2,

the connected components of the sub-level sets of polynomial

LFs can alone inner-approximate the ROA, arbitrarily well.

Let V : S f → R satisfy the conditions in Assumption 2.

From Lemma 2, we know that there exists a scalar r1 > 0

such that

H(L(V,r1),cl(S f ))≤ ε.

Now, let r2 > r1. By Lemma 3, there exist scalars β ,γ , δ and

a polynomial Lyapunov function P(x) approximating V (x)
over the compact set L(V,r2) such that

|P(x)−V(x)| ≤
r2 − r1

9
, ∀x ∈ L(V,r2), (8)

β ||x||2 ≤ P(x)≤ γ||x||2, ∀x ∈ L(V,r2), (9)

∇P(x)T f (x) ≤−δ ||x||2, ∀x ∈ L(V,r2). (10)

Now, suppose we can establish the existence of a sub-level

set L(P,a) with connected component D where D is compact

and

L(V,r1)⊂ D ⊂ L(V,r2). (11)

Then, since L(V,r2)⊂ S and H(L(V,r1),cl(S))≤ ε , if we let

X := L(V,r2), Y := D and Z := cl(S), we have X ⊂ Y ⊂ Z.



Therefore, Lemma 1 implies that H(D,cl(S))≤ ε . Moreover,

since D ⊂ L(V,r2), Eq. (9) and (10) imply that

β ||x||2 ≤ P(x)≤ γ||x||2, ∀x ∈ D, (12)

∇P(x)T f (x) ≤−δ ||x||2, ∀x ∈ D, (13)

as desired. The remainder of the proof is dedicated to

establishing the existence of such a sub-level set L(P,a) and

connected component D.

First, let

rm :=
r2 − r1

3
+ r1,

xm := argmin
x∈∂L(V,rm)

P(x),

a := P(xm),

E := L(V,r2)∩L(P,a),

Note that r1 < rm < r2, and the existence of xm follows from

the fact that L(V,rm) is compact, as in Assumption 2, and P

is continuous.

If we define D as the connected component of L(P,a) such

that 0 ∈ D, then we will show that E = D and D satisfies

Eq. (11) which completes the proof. In order to do so, first

note that E ⊂ L(V,r2) holds by definition. Next, we will in

turn show that:

1) E is connected and 0 ∈ E ,

2) L(V,r1)⊂ E ,

3) E = D.

Proof of Part 1: In order to show that E is connected and

0 ∈ E , we will show that E is an exponentially stable set

for Eq. (3), as in Definition 2. Note that any exponentially

stable set is connected and contains 0. Under Assumption 2,

L(V,r2) is an exponentially stable set. Now, since E ⊂
L(V,r2) by definition, there exist µ > 0, δ > 0 such that

||φ(x, t)|| ≤ µ ||x||e−δ t , ∀t ≥ 0,

lim
t→∞

φ(x, t) = 0,

for any x ∈ E ⊂ L(V,r2). Therefore, in order to prove the

exponential stability of E , we only need to show that

φ(x, t) ∈ E, ∀x ∈ E, ∀t ≥ 0. (14)

Again, we use the exponential stability of L(V,r2) and the

fact that E ⊂ L(V,r2) to write:

φ(x, t) ∈ L(V,r2), ∀t ≥ 0, ∀x ∈ E. (15)

Now, based on Eq. (10), we have

∇P(x)T f (x) < 0, ∀x ∈ L(V,r2)\0. (16)

Therefore, we can conclude from Eq. (15) and (16) that

P(φ(x, t))

= P(x)+

∫ t

0
∇P(φ(x,τ))T f (φ(x,τ))dτ < P(x),

for any x ∈ L(V,r2)\0. Hence, since E ⊂ L(P,a), we have

P(φ(x, t))≤ P(x)≤ a, ∀t ≥ 0, ∀x ∈ E. (17)

Therefore,

φ(x, t) ∈ L(P,a), ∀t ≥ 0, ∀x ∈ E. (18)

Now, since E = L(V,r2)∩L(P,a), Eq. (14) follows from

Eq. (15) and (18), as desired.

Proof of Part 2: We will use Lemma 4 in the Appendix

to show that L(V,r1)⊂ E. Based on Assumption 2 and Part 1

of the proof, the sets L(V,r1) and E both contain 0 and are

compact and connected. In order to apply Lemma 4, we only

need to show that

1) L(V,r1)∩E 6= /0,
2) ∂L(V,r1)∩∂E = /0,
3) E 6⊂ int(L(V,r1)).

First, It is immediate that 0 ∈ L(V,r1)∩E and hence

E ∩L(V,r1)) 6= /0.

Second, by contradiction, we will show that ∂L(V,r1)∩
∂E = /0. Suppose ∂L(V,r1)∩∂E 6= /0. Therefore,

∃ x ∈ ∂L(V,r1)∩∂E.

Now, since E = L(V,r2)∩L(P,a), we have

∂E ⊂ ∂L(V,r2)∪∂L(P,a).

Therefore, at least one of the following should hold:

P(x) = a and V (x) = r1, (19)

or

V (x) = rm and V (x) = r1. (20)

Assertion (20) is impossible because r1 < rm. Therefore,

Assertion (19) holds. However, since {xm,x} ⊂ L(V,r1) ⊂
L(V,r2), Eq. (8) implies that

|P(xm)−V(xm)| ≤ (r2 − r1)/9, (21)

|P(x)−V(x)| ≤ (r2 − r1)/9. (22)

Hence, since rm = r2−r1
3

+ r1, we use Assertion (19) and

Eq. (22) to write

|a− r1| ≤ (rm − r1)/3. (23)

and substitute P(xm) = a and V (xm) = rm in Assertion (21)

to write

|a− rm| ≤ (rm − r1)/3. (24)

However, Eq. (23) and (24) by triangle inequality imply that

|rm − r1| ≤ 2|rm − r1|/3,

which is a contradiction, because r1 6= rm.

Continuing the examination of the conditions in Lemma 4,

finally we show that E 6⊂ int(L(V,r1)). Note that P(xm) =
a and V (xm) = rm ≤ r2. Therefore, xm ∈ E and xm /∈
int(L(V,r1)). Hence, E 6⊂ int(L(V,r1)), as desired. Finally,

L(V,r1)⊂ E follows from Lemma 4.

Proof of Part 3: Let D be the connected component of

L(P,a) such that 0 ∈ D. We will show that

E = D.



From Part 1 of the proof, we know that E is connected

and 0 ∈ E . Moreover, E ⊂ L(P,a) by definition. Therefore,

E ⊂ D.

Now, by contradiction, we will show that D ⊂ E . Suppose

D 6⊂ E = L(V,r2)∩L(P,a). Therefore, since D ⊂ L(P,a), we

conclude that D 6⊂ L(V,r2). This means that

∃x ∈ D such that x /∈ L(V,r2).

Connectedness of D implies that there exists a continuous

function ψ : [0,1] → D such that ψ(0) = 0 and ψ(1) = x.

Given the facts that L(V,r2) is compact, 0 ∈ L(V,r2) and

x /∈ L(V,r2), it can be shown that

∃t ∈ [0,1] such that y := ψ(t) ∈ ∂L(V,r2).

Therefore, y ∈ D and y ∈ ∂L(V,r2). Hence,

V (y) = r2 ≥ rm + 3|rm − r1|, (25)

and

P(y)≤ a = P(xm) (26)

≤V (xm)+ |rm − r1| (27)

= rm + |rm − r1|. (28)

Finally, Eq. (25) and (28) imply that V (y)−P(y) ≥ 2|rm −
r1| = 2

r2−r1
9

, which is a contradiction. Therefore, D ⊂ E ,

which implies that D = E , as desired.

Corollary 1: P proves the exponential stability of D for

Eq. (3), as in Definition 2.

Theorem 4 shows that under Assumptions 1 and 2, sub-

level sets of polynomial Lyapunov functions can inner-

approximate the ROA up to any desired accuracy. In order

to illustrate the practical implication of Theorem 4, in the

following section we will bring an example of an ODE

with a bounded ROA. For this ODE, we will show that the

sub-level sets of polynomial Lyapunov functions of degree

less than d can inner-approximate the ROA and these inner-

approximations approach the true ROA as d increases.

VI. A PROPOSED METHOD FOR USING SOS

PROGRAMMING TO APPROXIMATE THE ROA

In this section, we propose a Lyapunov based approach to

approximating the ROA of polynomial ODEs based on the

use of Sum of Squares (SOS) polynomials. Furthermore, we

illustrate the convergence of the proposed approach to the

true ROA as applied to the van-der-Pol oscillator.

Consider the ordinary differential equation

ẋ = f (x), x(0) = x0, (29)

where f : Rn →R
n is a polynomial and f (0) = 0. Denote by

S f the ROA of Eq. (29) around the equilibrium 0 and suppose

S f is nonempty and bounded. For any r ≥ 0, we represent

the ball Br(0) as {x : ur(x)≥ 0} where ur(x) := r2 −∑n
i=1 x2

i .

If we can find a polynomial Lyapunov function P(x) and

positive scalers β ,γ and δ such that

β ||x||2 ≤ P(x)≤ γ||x||2, (30)

∇P(x)T f (x) ≤−δ ||x||2, (31)

for all x ∈ Br(0) = {x : ur(x) ≥ 0}, then for any sub-level

set L(P,a) such that (P,a) ⊂ Br(0), the connected com-

ponent containing the origin is an inner-approximation to

the ROA. The search for a polynomial Lyapunv function P

satisfying Eq. (30) and (31) can be formulated using SOS

programming. Specifically, for a fixed degree d, we have

the polynomial variable P(x) and SOS polynomial variables

s1(x), . . . ,s6(x) of degree less than 2d with the constraint that

P(x)−β
n

∑
i=1

x2
i = s1(x)+ s2(x)ur(x), (32)

−P(x)+ γ
n

∑
i=1

x2
i = s3(x)+ s4(x)ur(x), (33)

−∇P(x)T f (x)− δ
n

∑
i=1

x2
i = s5(x)+ s6(x)ur(x). (34)

This form of SOS programming problem can be solved

efficiently using such Matlab toolboxes as SOSTOOLS. For

convenience, for given radius r and degree d, we refer to

this SOS program as P = H(d,r), where P is the feasible

polynomial if H is feasible and P = /0 otherwise. We now

propose the following two-step bisection-based approach to

estimating the ROA using H(d,r)

1) Initialize rmax, rmin.

2) Set r = rmax−rmin
2

.

3) If H(d,r) is feasible, set rmin = r, otherwise rmax = r

4) Goto step 2.

The estimate of the ROA is then recovered from the last

feasible P= H(d,r) using an auxilliary SOS program to find

the largest a(d,r) such that L(H(d,r),a(d,r)) ⊂ Br(0).
Now clearly, for any d, a necessary condition for the

feasibility of H(d,r) is S f 6⊂ Br(0). Now define

r∗ = sup
r

r such that S f 6⊂ Br(0)

Now, based on the results of this paper and numerical

experimentation, we propose the conjecture that as r → r∗,

the polynomial P must approximate some maximal Lyapunov

function arbitrarily well in some neighborhood of the bound-

ary of the ROA and this convergence can be extended to the

level sets of the Lyapunov function. Furthermore, since the

ROA is compact, we conjecture that this approximation can

be extended to the entire ROA. Or, in other words

lim
r→r∗

d→∞

L(H(d,r),a(d,r)) = ROA.

Note that although the results of the paper do not establish

this convergence, they are necessary for the conjecture to be

true.

A. Numerical Illustration

In this subsection, we show the apparent convergence of

the proposed method.

Example: Consider the Van der Pol oscillator in reverse

time defined as

ẋ1 =−x2, (35)

ẋ2 = x1 + x2(x
2
1 − 1).



We applied the proposed method for degrees d = 4, 6

and 8. Figure 1 shows the corresponding recovered inner-

approximate ROA compared to the true ROA as defined by

forward-time numerical integration of Eq. (35). In addition,

the maximal radius on which H(d,r) is feasible is indicated

for d = 4, 6, 8 by the corresponding dashed circle.

-2 -1 0 1 2
x1

-2

-1

0

1

2

x
2

Inner-approximations to the Region of Attraction

d = 8

d = 6

d = 4

Fig. 1. Inner-approximations to the ROA of Eq. (35) obtained by solving
the associated SDP for polynomial variables with degree bound 2d.

VII. CONCLUSION

In this paper, we have proposed an SOS-based method for

estimating the Region of Attraction of nonlinear ODEs, the

conjectured convergence of which relies on the assumption

that polynomial Lyapunov functions can estimate the true

ROA arbitrarily well. To verify this assumption, we have

presented sufficient conditions which guarantee that the

ROA can be inner-approximated by the sub-level sets of

polynomial Lyapunov Functions arbitrarily well in sense of

Hausdorff distance. The main result of the paper as presented

in Theorem 4 is that if the ROA is bounded and there

exists an n-times continuously differentiable maximal LF

satisfying the conditions in Assumption 2, then for any

scaler ε > 0, there exists a polynomial LF, P, and a sub-

level set, L(P,a), such that if we define D as the connected

component of L(P,a) that contains the equilibrium, then P

proves exponential stability of the ODE on the set D and D

is within the Hausdorff ε distance of the ROA. In order to

demonstrate convergence of our proposed approach consis-

tent with the existence results, we applied the methodology to

a 2−dimensional polynomial ODE. Work is ongoing to show

that as the domain approaches the ROA in the Hausdorff

metric, any polynomial Lyapunov function decreasing on that

domain must provide an asymptotically accurate estimate of

the ROA.

APPENDIX

In this appendix, we provide a proof for Lemma 3, that

was used in the proof of Theorem 4.

Lemma 3: Suppose S f is the ROA of Eq. (3) as in

Definition 3 and V : S f → R satisfies the conditions in

Assumptions 1 and 2. Then for any ε > 0 and c > 0, there

exists a polynomial Lyapunov function P and positive scalers

β ,γ and δ s.t.

β ||x||2 ≤ P(x)≤ γ||x||2,

∇P(x)T f (x)≤−δ ||x||2,

|P(x)−V(x)| ≤ ε,

for all x ∈ L(V,c).
Proof: By assumption, there exist β0,γ0,δ0 > 0 such

that

β0||x||
2 ≤V (x)≤ γ0||x||

2,

∇V (x)T f (x) ≤−δ0||x||
2,

for all x ∈ L(V,c).
Now choose β ,γ and δ such that

β < β0, γ > γ0, δ < δ0.

Given these β ,γ and δ , we define

b := max
x∈B

|| f (x)||∞,

d := min{β0 −β , γ − γ0 ,(δ0 − δ )/nb, ε},

By Theorem 8 in [21], there exists a polynomial P(x) such

that
∣

∣

∣

∣

P(x)−V(x)

xT x

∣

∣

∣

∣

≤ d,
∣

∣

∣

∣

∣

∣

∂P(x)
∂xi

− ∂V (x)
∂xi

xT x

∣

∣

∣

∣

∣

∣

≤ d, ∀i = 1, . . . ,n,

for all x ∈ L(V,c). Expanding, we have

P(x) =V (x)+
P(x)−V(x)

xT x
xT x

≥ (β0 − d)xT x ≥ β xT x.

and

P(x) =V (x)+
P(x)−V(x)

xT x
xT x

≤ (γ0 + d)xT x ≤ γxT x.

Finally:

∇P(x)T f (x) = ∇V (x)T f (x)+
∇(P(x)−V(x))T f (x)

xT x
xT x

≤ (−δ0 + nd b)xT x ≤−δxT x.

Moreover, we have

|P(x)−V(x)| ≤ |
P(x)−V(x)

xT x
| ≤ d ≤ ε, ∀x ∈ L(v,c),

as desired.

Lemma 4: Let A,B ⊂ R
n be nonempty, connected and

compact and ∂A∩ ∂B = /0. Then, one and only one of the

followings hold:

• A ⊂ Bo,

• B ⊂ Ao,

• A∩B = /0.
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