
Structure Exploitation of Practical MPC Formulations for Speeding up
First-Order Methods∗

D. K. M. Kufoalor1, S. Richter2, L. Imsland1, T. A. Johansen1

Abstract— This paper presents structure exploitation tech-
niques that lead to faster convergence of first-order methods
for practical Model Predictive Control (MPC) formulations. We
exploit the special structure of output box constraints as well
as input bound and rate constraints. The output constraints
are included in the MPC objective as exact penalty functions,
in order to avoid feasibility issues due to e.g. plant-model
mismatch. Observations from a new derivation of exact penalty
functions enable us to formulate exact penalty functions that do
not require additional auxiliary variables if first-order solution
methods are used. We use the dual fast gradient method to
illustrate the effectiveness of our approach. An average speed-
up of ×8 and a worst case speed-up of ×6 were obtained,
compared with the fastest state-of-the-art first-order method
for a subsea separation process. Moreover, hardware-in-the-
loop simulations using an ANSI C implementation on a PLC
reveal that our first-order solver outperforms the fastest second-
order solver deployed for the subsea separation process.

I. INTRODUCTION

A linear Model Predictive Control (MPC) problem is a
constrained convex optimization problem, which translates
to a convex quadratic programming (QP) problem due to the
use of a quadratic objective and linear constraints. Existing
methods that compute the QP solution online are mainly first-
order or second-order iterative methods (classified according
to the highest order of objective function information used).

First-order methods may be preferable in some embedded
real-time applications since such methods typically yield
simple and efficient code with relatively small memory
requirements (see e.g. [1], [2], [3], [4]). Compared with
second-order methods, first-order methods perform typically
many, but cheap, iterations. The number of iterations can
be significantly reduced using different techniques, such as
preconditioning, structure exploitation, and warm-starting.

Earlier studies in [1] have revealed that several state-of-
the-art first-order methods are unable to perform well on
a class of practical MPC problems based on typical indus-
trial design strategies. Such strategies include exact penalty
formulations that ensure that the optimization problem does
not become infeasible due to large process disturbances or
plant-model mismatch. Also, in a practical input-output MPC

1 Center for Autonomous Marine Operations and Systems,
Department of Engineering Cybernetics, Norwegian University of
Science and Technology (NTNU), O.S. Bragstads plass 2D N-7491
Trondheim, Norway. {kwame.kufoalor, lars.imsland,
tor.arne.johansen}@ntnu.no

2 Richter Optimization GmbH, Furttalstrasse 29, CH-8046 Zürich,
Switzerland. sr@richteroptimization.com

* This work was supported by the Research Council of Norway (NFR)
and Statoil through the project 215684 and by NFR through the projects
223254 and 244116/O70.

formulation, some constrained outputs are not required to
track any reference and may therefore lack corresponding
quadratic weights in the objective. Rate constraints on inputs
are also common, and the use of input move blocking or out-
put evaluation points may lead to constraint definitions that
vary over the horizon. When these practical design choices
are present in the MPC setup, the standard translation into
a QP does not facilitate full structure exploitation for first-
order methods [5], and hence convergence speed is sacrificed.
A standard QP translation involves a positive semi-definite
Hessian and a possibly large number of auxiliary variables
(see e.g. [1] for an industrial example).

In this paper, we suggest an alternative formulation of
exact penalty functions for output box constraints in the
context of first-order methods. Exact penalty functions [6,
§5.4.5] replace the hard output constraints by a real-valued,
typically nonsmooth function that is appended to the objec-
tive. While this measure ‘softens’ the hard output constraints,
exact penalty functions are able to retain equivalence in terms
of the optimal value and solution. This in contrast to so-
called inexact penalty functions that can lead to different
solutions although the original problem is feasible.

The finally proposed formulation of the MPC problem as a
dual optimization problem hinges on the assumption that the
projection onto the set of input bound and rate constraints can
be computed cheaply. Due to space restrictions, we cannot
elaborate on this important aspect here, however, we refer
the reader to the extensive technical report [7].

The paper continues with a description of the proposed
MPC formulation, followed by derivations that lead to our
solution method. We use different benchmark studies to
facilitate further discussions before concluding the paper.

II. MPC PROBLEM FORMULATION

As a basis for our derivations we consider a setup that is
motivated from industrial input-output MPC formulations:

min
∆u,y,z

(1
2

∆uT R∆u+
1
2

yT Qy+ lT y+
ny

∑
j=1

p j(y j)+
nz

∑
j=1

q j(z j)
)

s.t. y = Θy∆u+ y f

z = Θz∆u+ z f

∆u j ∈ ∆U(u j,−1), j ∈ {1,2, . . . ,nu}.

(1)

The vector ∆u is defined as a stack of individual changes in
each of the nu inputs over the control horizon Nu, i.e ∆u =
(∆u1,∆u2, . . . ,∆unu) where ∆u j =(∆u j,0,∆u j,1, . . . ,∆u j,Nu−1).
We assume the input penalty matrix R to be block-diagonal
with blocks R j = r j · I, r j > 0, j ∈ {1,2, . . . ,nu}. Input

constraints are hard constraints, but never lead to infeasibility
of the MPC problem. In (1), we restrict the input changes
for each input to be in the convex set

∆U(u−1),
{

∆υ ∈ RNu |∆υi = υi−υi−1, |∆υi| ≤ ∆ui,

u≤ υi ≤ u, i ∈ {0, . . . ,Nu−1},υ−1 = u−1
}
.

(2)

The set ∆U(u−1) is parameterized by u−1, the input applied
at the past sampling instant, and is determined by the static
input bounds u,u and varying rate bounds ∆ui.

Similarly, the outputs are defined as y = (y1,y2, . . . ,yny),
where y j = (y j,1,y j,2, . . . ,y j,Ny) and z = (z1,z2, . . . ,znz), with
z j = (z j,1,z j,2, . . . ,z j,Nz). When output evaluation points are
used, Ny (Nz) becomes the number of output evaluation
points. The functions p j and q j are convex, nonsmooth exact
penalty functions for the outputs, typically used in practical
MPC formulations to ‘soften’ the hard output constraints.
The definitions for p j and q j are discussed in detail in
Section III. The interested reader might notice that there is an
additional linear and quadratic term in the outputs y whereas
there are no such terms in z. The reason for this is that the
outputs y are assumed to be regulated to a given reference,
where deviations are penalized quadratically by the positive
diagonal matrix Q and the reference is encoded in vector l.

The prediction model is formulated as affine equality
constraints that relate input changes to outputs, using the free
response y f (z f), i.e. the effect of previously applied inputs
on the future output, and the forced response Θy∆u (Θz∆u).
The model parameters can either be derived from a state
space model of the dynamics or obtained from experimental
data, e.g. step response tests (see e.g. [8]).

In summary, problem (1) is a multi-parametric convex
program with parameters y f ∈Rny·Ny,z f ∈Rnz·Nz and u j,−1∈R,
j ∈ {1,2, . . . ,nu}. In case of changing output references,
vector l in the linear term becomes a parameter too.

III. REPRESENTATION OF EXACT PENALTY FUNCTIONS
FOR FIRST-ORDER METHODS

In this section we will investigate the representation of
the exact penalty functions p j and q j in (1). The proposed
representation comes without the commonly introduced aux-
iliary variables in standard QP reformulations of (1) and is
a consequence of the following theorem.

Theorem 1: Consider the convex program

f ∗ ,min
x∈X

f (x)

s.t. g j(x)≤ 0, j = 1,2, . . . ,m,
(3)

where f : Rn → R and g j : Rn → R, j = 1,2, . . . ,m, are
convex real-valued functions and X is a closed convex subset
of Rn. Assume that an optimal solution x∗ exists, i.e. f (x∗) =
f ∗, strong duality holds and a Lagrange multiplier vector
µ∗ ∈ Rm

+ for the inequality constraints exists. If the penalty
parameter is chosen as σ ≥ ‖µ∗‖∞, then it holds that

f ∗ =min
x∈X

(
f (x)+σ ·

m

∑
j=1

max{0,g j(x)}
)
. (4)

Proof: Let g(x), (g1(x),g2(x), . . . ,gm(x)), for simplic-
ity of notation. By strong duality and existence of a Lagrange
multiplier we have

f ∗ = min
x∈X

max
µ≥0

(
f (x)+µ

T g(x)
)
= max

µ≥0
min
x∈X

(
f (x)+µ

T g(x)
)
=

max
0≤µ≤σ1

min
x∈X

(
f (x)+µ

T g(x)
)

(5)

Using the max-min inequality, the right hand side in (5) can
be upper bounded by

min
x∈X

max
0≤µ≤σ1

(
f (x)+µ

T g(x)
)
, (6)

and the min-max expression on the left hand side in (5) can
be lower bounded by the same expression in (6). Therefore,
(5) can be written as

f ∗ = min
x∈X

(
f (x)+ max

0≤µ≤σ1
µ

T g(x)
)
,

which is equivalent to (4).
Remark 1: To the best of the authors’ knowledge, the

proof is new in terms of the arguments made and seems
to be the most concise one. The result itself, however, has
long existed in the literature (see e.g. [6, §5.4.5]).

Whereas Theorem 1 establishes equivalence of the optimal
values, the following result gives a sufficient condition for
equivalence of the optimal solutions.

Proposition 1: If the penalty parameter is σ > ‖µ∗‖∞,
then the solution sets of (3) and (4) coincide.

Proof: Due to space restrictions, we refer the reader
to the proof of [7, Proposition 3], which establishes this and
related results under an arbitrary lp-norm.

Theorem 1 is commonly cast in terms of an epigraph
reformulation of (4) in the literature, i.e.

f ∗ =min
x∈X

f (x)+σ ·
m

∑
j=1

ε j (7)

s.t. g j(x)≤ ε j, ε j ≥ 0, j = 1,2, . . . ,m .

The advantage of this representation is that the problem class
remains unchanged, e.g. if the original problem (3) is a QP,
then (7) will remain a QP and can be passed to a general
purpose solver. If first-order methods are used, however, it is
convenient to work with the formulation (4) (cf. Section IV).

Remark 2: The penalty parameter σ for a multi-
parametric program as given by (1) is determined empirically
in practice.

IV. STRUCTURE EXPLOITING LAGRANGE RELAXATION

In this section we present the consequences of the exact
penalty representation in the previous section when it comes
to solving (1) in the dual domain using a first-order method.
In particular, we apply Lagrange relaxation for the equality
constraints in (1) and show how to efficiently evaluate the
gradient of the resulting dual function in case of softened
output box constraints.

For this, we introduce the dual multipliers λ ∈Rny·Ny and
ν ∈ Rnz·Nz and derive the dual problem

max
λ ,ν

d(λ ,ν), (8)

where the dual function is given by

d(λ ,ν)= min
∆u j ∈ ∆U(u j,−1),
j ∈ {1,2, . . . ,nu}

1
2 ∆uT R∆u−λ

T
Θy∆u−ν

T
Θz∆u

︸ ︷︷ ︸
,d∆u(λ ,ν)

+min
y

1
2 yT Qy+ lT y+

ny

∑
j=1

p j(y j)+λ
T y︸ ︷︷ ︸

,dy(λ)

+min
z

(nz

∑
j=1

q j(z j)+ν
T z
)

︸ ︷︷ ︸
,dz(ν)

−λ
T y f −ν

T z f . (9)

Next, we investigate each of the terms in the dual function.
Term d∆u(λ ,ν): Due to strong convexity of the objective

function (R � 0), the minimizer ∆u∗(λ ,ν) is unique and
hence, by Danskin’s Theorem, this term is differentiable:

∇λ d∆u(λ ,ν) =−Θy∆u∗(λ ,ν),

∇ν d∆u(λ ,ν) =−Θz∆u∗(λ ,ν),

where ∆u∗(λ ,ν) =
(
∆u∗1(λ ,ν), . . . ,∆u∗nu(λ ,ν)

)
and, since R

is block-diagonal, the minimization can be separated over
the nu inputs, i.e. for all j ∈ {1,2, . . . ,nu}

∆u∗j(λ ,ν)=arg min
∆u j∈∆U(u j,−1)

r j

2
∆uT

j ∆u j− (ΘT
y λ +Θ

T
z ν)T

j ∆u j

=π∆U(u j,−1)

(1
r j

(
Θ

T
y λ +Θ

T
z ν
)

j

)
, (10)

where
(
ΘT

y λ +ΘT
z ν
)

j denotes the jth block of components
of vector ΘT

y λ +ΘT
z ν that corresponds to the input change

∆u j. Our simulation studies suggest that computing the
projection π∆U(u j,−1)(·) in (10) approximately by means of
a proximal gradient method produces a high quality solution
adequate for MPC. We refer the reader to [7] for a detailed
analysis of different projection methods for set ∆U(u j,−1).

Term dy(λ): By similar reasoning as before, this term is
differentiable and the gradient is ∇λ dy(λ) = y∗(λ), where
y∗(λ) =

(
y∗1(λ1), . . . ,y∗ny(λny)

)
, if the dual multiplier is par-

titioned according to the outputs as λ = (λ1, . . . ,λny) with
λ j ∈RNy . Separating the minimization over the outputs yields

y∗j(λ j) = argmin
y j

(1
2

yT
j Q jy j + lT

j y j + p j(y j)+λ
T
j y j

)
, (11)

for all j ∈ {1,2, . . . ,ny}, where Q j is the jth diagonal
submatrix of Q, l j denotes the jth block of components of
vector l, and p j(y j) encodes an exact penalty function for
lower, upper or joint lower/upper bound constraints on the
output y j. We summarize the computation of y∗j(λ j) next.

Proposition 2: Consider the minimization problem in
(11), using the exact penalty form in (4). The solution to
(11) for each of the following types of bound constraints is:
• Lower bound (y j ≤ y j):

y∗j(λ j) =−Q−1
j
(
l j +λ j−π[0,γ]Ny (Q jy j + l j +λ j)

)

• Upper bound (y j ≤ y j):

y∗j(λ j) =−Q−1
j
(
l j +λ j +π[0,γ]Ny

(
− (Q jy j + l j +λ j)

))
• Joint lower/upper bounds (y j ≤ y j ≤ y j):

y∗j(λ j) =−Q−1
j
(
l j +λ j−ν

∗(λ j)
)
,

where for every component i ∈ {1,2, . . . ,Ny}

ν
∗
i (λ j)=


π[−γu,0]

(
(Q jy j + l j +λ j)i

)
if ζi<0,

π[0,γl]

(
(Q jy j + l j +λ j)i

)
if ζi>(y j− y j)i,

0 otherwise,

with ζi =
(
Q−1

j (l j +λ j)+ y j
)

i .
The scalars γ > 0 and γl ,γu > 0 denote the penalty parame-
ters, and π[0,γ](·) represents the projection on the set [0,γ].
Proof. See Appendix VIII-A.

Term dz(ν): This term is nonsmooth since the minimum is
not guaranteed to be unique (cf. Danskin’s Theorem). How-
ever, we can separate the minimization over the nz outputs,
i.e. for j ∈ {1,2, . . . ,nz} we may consider the functions

dz j(ν j) = min
z j

q j(z j)+ν
T
j z j, (12)

where ν j denotes the dual multiplier vector that corresponds
to the jth output. Note that dz(ν) = ∑

nz
j=1 dz j(ν j). The next

proposition reveals the structure of the functions dz j in case
of lower, upper and joint lower/upper bound constraints.

Proposition 3: Consider the definition of the concave
function dz j in (12), using the exact penalty form in (4).
For each of the following types of bound constraints, the
function dz j can be written as:
• Lower bound (z j ≤ z j):

dz j(ν j) =

{
νT

j z j if ν j ∈ [0,γ]Nz ,

−∞ otherwise.

• Upper bound (z j ≤ z j):

dz j(ν j) =

{
νT

j z j if ν j ∈ [−γ,0]Nz ,

−∞ otherwise.

• Joint lower/upper bounds (z j ≤ z j ≤ z j):

dz j(ν j) ={
νT

j z j−max{0,ν j}T (z j− z j) if ν j ∈ [−γu,γl]
Nz ,

−∞ otherwise.

Proof. See Appendix VIII-B.

V. PRACTICAL MPC EXAMPLE

We will exemplify the theoretical results obtained so far
on a real-world instance of (1) that stems from a compact
subsea separator MPC problem in [1]. The compact separator
separates a multiphase input flow of liquid (oil/water) and
gas using compact co-axial cyclones at two stages [9]. As a
first-order solution method in the dual domain we will apply
Nesterov’s fast gradient method in the variant given in [10].

According to formulation (1), the compact separator MPC
problem setup has nu = 3 inputs subject to bound and
rate constraints (each with Nu = 6) and ny = 2 and nz = 2
outputs (each with Ny = Nz = 10). The outputs y have joint
lower/upper bounds, i.e.

y1 ≤ y1 ≤ y1, and y2 ≤ y2 ≤ y2,

which are taken care of in the form of exact penalty terms
in the objective, weighted with penalty weights ρ

1
,ρ

2
> 0

for the lower bound and ρ1,ρ2 > 0 for the upper bound.
Based on (4), the exact penalty terms in (1) become

p j(y j)= ρ
j
·

Ny

∑
k=1

max{0,y j,k−y j,k}+ρ j ·
Ny

∑
k=1

max{0,y j,k−y j,k},

for j ∈ {1,2}. The outputs z are subject to one-sided lower
and upper bounds, i.e. z1 ≤ z1, and z2 ≤ z2, which lead to
the exact penalty terms

q1(z1) = η1 ·
Nz

∑
k=1

max{0,z1,k− z1,k},

q2(z2) = η2 ·
Nz

∑
k=1

max{0,z2,k− z2,k},

with penalty weights η1,η2 > 0.
Following Proposition 3, the dual problem for this setup

reads
max d̃(λ ,ν)

s.t. λ ∈ Rny·Ny

ν = (ν1,ν2)

ν1 ∈ [0,η1]
Nz

ν2 ∈ [−η2,0]
Nz ,

(13)

with the concave objective function being defined as

d̃(λ ,ν), d∆u(λ ,ν)+dy(λ)

+ν
T
1 (z1− z f ,1)+ν

T
2 (z2− z f ,2)−λ

T y f .

Observe that the dual objective d̃ is differentiable and the
projection operator of the feasible set is easy to evaluate.

In order to solve (13) by means of a gradient method,
we require the objective to be L-smooth, i.e. its gradient to
be Lipschitz continuous. This requirement makes it possible
to globally lower-bound the dual objective by a quadratic
function. It is common to use a quadratic with a diagonal
Hessian −L · I. However, one can improve convergence
substantially by allowing for a full Hessian matrix, which
corresponds to a preconditioning of the dual problem. In fact,
the best possible Hessian can be chosen according to [10,
Theorem 10], so that we obtain for every pair (λ̄ , ν̄) ∈
Rny·Ny ×Rnz·Nz and for all (λ ,ν) ∈ Rny·Ny ×Rnz·Nz

d̃(λ ,ν)≥ sd(λ ,ν ; λ̄ , ν̄),

where

sd(λ ,ν ; λ̄ , ν̄), d̃(λ̄ , ν̄)+∇λ d̃(λ̄ , ν̄)T (λ − λ̃)

+∇ν d̃(λ̄ , ν̄)T (ν− ν̃)− 1
2

∥∥∥∥[λ − λ̄

ν− ν̄

]∥∥∥∥2

H
,

with H=

[
A B

BT C

]
, and the respective block matrices being

A = ΘyR−1
Θ

T
y +Q−1, B = ΘyR−1

Θ
T
z , C = ΘzR−1

Θ
T
z .

In the fast gradient method the main effort in every
iteration is to maximize the concave quadratic surrogate
function sd , defined around the current pair of ‘iterates’
(λ̄ , ν̄), over the dual feasible set, i.e. to solve

max
λ ,ν

sd(λ ,ν ; λ̄ , ν̄)

s.t. λ ∈ Rny·Ny

ν = (ν1,ν2)

ν1 ∈ [0,η1]
Nz

ν2 ∈ [−η2,0]
Nz .

(14)

A closer look at the matrix H reveals that problem (14)
cannot be solved in a convenient way (H is positive semi-
definite and also dense). Therefore, we propose the following
remedy: First, we maximize the original surrogate function
sd over λ , which can be done in closed form since the block
matrix A is positive definite, i.e.

ŝd(ν ; λ̄ , ν̄), max
λ

sd(λ ,ν ; λ̄ , ν̄).

This maximization evaluates to

ŝd(ν ; λ̄ , ν̄) = d̃(λ̄ , ν̄)+
1
2

∥∥∇λ d̃(λ̄ , ν̄)
∥∥2

A−1

− 1
2
‖ν− ν̄‖2

S +wT (ν− ν̄),
(15)

where the Schur complement of A is S = C−BT A−1B and
the vector w is

w = ∇ν d̃(λ̄ , ν̄)−BT A−1
∇λ d̃(λ̄ , ν̄).

Considering the resulting quadratic function ŝd , we then
perform a single gradient ascent step at ν = ν̄ with line
search, i.e. we solve

max
α,ν
−1

2
‖ν− ν̄‖2

S +wT (ν− ν̄)

s.t. α ∈ [0, ᾱ], ν = ν̄ +αw,
(16)

which is more conveniently written as the one-dimensional
problem

max
α∈[0,ᾱ]

−1
2

cqα
2 + clα, (17)

where cq = ‖w‖2
S and cl = ‖w‖2

2. We introduce an upper
bound ᾱ on the step size to capture the case cq = 0. A
reasonable choice is given by

ᾱ � 1
λmax(S)

,

which follows from the standard constant step size rule in
gradient methods (see e.g. [10]).

The solution to (17) can be compactly written as

α
∗ =


0 if cq = 0 and cl = 0
ᾱ if cq = 0 and cl > 0
min{c−1

q cl , ᾱ} otherwise.
(18)

Algorithm 1 Customized dual fast gradient method for problem (13)

Require: λ0 ∈ Rny ·Ny , ν0 ∈ Rnz ·Nz

1: λ−1 = λ0,ν−1 = ν0
2: θ0 = θ−1 = 1
3: loop

4:
[

τi
ψi

]
=

[
λi
νi

]
+θi(θ

−1
i−1−1)

[
λi−λi−1
νi−νi−1

]
{auxiliary iterates}

5: compute the dual gradient at (τi,ψi):

∇λ d̃(τi,ψi) = y∗(τi)−Θy∆u∗(τi,ψi)− y f

∇ν d̃(τi,ψi) =

[
z1
z2

]
−Θz∆u∗(τi,ψi)− z f ,

where y∗(τi) =
(
y∗1(τi,1),y∗2(τi,2)

)
, {using Proposition 2}

∆u∗(τi,ψi) =
(
∆u∗j (τi,ψi)

) j=nu
j=1 , {cf. (10)}

6: w = ∇ν d̃(τi,ψi)−BT A−1∇λ d̃(τi,ψi)
7: νi+1 = π

[0,η1]
Nz×[−η2 ,0]

Nz (ψi +α∗wi) {α from (18)}
8: λi+1 = τi +A−1

(
∇λ d̃(τi,ψi)−B(νi+1−ψi)

)
9: θi+1 =

θi
2

(√
θ 2

i +4−θi

)
10: end loop
11: return ∆u∗(τi,ψi) {when stopping criterion is met}

Lastly, we determine a feasible, approximate pair of max-
imizers (λ̂ , ν̂) of the quadratic lower bound sd(λ ,ν ; λ̄ , ν̄)
from

ν̂ = π[0,η1]
Nz×[−η2,0]Nz (ν̄ +α

∗w),

λ̂ = λ̄ +A−1(
∇λ d̃(λ̄ , ν̄)−B(ν̂− ν̄)

)
.

Putting together the structure exploitation results outlined
above and choosing the fast gradient method leads to our
proposed solution method summarized in Algorithm 1. Note
that Algorithm 1 can be implemented in a code generation
framework to automate the customization process for differ-
ent problem sizes and data.

A. Computational Results

This section presents computational results of a Matlab
implementation of Algorithm 1 using the same benchmark
data as used earlier in [1]. Different to the study in [1], we
use a stopping criterion that is solely based on the input
changes, i.e. we stop at iteration i whenever

‖∆u∗(τi,ψi)−∆u∗‖2

‖∆u∗‖2
≤ 0.02, (19)

where the reference solution ∆u∗ is found with qpOASES
[11] (option set reliable). The stopping criterion (19) is a
better choice for a solid comparison of different methods
in an MPC context since the entire decision vector, as used
in [1], contains variables of different magnitudes. The use
of (19) leads to considerably larger iteration counts for all
methods tested compared to the previous study in [1] –
despite the fact that we only require a moderate relative
accuracy of 2%, whereas 0.1% was required in [1].

Table I contains the results for both Algorithm 1 and the
previously benchmarked methods in [1] (without restarts),
where all methods are terminated after 100’000 iterations.
All methods are coldstarted, e.g. λ0 = 0,ν0 = 0 in Algo-
rithm 1, and Table I states all the main parameters of the

TABLE I: Performance of different first-order methods for
the compact separator MPC problem. Methods with super-
script+ have a significantly higher per iteration cost than
Algorithm 1. Methods with subscript δ require a positive
definite Hessian, i.e. they solve the perturbed problem in [1].

Method Parameters min / average / max iterations

Algorithm 1 nmax = 2 2/72/188
PD method in [1] η = 10 252/629/1176

ADMM+ [12] ρ = 25, α = 1.62 157/218/286
Dual FGMδ [13] L =

∥∥AH−1
δ

AT
∥∥ 3587/45469/100′000

Dual FGMδ [14] Lλ , Lµ from SDP 2/40840/100′000
GPADδ [2] LΨ =

∥∥AiH−1
δ

AT
i

∥∥ all 100′000
GPAD+

δ
[14] Lµ =AiH−1

δ
AT

i +10−6I 1/17382/46596

methods in the notation used in the original publications. We
use nmax = 2 (!) warm-started iterations of the classic prox-
imal gradient method to evaluate ∆u∗(τi,ψi) approximately
in Algorithm 1 (line 5). Two iterations for the projection
operation are sufficient since performing more iterations only
implies minor improvements in the iteration counts (see [7]
for alternative implementations for the projection operation).

Compared with the primal-dual (PD) method proposed in
[1], Algorithm 1 shows a reduction of the iteration count by
about ×8 on average and about ×6 for the worst case (where
the number of arithmetic operations per iteration is compara-
ble). Also, the minimum iteration count is significantly low
for Algorithm 1.

VI. HARDWARE-IN-THE-LOOP SIMULATION STUDY

In this section, we present a hardware-in-the-loop bench-
mark study featuring ANSI C implementations of Al-
gorithm 1, the FiOrdOs generated primal-dual first-order
method from [1] (i.e. the PD method in Table I), the HPMPC
interior-point solver presented in [15] (using tailored linear
algebra), and the qpOASES active-set solver reported in
[16] for the subsea separation MPC problem. The FiOrdOs,
qpOASES and HPMPC solvers are used in the current study
since they were the fastest state-of-the-art solvers in their
respective categories implemented for the subsea separation
process (see [1], [15], [16]).

A. PLC implementation

We deployed PLC programs that embed the C implementa-
tion of the solvers on the same ABB AC500 PLC used in [1],
[15] and [16]. The PLC has an MPC603e microprocessor that
runs at 400 MHz. The MPC603e has a dedicated hardware
FPU and is equipped with 4MB RAM and 4MB integrated
memory for user program and data respectively. The C code
part of the PLC application is compiled using GNU gcc
4.7.0 with the same settings for all solvers. Specifically,
-mcpu=603e and -O1, which is the maximum optimization
level that could be used on the PLC.

The C code of Algorithm 1 is a simple custom implemen-
tation, which relies on offline static data preparations accord-
ing to the structure exploitation results in Section IV. In par-
ticular, we pre-compute and store the matrices Θy,Θz,B,A−1

TABLE II: Cold-start HIL test results for 600 time steps of
the subsea compact separation process.

QP Solver Time (ms) Iterations Mean Square Error
(cold-start) average/max average/max P1/P2/Liqout/Gasout

Algorithm 1 1.5/2.1 4/4 0.01/0.002/3.91/0.26
FiOrdOs [1] 111.9/113.6 785/785 0.01/0.002/4.07/0.22
qpOASES [16] 10.4/15.9 19/26 0.01/0.002/4.15/0.23
HPMPC [15] 15.4/18.2 9/11 0.01/0.002/4.08/0.26

TABLE III: Warm-start HIL test results for 600 time steps
of the subsea compact separation process.

QP Solver Time (ms) Iterations Mean Square Error
(warm-start) average/max average/max P1/P2/Liqout/Gasout

Algorithm 1 1.1/1.4 2/2 0.01/0.002/3.88/0.28
FiOrdOs [1] 14.6/16.4 100/100 0.01/0.002/3.87/0.28
qpOASES [16] 1.4/9.4 1/19 0.01/0.002/3.97/0.28

and BT A−1. Note that our implementation currently uses
the sqrt and pow functions from the C standard math
library. Compared to earlier studies in [1] and [16], we
use the efficient recursive implementation of free-response
prediction (y f ,z f in (1)), as reported in [17], for all the
embedded solver implementations tested in this paper.

B. Test setup and objectives

The test setup consists of the embedded MPC running on
the PLC in closed-loop with a process simulator developed
for the subsea compact separator process. Communication
between the PLC and the simulator is achieved using Ether-
net and an OPC server. The main objective of the compact
separator MPC is to control the quality (i.e. gas volume
fraction) of separated liquid and gas in their respective outlets
Liqout and Gasout , while regulating the pressure (respectively,
P1 and P2) at the two stages of the separation process. We use
the same hydrodynamic slugging (disturbance) flow sequence
in [1] in our tests, and a sampling frequency of at least 1 Hz is
desired. Since control performance is essential in industrial
applications, the closed-loop control performance for each
embedded solver is used as the basis for result comparison.

C. Results

The hardware-in-the-loop (HIL) test results are shown
in Tables II and III, where double precision floating point
computations are used for all solvers. The Mean Square Error
values are used as the control performance measure, and it
should be noted that similar control performance is achieved
for all embedded solvers.

The cold-start results in Table II show that the embedded
implementation of Algorithm 1 is more than 50 times faster
than the FiOrdOs implementation, more than 8 times faster
than the HPMPC solver, and about 7 times faster than
qpOASES. Since the HPMPC interior-point solver does not
support warm starting, it is omitted from the warm-start tests.
The average computational speed of Algorithm 1 for the

TABLE IV: Memory usage on the ABB AC500 PLC.

Memory (MB) Algorithm 1 FiOrdOs qpOASES HPMPC

Data size 0.04 0.04 0.16 0.10
C code size 0.05 0.08 0.16 0.20
PLC program size 0.18 0.22 0.45 0.45

warm-start case is comparable to that of qpOASES. However,
Algorithm 1 is about 7 times faster than qpOASES in the
worst case and at least 11 times faster than the FiOrdOs
implementation. It is clear from the results that the proposed
structure exploitation techniques lead to fast convergence for
the simple dual first-order method in Algorithm 1.

Moreover, the memory footprint of Algorithm 1 reflects
the memory requirement of first-order methods, as shown
in Table IV (cf. columns 2 and 3). The code size of
our implementation of Algorithm 1 is the smallest, and
it occupies 60% less memory compared with the second-
order solvers. It is therefore obvious from the results that
Algorithm 1 provides the best solver implementation for the
compact separator.

Note that, compared with earlier results in [1] and [16],
much faster computations and smaller memory usage are
obtained for all implementations due to the recursive im-
plementation used for the free-response predictions [17].

VII. CONCLUSIONS

This paper presents techniques to exploit structure in
an appropriate exact penalty formulation for output box
constraints in the context of first-order methods. Together
with a new, iterative projection method for input bound and
rate constraints, these techniques are shown to lead to a
first-order method that outperforms all of the state-of-the-
art first- and second-order solution methods with respect to
computational speed and memory usage when applied to a
challenging industrial MPC problem.

VIII. APPENDIX
A. Proof of Proposition 2

We apply the saddle point theorem in [18, Proposition
5.5.7], and in the case of the lower bound on y j, the
minimization problem in (11) can be written as

min
y j

(
1
2

yT
j Q jy j +(l j +λ j)

T y j + max
µ∈[0,γ]Ny

µ
T (y j− y j)

)
= max

µ∈[0,γ]Ny

(
µ

T y j +min
y j

(1
2

yT
j Q jy j +(l j +λ j−µ)T y j

))
(20)

where the feasible set of the maximization problem is
the box [0,γ]Ny . The inner minimization problem solves to
y∗j = −Q−1

j (l j + λ j − µ) with the minimum value given as
− 1

2‖l j +λ j−µ‖2
Q−1

j
. We then rewrite the maximization as a

minimization and solve for the unique minimizer µ∗(λ j),

µ
∗(λ j) = arg min

µ∈[0,γ]Ny

(
1
2
‖l j +λ j−µ‖2

Q−1
j
−µ

T y j

)
.

The result is obtained by noting that the computation of the
minimizer can be rephrased as a projection on the box [0,γ]Ny

since Q−1
j is diagonal. The result for the upper bound is

proved equivalently.
For the case of joint lower/upper bounds, we obtain by

similar reasoning the maximization problem (cf. (20))

max
µl ∈ [0,γl]

Ny ,
µu ∈ [−γu,0]Ny

−1
2
‖l j +λ j +µu−µl‖2

Q−1
j
+µ

T
l y j−µ

T
u y j (21)

with the inner minimizer y∗j =−Q−1
j (l j +λ j +µu−µl). Note

that the form of the inner minimizer allows us to compute
y∗j(λ j) by computing the difference µ∗u−µ∗l of the optimizers
of (21) only. Therefore, we introduce the definition −ν =
µu− µl , rewrite (21) accordingly, and solve for the unique
minimizer ν∗(λ j),

ν
∗(λ j) = arg min

ν∈[−γu,γl]
Ny

(1
2
‖l j +λ j−ν‖2

Q−1
j
−ν

T y j

+ min
µl∈M

µ
T
l (y j− y j)

)
, (22)

where for i ∈ {1,2, . . . ,Ny}, the feasible set

M=
{

µ ∈ RNy | max{0,νi} ≤ µi ≤min{γl ,νi + γu}
}
.

Since y j ≥ y j (component-wise), the inner minimization
problem in (22) has the solution max{0,ν}T (y j−y j), where
the max acts component-wise and is vector-valued. Inserting
this expression into (22) and working out the three cases
reveals the result in Proposition 2.

B. Proof of Proposition 3
In case of the lower bound on z j, specifying the penalty

function q j leads to

dz j(ν j) = min
z j

(
ν

T
j z j + max

µ∈[0,γ]Nz
µ

T (z j− z j)

)
. (23)

Using ∆z j , z j− z j, (23) can be rewritten as

dz j(ν j) = ν
T
j z j−max

∆z j

(
ν

T
j ∆z j−σ[0,γ]Nz (∆z j)

)
, (24)

The optimal value of the max in (24) is the conjugate of the
support function σ[0,γ]Nz (∆z j). Since the convex set [0,γ]Nz

is closed, we obtain max∆z j

(
νT

j ∆z j−σ[0,γ]Nz (∆z j)
)

=

ι[0,γ]Nz (ν j), where ι[0,γ]Nz (ν j) is the indicator function of the
box [0,γ]Nz . This proves the result for the lower bound. The
proof for the upper bound follows similar reasoning.

In the case of the joint lower/upper bounds, specifying the
penalty function yields

dz j(ν j) = min
z j

(
ν

T
j z j + max

µl ∈ [0,γl]
Nz ,

µu ∈ [−γu,0]Nz

µ
T
l (z j− z j)+µ

T
u (z j− z j)

)
.

Using [19, Corollary 37.3.2], we can swap the min and the
max and rewrite dz j as

dz j(ν j) = max
µl ∈ [0,γl]

Nz ,
µu ∈ [−γu,0]Nz

(
µ

T
l z j−µ

T
u z j +min

z j
(µu−µl +ν j)

T z j

)
.

The inner minimization problem evaluates to

min
z j

(µu−µl +ν j)
T z j =

{
0 if µl−µu = ν j,

−∞ otherwise,

which implies the domain [−γu,γl]
Nz of the function dz j .

Therefore, for any ν j in the domain, we obtain

dz j(ν j) = max
µl ∈ [0,γl]

Nz ,
µu ∈ [−γu,0]Nz ,

µl −µu = ν j

µ
T
l z j−µ

T
u z j =ν

T
j z j−max{0,ν j}T(z j− z j),

which completes the proof.

REFERENCES

[1] D. K. M. Kufoalor, S. Richter, L. Imsland, T. A. Johansen, M. Morari,
and G. O. Eikrem, “Embedded Model Predictive Control on a PLC
Using a Primal-Dual First-Order Method for a Subsea Separation
Process,” in MED 2014, Palermo, Italy, June 2014, pp. 368–373.

[2] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection
algorithm for embedded linear model predictive control,” IEEE Trans-
actions on Automatic Control, vol. 59, no. 1, pp. 18–33, 2014.

[3] J. L. Jerez, P. J. Goulart, S. Richter, G. A. Constantinides, E. C.
Kerrigan, and M. Morari, “Embedded Online Optimization for Model
Predictive Control at Megahertz Rates,” IEEE Transactions on Auto-
matic Control, vol. 59, no. 12, pp. 3238–3251, Dec. 2014.

[4] S. Richter, “Computational complexity certification of gradient meth-
ods for real-time model predictive control,” Ph.D. dissertation, ETH
Zürich. Diss. Nr. 20718, 2012.

[5] D. K. M. Kufoalor, “High-performance Industrial Embedded Model
Predictive Control,” Ph.D. dissertation, Norwegian University of Sci-
ence and Technology. Diss. Nr. 2016:157, 2016.

[6] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[7] S. Richter, “Structure Exploitation of Practical MPC Formulations

for Fast and Efficient First-Order Methods,” Richter Optimization
GmbH, Zurich, Switzerland, Tech. Rep., 2016, available at http://www.
richteroptimization.com/public/techreport structure exploit.pdf.

[8] J. M. Maciejowski, Predictive Control With Constraints. Pearson and
Prentice Hall, 2002.

[9] J. Høydal, O. Kristiansen, G. O. Eikrem, and K. Fjalestad, “Method
and system for fluid separation with an integrated control system,”
Patent WO2 013 091 719 A1, 06 27, 2013. [Online]. Available:
http://www.google.com/patents/WO2013091719A1?cl=en&hl=no

[10] P. Giselsson, “Improved Fast Dual Gradient Methods for Embedded
Model Predictive Control,” in IFAC World Congress, vol. 19, 2014,
pp. 2303–2309.

[11] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl,
“qpOASES: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp.
327–363, 2014.

[12] B. O’Donoghue, G. Stathopoulos, and S. Boyd, “A Splitting Method
for Optimal Control,” IEEE Transactions on Control Systems Technol-
ogy, vol. 21, no. 6, pp. 2432–2442, Nov. 2013.

[13] S. Richter, C. N. Jones, and M. Morari, “Certification Aspects of the
Fast Gradient Method for Solving the Dual of Parametric Convex
Programs,” Mathematical Methods of Operations Research, vol. 77,
no. 3, pp. 305–321, Jan. 2013.

[14] P. Giselsson and S. Boyd, “Metric selection in fast dual forward-
backward splitting,” Automatica, vol. 62, pp. 1–10, Dec. 2015.

[15] D. Kufoalor, G. Frison, L. Imsland, T. Johansen, and J. Jørgensen,
“Block factorization of step response model predictive control prob-
lems,” Journal of Process Control, vol. 53, pp. 1 – 14, 2017.

[16] D. K. M. Kufoalor, B. J. T. Binder, H. J. Ferreau, L. Imsland, T. A. Jo-
hansen, and M. Diehl, “Automatic deployment of industrial embedded
model predictive control using qpOASES,” in 2015 European Control
Conference (ECC), July 2015, pp. 2601–2608.

[17] D. K. M. Kufoalor, L. Imsland, and T. A. Johansen, “Efficient im-
plementation of step response models for embedded Model Predictive
Control,” Computers & Chemical Engineering, vol. 90, pp. 121–135,
2016.

[18] D. P. Bertsekas, Convex Optimization Theory, 1st ed. Athena
Scientific, 2009.

[19] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1997.

http://www.richteroptimization.com/public/techreport_structure_exploit.pdf
http://www.richteroptimization.com/public/techreport_structure_exploit.pdf
http://www.google.com/patents/WO2013091719A1?cl=en&hl=no

	Introduction
	MPC problem formulation
	Representation of exact penalty functions for first-order methods
	Structure exploiting Lagrange relaxation
	Practical MPC example
	Computational Results

	Hardware-in-the-loop simulation study
	PLC implementation
	Test setup and objectives
	Results

	Conclusions
	APPENDIX
	Proof of Proposition 2
	Proof of Proposition 3

	References

