
Hamilton-Jacobi Reachability: A Brief Overview and Recent Advances

Somil Bansal*, Mo Chen*, Sylvia Herbert* and Claire J. Tomlin

Abstract— Hamilton-Jacobi (HJ) reachability analysis is an
important formal verification method for guaranteeing per-
formance and safety properties of dynamical systems; it has
been applied to many small-scale systems in the past decade.
Its advantages include compatibility with general nonlinear
system dynamics, formal treatment of bounded disturbances,
and the availability of well-developed numerical tools. The
main challenge is addressing its exponential computational
complexity with respect to the number of state variables. In this
tutorial, we present an overview of basic HJ reachability theory
and provide instructions for using the most recent numerical
tools, including an efficient GPU-parallelized implementation of
a Level Set Toolbox for computing reachable sets. In addition,
we review some of the current work in high-dimensional HJ
reachability to show how the dimensionality challenge can
be alleviated via various general theoretical and application-
specific insights.

I. INTRODUCTION

As the systems we design grow more complex, determin-
ing whether they work according to specification becomes
more difficult. Consequently, verification and validation have
received major attention in many fields of engineering. How-
ever, verification of systems is challenging for many reasons.
First, all possible system behaviors must be accounted for.
This makes most simulation-based approaches insufficient,
and thus formal verification methods are needed. Second,
many practical systems are affected by disturbances in the
environment, which can be unpredictable, and may even
contain adversarial agents. In addition, these systems often
have high dimensional state spaces and evolve in continuous
time with complex, nonlinear dynamics.

Hamilton-Jacobi (HJ) reachability analysis is a verification
method for guaranteeing performance and safety properties
of systems, overcoming some of the above challenges. In
reachability analysis, one computes the reach-avoid set, de-
fined as the set of states from which the system can be driven
to a target set while satisfying time-varying state constraints
at all times. A major practical appeal of this approach
stems from the availability of modern numerical tools, which
can compute various definitions of reachable sets [1]–[4].
For example, these numerical tools have been successfully
used to solve a variety of differential games, path planning

* All authors contributed equally to this article. Authors’ names are
written in the alphabetical order. All authors are with the Department of
Electrical Engineering and Computer Sciences, University of California,
Berkeley. {somil, mochen72, sylvia.herbert, tomlin}@eecs.berkeley.edu

This tutorial is supported by NSF under the CPS Frontiers VehiCal project
(1545126) and CPS:ActionWebs (CNS-931843), by the UC-Philippine-
California Advanced Research Institute under project IIID-2016-005, by the
ONR MURI Embedded Humans (N00014-16-1-2206), and by NASA under
grants NNX12AR18A and UCSCMCA-14-022 (UARC).

problems, and optimal control problems. Concrete practi-
cal applications include aircraft auto-landing [5], automated
aerial refueling [6], model predictive control (MPC) of
quadrotors [7], [8], multiplayer reach-avoid games [9], large-
scale multiple-vehicle path planning [10], [11], and real-
time safe motion planning [12]. However, HJ reachability
becomes computationally intractable as the state space di-
mension increases. Traditionally, reachable set computations
involve solving an HJ partial differential equation (PDE) on a
grid representing a discretization of the state space, resulting
in an exponential scaling of computational complexity with
respect to system dimensionality; this is often referred to
as the “curse of dimensionality.” However, recent work has
made a significant leap in overcoming these challenges by
exploiting system structures to decompose the computation
of reachable set into several small dimensional computations
[13], [14]. In addition, convex optimization applied to the
Hopf-Lax formula allows real-time computation of the HJ
PDE solution at any desired state and time instant when the
system dynamics are linear [15], [16].

Besides HJ reachability, alternative approaches to verifi-
cation exist. In particular, satisfaction of properties such as
safety, liveness, and fairness in computer software and in
discrete-time dynamical systems can be verified by check-
ing whether runs of a transition system, or words of a
finite automaton satisfy certain desired properties [17], [18].
These properties may be specified by a variety of logical
formalisms such as linear temporal logic. For specifications
of properties of interest in autonomous robots, richer for-
malisms have been proposed. For example, propositional
temporal logic over the reals [19], [20] allows specification
of properties such as time in terms of real numbers, and
chance-constrained temporal logic [21] allows specification
of requirements in the presence of uncertainty. Besides
autonomous cars and robots, verification approaches based
on discrete models have also been successfully used in the
context of intelligent transportation systems [22] and human-
automation interaction [23].

For continuous and hybrid systems, safety properties can
be verified by checking whether the forward reachable set
or an over-approximation of it intersects with a set of un-
desirable states, akin to checking runs of transition systems.
Numerous tools such as SpaceEx [24], Flow* [25], CORA
[26], C2E2 [27], [28], and dReach [29] have been developed
for this purpose; the authors in [30] present a tutorial on
combining different tools for hybrid systems verification.
In addition, methods that utilize semidefinite programming
to search for Lyapunov functions can be used to verify
safety [31], [32]. This is done, for example, by constructing

ar
X

iv
:1

70
9.

07
52

3v
1

 [
cs

.S
Y

]
 2

1
Se

p
20

17

Fig. 1: Target set and backward reachable set. Several
trajectories are shown starting at the same time t but from
different states x and subject to different input signals a(·)
and b(·). Input signal a(·) is chosen to drive the trajectory
away from the target set, while input signal b(·) is chosen
to drive the trajectory toward the target. Figure taken from
[37].

barrier certificates [33] or funnels [34], [35] with Lyapunov
properties.

Outside of the realm of checking whether the set of
possible future states of a system includes undesirable states,
safety can also be verified by starting from known unsafe
conditions and computing backward reachable sets, which
the system should avoid. In general, the challenges fac-
ing verification methods include computational tractability,
generality of system dynamics, existence of control and
disturbance variables, and representation of sets [36]–[39].
HJ reachability can be distinguished from other methods
because it is applicable to general nonlinear systems, easily
handles control and disturbance variables, and is able to
represent sets of arbitrary shapes. However, this flexibility
comes with the cost of computational complexity. Other
backward reachability methods make other trade-offs. For
example, [24], [40]–[42] present scalable methods for affine
systems that rely on polytopic or ellipsoidal representation
of sets, while the methods presented in [43]–[45] are well-
suited to systems with polynomial dynamics.

The goal of this tutorial is four-fold. First, we aim to pro-
vide a formal and self-contained introduction to reachability
theory. Second, we familiarize the readers with some of the
available tools for the computation of reachable sets. Third,
we provide an overview of the recent developments in reach-
ability theory that help overcome the curse of dimensionality.
Finally, we illustrate some of the recent applications of reach-
ability theory in the verification of safety-critical systems.

II. BACKWARD REACHABLE SET (BRS)

In reachability theory, we are often interested in computing
the backward reachable set of a dynamical system. This is
the set of states such that the trajectories that start from this
set can reach some given target set (see Figure 1). If the
target set consists of those states that are known to be unsafe,
then the BRS contains states which are potentially unsafe
and should therefore be avoided. As an example, consider

collision avoidance protocols for two aircraft in En-Route
airspace. The target set would contain those states that are
already “in loss of separation,” such as those states in which
the aircraft are within the five mile horizontal separation
distance mandated by the Federal Aviation Administration.
The backward reachable set contains those states which could
lead to a collision, despite the best possible control actions.
We typically formulate such safety-critical scenarios in terms
of a two-player game, with Player 1 and Player 2 being
control inputs. For example, Player 1 could represent one
aircraft, Player 2 another, with Player 1’s control input being
treated as the control input of the joint system, and with
Player 2’s control input being treated as the disturbance.

Mathematically, let x ∈ Rn be the system state, which
evolves according to the ordinary differential equation (ODE)

ẋ(s) = f(x(s), a(s), b(s)), s ∈ [t, 0], a(s) ∈ A, b(s) ∈ B,
(1)

where a(s) and b(s) denote the input for Player 1 and Player
2 respectively. We assume that the control functions a(·), b(·)
are drawn from the set of measurable functions1:

a(·) ∈ A(t) ={φ : [t, 0]→ A : φ(·) is measurable}
b(·) ∈ B(t) ={φ : [t, 0]→ B : φ(·) is measurable}

where A ⊂ Rnu and B ⊂ Rnd are compact and t < 0.
The system dynamics, or flow field, f : Rn × A × B →
Rn is assumed to be uniformly continuous, bounded, and
Lipschitz continuous in x uniformly in2 a and b. Therefore,
given a(·) ∈ A and b(·) ∈ B, there exists a unique trajectory
solving (1) [46]. We will denote solutions, or trajectories of
(1) starting from state x at time t under control a(·) and b(·)
as ζ(s;x, t, a(·), b(·)) : [t, 0] → Rn. ζ satisfies (1) with an
initial condition almost everywhere:

d

ds
ζ(s;x, t, a(·), b(·)) = f(ζ(s;x, t, a(·), b(·)), a(s), b(s))

ζ(t;x, t, a(·), b(·)) = x
(2)

Intuitively, a BRS represents the set of states x ∈ Rn from
which the system can be driven into some set G0 ⊆ Rn at
the end of a time horizon of duration |t|. We call G0 the
“target set”. We assume that Player 1 will try to steer the
system away from the target with her input, and Player 2
will try to steer the system toward the target with her input.
Consequently, we want to compute the following BRS:

G(t) ={x : ∃γ ∈ Γ(t),∀a(·) ∈ A,
ζ(0;x, t, a(·), γ[a](·)) ∈ G0},

(3)

where Γ(·) in (3) denotes the feasible set of strategies for
Player 2.

The computation of the BRS in (3) requires solving a
differential game between Player 1 and Player 2 (more on

1A function f : X → Y between two measurable spaces (X,ΣX) and
(Y,ΣY) is said to be measurable if the preimage of a measurable set in
Y is a measurable set in X , that is: ∀V ∈ ΣY , f

−1(V) ∈ ΣX , with
ΣX ,ΣY σ-algebras on X ,Y .

2For the remainder of the tutorial, we will omit the notation (s) from
variables such as x and a when referring to function values.

this in Section III). In a differential game setting, it is
important to address what information the players know
about each other’s decisions which directly affects their
strategies, and consequently, the outcome of the game. In
reachability problems, we assume that the Player 2 uses only
non-anticipative strategies Γ(·) [37], defined as follows:

γ ∈ Γ(t) := {N : A(t)→ B(t) : a(r) = â(r) a. e. r ∈ [t, s]

⇒ N [a](r) = N [â](r) a. e. r ∈ [t, s]}
(4)

That is, Player 2 cannot respond differently to two Player
1 controls until they become different. Yet, in this setting,
Player 2 has the advantage of factoring in Player 1’s choice
of input at every instant t and adapting its own accordingly.
Thus, Player 2 has an instantaneous informational advan-
tage, which allows us to establish safety guarantees under
the worst-case scenarios. One particular class of problems in
which the notion of non-anticipative strategies is applicable
is robust control problems, in which one wants to obtain
the robust control (Player 1) with respect to the worst-case
disturbance (Player 2), which can then be modeled as an
adversary with the instantaneous informational advantage
(not because this disturbance is in fact reacting to the
controller’s input, but rather, because out of all possible
disturbances there will be one that will happen to be the
worst possible given the chosen control).

The differential game that must be solved in order to
compute the BRS in (3) is a “game of kind” rather than
a “game of degree”, i.e., games in which the outcome is
determined by whether or not the state of the system reaches
a given configuration under specified constraints at any time
within the duration of the game. The good news is that an
approach known as the level set method can transform these
games of kind into games of degree in an analytically sound
and computationally tractable way. We first provide a brief
overview of the theory of differential games and then explain
how the problem of computing a BRS can be transformed
into a differential game of degree using level set methods.

III. TWO-PERSON ZERO-SUM DIFFERENTIAL GAMES

In many relevant differential game problems, the goal
is to optimize a cost function of the final state and some
running cost or reward accumulated over system trajectories.
The system is steered towards this final state after a finite
time horizon. Formally, let Jt(x, a(·), b(·)) denote the cost
accumulated during horizon [t, 0] when Player 1 and Player
2 play control a(·) and b(·), respectively. Jt(·) can be
expressed as

Jt(x, a(·), b(·)) =

∫ 0

t

c(x(s), a(s), b(s), s)ds+q(x(0)) (5)

In the zero-sum setting, Player 1 will attempt to maximize
this outcome, while the Player 2 will aim to minimize
it, subject to the system dynamics in (1). Under the non-
anticipative strategy assumption, we can readily define the

so-called lower value3 of the game as

G(t, x) = inf
γ∈Γ(t)

sup
a(·)∈A

Jt(x, a(·), γ[a](·)), (6)

where Γ(·) is defined in (4).
Using the principle of dynamic programming, it can be

shown that the value function G(t, x) in (6) is the viscosity
solution [47] of the following Hamilton-Jacobi Isaacs (HJI)
PDE:

DtG(t, x) +H(t, x,∇G(t, x)) = 0, G(0, x) = q(x), (7)

where H(t, x,∇G(t, x)) is called the Hamiltonian and is
given by

H(t, x, λ) = max
a∈A

min
b∈B

c(x, a, b, t) + λ · f(x, a, b). (8)

λ in (8) denotes ∇G(t, x) and is called the costate. Given
the value function, the optimal control for Player 1 can be
obtained as:

a∗(t, x) = arg max
a∈A

min
b∈B

c(x, a, b, t) + λ · f(x, a, b). (9)

The optimal control for Player 2 can be similarly obtained.
A more detailed discussion of this material can be found in
[47].

IV. THE LEVEL SET APPROACH: FROM GAMES OF KIND
TO GAMES OF DEGREE

We are now ready to solve the original intended problem
of this tutorial: the computation of BRS. In Section III, we
discussed how the differential games of degree can be solved
using an HJ PDE. The computation of the BRS, however, is a
differential game of kind where the outcome is Boolean: the
system either reaches the target set or not. It turns out that we
can “encode” this Boolean outcome through a quantitative
value function: for example, if we consider Jt(·) as the
distance between the system state and the target region at the
terminal state of the system, it is easy to determine whether
the system reached the target by comparing this distance to
some threshold value (simply 0 in this case). This allows us
to find the solution to a game of kind by posing an auxiliary
game of degree whose solution encodes that of the original
problem: this is, in essence, the level set approach.

In particular, one can always find a Lipschitz function g(x)
such that G0 (the target set) is equal to the zero sublevel set
of g, that is, x ∈ G0 ⇔ g(x) ≤ 0. The Lipschitz function g
can always be found, since one can always choose the signed
distance to the respective sets. If we define the cost function
to be

Jt(x, a(·), b(·)) = g(x(0)), (10)

then the system reaches the target set under controls a and b
if and only if Jt(x, a(·), b(·)) ≤ 0. Since Player 2 wants to
drive the system to the target, it wants to minimize the cost
in (10), and Player 1 wants to maximize this cost. We can
now compute the value function G(t, x) for this differential

3Note that, in general, one needs to define both the upper and lower
values of the game, but for the scenarios that we are interested in, the lower
value will suffice.

game in a similar fashion to Section III. Consequently, the
BRS can be obtained as

G(t) = {x : G(t, x) ≤ 0}, (11)

where G(t, x) satisfies the following HJI PDE:

DtG(t, x) +H(t, x, λ) = 0, G(0, x) = g(x). (12)

The Hamiltonian is given by

H(t, x, λ) = max
a∈A

min
b∈B

λ · f(x, a, b). (13)

The interpretation of G(t) is that if x(t) ∈ G(t), then
Player 2 has a control sequence that will drive the system
to the target at time 0, irrespective of the control of Player
1. If x(t) ∈ ∂G(t), where ∂G(t) denotes the boundary of
G(t), then Player 1 will barely miss the target at time 0 if it
applies the optimal control

a∗(t, x) = arg max
a∈A

min
b∈B

λ · f(x, a, b). (14)

Finally, if x(t) ∈ G(t)C , then Player 1 has a control sequence
(given by (14)) that will keep the system out of the target set,
irrespective of the control applied by Player 2. In particular,
when the target set G0 represents unsafe/undesired states of
the system and Player 2 represents the disturbances in the
system, then G(t) represents the effective unsafe set, i.e., the
set of states from which the disturbance can drive the system
to the actual unsafe set despite the best control efforts. Thus,
reachability analysis gives us the safe set (in this case G(t)C)
as well as a controller (in this case a∗(t, x)) that will keep
the system in the safe set, given that the system starts in the
safe set.

V. DIFFERENT FLAVORS OF REACHABILITY

So far, we have presented the computation of BRSs,
but reachability analysis is not limited to BRSs. One can
compute various other kinds of sets that may be more
useful, depending on the verification problem at hand. In
this section, we provide a brief overview of some of these
sets.

A. Forward vs. Backward Reachable Set

In some cases, we might be interested in computing a
forward reachable set (FRS): the set of all states that a
system can reach from a given initial set of states after a time
duration of |t|. Formally, we want to compute the following
set:

W(t) ={y : ∃γ ∈ Γ(t),∀a(·) ∈ A,
ζ(t;x, 0, a(·), γ[a](·)) = y, x ∈ G0}, t > 0.

(15)

Here, G0 represents the set of initial states of system. W(t)
is the set of all states that system can reach in a duration
of t, while Player 1 applies the control to keep the system
in G0 and Player 2 applies the control to drive the system
out of G0. The FRS can be computed in a similar fashion as
the BRS. The only difference is that an initial value HJ PDE
needs to be solved instead of a final value PDE, which can
always be converted into an equivalent final value PDE by

change of variables [48]. More details on the computation of
FRS and some of their concrete applications can be found
in [10], [49].

B. Reachable Sets vs. Tubes

Another important aspect in reachability is that of reach-
able tubes. The reachable set is the set of states from which
the system can reach a target at exactly time 0. Perhaps a
more useful notion is to compute the set of states from which
the system can reach a target within a duration of |t|. For
example, for safety analysis, we are interested in verifying
if a disturbance can drive the system to the unsafe states
ever within a horizon, and not just at the end of the horizon.
This notion is captured by reachable tubes. Here, we present
the formal definition of backward reachable tube (BRT), but
forward reachable tube (FRT) can be similarly defined:

G(t) ={x : ∃γ ∈ Γ(t),∀a(·) ∈ A,
∃s ∈ [t, 0], ζ(s;x, t, a(·), γ[a](·)) ∈ G0}.

(16)

Once again, the BRT can be computed by solving a final
value PDE similar to that in (12) [37], [50].

C. Roles of the Control and Disturbance

Depending on the role of Player 1 and Player 2, we may
need to use different max-min combinations. As a rule of
thumb, whenever the existence of a control (“∃a”) is sought,
the optimization is a minimum over the set of controls in
the corresponding Hamiltonian. Whenever a set/tube char-
acterizes the behavior of the system for all controls (“∀a”),
the optimization is a maximum. For example, for the BRS
in (3), we sought the existence of a Player 2 controller for
all Player 1 controls, so we used minimum for Player 2 and
maximum for Player 1 in the Hamiltonian (see (13)). When
the target set represents the set of the desired states that we
want the system to reach and Player 2’s control represents
the disturbance, then we are interested in verifying if there
exists a control of Player 1 such that the system reaches its
target despite the worst-case disturbance. In this case, we
should use maximum for Player 2’s control and minimum
for Player 1’s control in the corresponding Hamiltonian.

D. Presence of State Constraints

Another interesting problem that arises in verification is
the reachability to and from a target set subject to some
state constraints; this can be handled efficiently for even
time-dependent constraints within the reachability framework
[39], [51]. In general, any combination of the above four
variants can be solved using the HJ reachability formulation.
Partially, it is this flexibility of the reachability framework
that has facilitated its use in various safety-critical applica-
tions, some of which we will discuss in this tutorial.

VI. COMPUTATIONAL TOOLS FOR HJ REACHABILITY

In this section, we will present an overview of two
available computational tools that can be used to compute
different definitions of reachable sets.

A. The Level Set Toolbox (toolboxLS)

The level set toolbox (or toolboxLS) was developed
by Professor Ian Mitchell [4] to solve partial differen-
tial equations using level set methods, and is the foun-
dation of the HJ reachability code. The toolbox is im-
plemented in MATLAB and is equipped to solve any
final-value HJ PDE. Since different reachable set compu-
tations can be ultimately posed as solving a final-value
HJ PDE (see Sections IV and V), the level set toolbox
is fully equipped to compute various types of reachable
sets. Information on how to install and use toolboxLS can
be found here: http://www.cs.ubc.ca/∼mitchell/ToolboxLS.
This toolbox can be further augmented by the Hamilton-
Jacobi optimal control toolbox (or helperOC). A quick-
start guide to using toolboxLS and helperOC is pre-
sented in the Appendix and is also available at:
http://www.github.com/HJReachability/helperOC.

B. The Berkeley Efficient API in C++ for Level Set methods
(BEACLS) Toolbox

The Berkeley Efficient API in C++ for Level Set meth-
ods (BEACLS) Toolbox was developed by Ken Tanabe.
This toolbox implements the functions from helperOC
and toolboxLS in C++ for fast computation of reachabil-
ity analyses. The library also uses GPUs for paralleliz-
ing different computations in the level set toolbox. The
installation instructions and user guide can be found at:
http://www.github.com/HJReachability/beacls. This GPU li-
brary has been used for large-scale multi-vehicle reachability
problems, such as safe path planning (see Section VIII-B).

VII. CURRENT RESEARCH IN HJ REACHABILITY
THEORY

Recently there have been several advances in HJ reach-
ability theory and applications. Research on restructuring
dynamics, new formulations for analysis, and the addition
of learning techniques provided HJ reachability with a
broadened and deeper span of feasible applications. These
advances are used in safety-critical applications to provide
safety guarantees, liveness properties, and optimal con-
trollers.

A. System Decomposition Techniques for Nonlinear Systems

Decomposition methods address the exponentially scaling
computational complexity of previous approaches for solving
HJ reachability problems, which makes application to high-
dimensional systems intractable. In [13], [52] a new tech-
nique is proposed that decomposes the dynamics of a general
class of nonlinear systems into subsystems which may be
coupled through common states, controls, and disturbances.
Despite this coupling, BRSs and BRTs can be computed
efficiently and exactly using this technique without the need
for linearizing dynamics or approximating sets as polytopes.
Computations of BRSs and BRTs now become orders of
magnitude faster, and for the first time BRSs and BRTs for

many high-dimensional nonlinear control systems can be ex-
actly computed. In situations where the exact solution cannot
be computed, this method can obtain slightly conservative
results. The paper demonstrates this theory by numerically
computing BRSs and BRTs for several systems, including the
6D Acrobatic Quadrotor and the 10D near-Hover Quadrotor.
Reachable sets computed using the decomposition process
are illustrated in Figure 2, with details in [13], [52].

(a) BRS & BRT for a 6D
quadrotor avoiding an obstacle.

(b) Reachable set and tube for a
10D quadrotor reaching a target.

Fig. 2: Decomposition results for nonlinear systems. Figures
taken from [13].

In more general settings, approximate decomposition of
nonlinear systems can be achieved by treating key states
as disturbances, as in [14], [53]. These methods are able
to maintain a direction of conservatism in order to provide
guarantees on system performance and safety by either
computing overapproximations or underapproximations of
reachable sets and tubes. In [14], the authors also propose a
way to trade off conservatism of the solution with computa-
tional cost.

(a) Projection-based approxi-
mation of a reachable tube.
Figure taken from [53].

(b) Decoupling disturbance-
based approximation of a
reachable set. Figure taken
from [14].

Fig. 3: Approximate decomposition results for nonlinear
systems.
B. System Decomposition Techniques for Linear Time-
Invariant Systems

In the linear time-invariant case, many non-HJ-based com-
putation techniques have been developed for approximating
reachable sets. In the area of HJ reachability, specific de-
composition techniques also exist, and provide a substantial
reduction in computational burden with a small degree of

http://www.github.com/HJReachability/helperOC

conservatism. In [54], the authors proposed a Schur-based
decomposition technique for computing reachable sets and
synthesizing safety-preserving controllers. Subsystems are
analyzed separately, and reachable sets of subsystems are
back-projected and intersected to construct an overapproxi-
mation of the reachable set, so that safety can still be guaran-
teed. In [55], a similar approach based on a modified Riccati
transformation is used. Here, decentralized computations are
done in transformed coordinates of subspaces. The computa-
tion results are combined to obtain an approximation of the
viability kernel, which is the complement of the reachable
set. Figure 4 shows the conservative approximations obtained
from these decomposition techniques.

(a) Overapproximation
(translucent) of a reachable
set (solid). Figure taken from
[54].

(b) Constraint set (translucent)
and the approximate viabil-
ity kernel (solid). Figure taken
from [55].

Fig. 4: Decomposition results for linear time-invariant sys-
tems.

C. Fast and Safe Tracking for Motion Planning

Fast and safe navigation of dynamical systems through
a priori unknown cluttered environments is vital to many
applications of autonomous systems. However, trajectory
planning for autonomous systems is computationally in-
tensive, often requiring simplified dynamics that sacrifice
safety and dynamic feasibility in order to plan efficiently.
Conversely, safe trajectories can be computed using more
sophisticated dynamic models, but this is typically too slow
to be used for real-time planning. In [12], a new algorithm
is developed called FaSTrack: Fast and Safe Tracking. A
path or trajectory planner using simplified dynamics to plan
quickly can be incorporated into the FaSTrack framework,
which provides a safety controller for the vehicle along
with a guaranteed tracking error bound. By formulating a
differential game and leveraging HJ reachability’s flexibility
with respect to nonlinear system dynamics, this tracking error
bound is computed in the error coordinates, which evolve
according to the error dynamics, and captures all possible
deviations due to dynamic infeasibility of the planned path
and external disturbances. Note that FaSTrack is modular
and can be used with other path or trajectory planners. This
framework is demonstrated using a 10D nonlinear quadrotor
model tracking a 3D path obtained from an RRT planner,
shown in Figure 5.

Fig. 5: Real-time safe planning using FaSTrack. Figure
obtained from [12].

D. HJ Reachability for Safe Learning-Based Control

The proven efficacy of learning-based control schemes
strongly motivates their application to robotic systems op-
erating in the physical world. However, guaranteeing correct
operation during the learning process is currently an unre-
solved issue, which is of vital importance in safety-critical
systems.

Fig. 6: A Hummingbird UAV is able to successfully reject
disturbances using online learning, and fails to do so without
learning. Figure obtained from [56].

In [56], [57], a general safety framework is proposed based
on HJ reachability methods that can work in conjunction
with an arbitrary learning algorithm. The method exploits
approximate knowledge of the system dynamics to guarantee
constraint satisfaction while minimally interfering with the
learning process. The authors further introduce a Bayesian
mechanism that refines the safety analysis as the system ac-
quires new evidence, reducing initial conservativeness when
appropriate while strengthening guarantees through real-time
validation. The result is a least-restrictive, safety-preserving
control law that intervenes only when (a) the computed safety
guarantees require it, or (b) confidence in the computed
guarantees decays in light of new observations.

The authors provide safety guarantees combining proba-

bilistic and worst-case analysis and demonstrate the proposed
framework experimentally on a quadrotor vehicle. Even
though safety analysis is based on a simple point-mass
model, the quadrotor is able to successfully run policy-
gradient reinforcement learning without crashing, and safely
retracts away from a strong external disturbance introduced
during one of the experiments, as shown in Figure 6.

E. HJ Reachability Analysis using Neural Networks

Many of the recent breakthroughs in machine learning
and AI have been possible thanks in part to the use of
powerful function approximators, and in particular (deep)
neural networks. In AI, these approximators are used to
represent a myriad of complex functions such as Value
functions, Q-functions and control policies, which often have
high-dimensional data as inputs. In [58]–[61], the authors use
these same tools in the context of reachability to approximate
solutions of the HJ PDE by implementing and analyzing
learning-based algorithms to approximate the solution of
certain types of HJ PDEs using neural networks. Some recent
results on 2D and 3D systems show that these learning-based
algorithms require less memory to run and less memory to
store the resulting approximation than traditional gridding-
based methods. Further work involves exploring how well
these algorithms scale with the number of dimensions in
the state space, as well as the types of safety guarantees
that can be derived from these types of approximations. In
some cases, conservative guarantees for the computed value
functions are possible despite the use of neural networks.
Figure 7 shows preliminary results.

(a) Approximation a reachable
set (red) using a neural network
(point cloud). Figure taken from
[60].

(b) Overapproximation of a
value function (contours) using
a neural network (color gradi-
ent) in small regions of the state
space. Figure taken from [61].

Fig. 7: Neural network-based approximations of value func-
tions representing reachable sets.

F. Generalized Hopf Formula for Linear Systems

In [15], [16], the authors proposed using a generalized
Hopf formula for solving HJ PDEs arising from linear
systems, which may be time-varying. Obtaining HJ PDE
solutions here involves solving the minimization problem in
the generalized Hopf formula. This minimization problem
can be solved using any optimization algorithm; the authors
suggest using coordinate descent with multiple initializa-
tions, as well as a numerical quadrature rule for an integral

with respect to time. Alternative algorithms such as ADMM
can also be used. By reformulating the problem of solving
the HJ PDE as an optimization problem, the solution for HJ
PDEs can be obtained at any desired points in state space
and time, effectively alleviating the exponentially scaling
computational complexity in finite difference-based methods.
Figure 8 shows the results of this method.

Fig. 8: Comparison between HJ PDE solutions obtained
using the Hopf formula (colored) and using Lax-Friedrichs
finite difference (black-and-white). Figure obtained from
[16].

VIII. SOME CURRENT APPLICATIONS OF HJ
REACHABILITY

A. Unmanned Aerial Systems Traffic Management (UTM)
using Air Highways

In collaboration with the National Aeronautics and Space
Administration (NASA), HJ reachability has been applied to
UTM [62]. In [11], [63], the authors proposed an efficient
and flexible method for the placement of air highways, which
are designated virtual pathways in the airspace. Air highways
provide a scalable and intuitive way for monitoring and man-
aging a large number of unmanned aerial vehicles (UAVs)
flying in civilian airspace. The proposed method starts with
a cost map encoding the desirability of having UAVs fly
in different parts of a region, and computes minimum-cost
paths connecting origins and destinations. These paths can
be updated in real time according to changes in the airspace.
Trunks and branches of air highways, similar to ground-
based highway systems, naturally emerge from the proposed
method. Applying the method to the San Francisco Bay Area,
these air highways, which avoid urban areas and airports as
much as possible, are shown in Figure 9a.

To fulfill potential traffic rules on the air highways, a
hybrid system model for each UAV is used. On the highway
system, a UAV can be in the “Free”, “Leader” or “Follower”
modes. In this context, HJ reachability is used to ensure
the success and safety of mode transitions. For example, the
transition from the Free mode to the Leader mode involves
using a controller from a maximal backward reachable set
to arrive at a prescribed destination on the highway at a
prescribed time. The highway and platoon structure greatly
reduces the chance of multiple conflicts, enabling the use of
pairwise safety analysis. Pairwise safety can be guaranteed

(a) Air highway placement over the San Francisco
Bay Area.

Free:
• Vehicle not in

platoon or on
highway

Leader
• Leader of

platoon

Follower
• Member of

platoon

Leave
highway

Merge onto highway
(get to absolute state)

Create new platoon
(get to absolute state)

Merge with platoon in front
(get to relative state)

Join platoon
(get to relative state)

Follow highway
(model predictive controller)

Follow platoon
(PD controller)

Leave highway

(b) The purple vehicle is joining the platoon while avoiding
collisions.

Fig. 9: The air highway and platooning concept for UTM.
Figures are taken from [63].

using a minimal backward reachable set defined in the
relative coordinates of two vehicles. The hybrid systems
model is shown in Figure 9b. The proposed platooning
concept has been implemented in the quadrotor lab at UC
Berkeley on Crazyflies 2.0, which is an open source nano
quadrotor platform developed by Bitcraze.

B. Sequential Robust Space-Time Reservations

The trajectory planning of large-scale multi-robot systems
has been addressed in work on sequential path planning
[10], which robustly synthesizes controllers for many ve-
hicles to reach their destinations while avoiding collisions
under the presence of disturbances and a single intruder
vehicle. Although reachability is well-suited for these ro-
bustness requirements, simultaneous analysis of all vehicles
is intractable. Instead, vehicles are assigned a strict priority
ordering, with lower-priority vehicles treating higher-priority
vehicles as moving obstacles. Robust path planning around
these induced obstacles is done using a novel time-varying
formulation of reachability [39]. The result is a reserved
“space-time” in the airspace for each vehicle, which can be

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(a) 6 m/s wind, high UAV den-
sity

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(b) 11 m/s wind, high UAV den-
sity

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(c) 6 m/s wind, medium UAV
density

0 1 2 3 4 5 km

0

1

2

3

4

5 km

(d) 11 m/s wind, medium UAV
density

Fig. 10: Natural lane forming of UAVs due to disturbance
rejection and arrival time constraints. Figures taken from
[64].

used as a “last-mile” solution for getting from air highways to
a final postal address. The space-time reservation is dynam-
ically feasible to track even when the vehicle experiences
disturbances and performs collision avoidance against an
adversarial intruder. Simulations of the robust SPP method
over San Francisco for different combinations of wind speeds
and UAV densities are shown in Figure 10. Details can be
found in [10], [64], [65].

C. Multi-Vehicle Coordination Using HJ Reachability and
High-Level Logic

In [66], [67], the scalability limitations of HJ reachability
are overcome by a mixed integer program that exploits
the properties of pair-wise HJ solutions to provide higher-
level control logic. This logic is applied in a couple of
different contexts. First, safety guarantees for three-vehicle
collision avoidance is proved – a previously intractable task
for HJ reachability – without incurring significant additional
computation cost [66]. The collision avoidance protocol
method is also scalable beyond three vehicles and performs
significantly better by several metrics than an extension
of pairwise collision avoidance to multi-vehicle collision
avoidance. Figure 11a shows an 8-vehicle collision avoidance
simulation.

Second, in multiplayer reach-avoid games, two teams of
cooperative players with conflicting and asymmetric goals
play against each other on some domain, possibly with
obstacles. The attacking team tries to arrive at some arbitrary
target set in the domain, and the defending team seeks to

prevent that by capturing attackers. Such a scenario is useful
for intercepting “rogue” UAVs trying to enter restricted
areas of the airspace. The joint solution to this problem
is intractable, so a maximum matching approach is taken
instead. To each defender, the maximum matching process
tries to assign an attacker who is guaranteed to lose to the
defender, and the team of defenders coordinate the vehicle-
to-vehicle defense. As a result, an upper bound on the
number of attackers that can reach the target set can be
obtained [67]. The maximum matching result for a particular
game setup is shown in Figure 11b.

-20 0 20 40 60
-20

-10

0

10

20

30

40

50

60

t = 8

(a) Multi-vehicle collision
avoidance simulation. Figure
taken from [66].

HJI

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Target

Obstacle

Defender

Attacker

Bipartite Graph

Maximum Matching

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
Path Defense

P
A

1

P
A

2

P
A

2

P
A

3

P
A

3

P
A

4

P
A

4

P
D

1

P
D

1

P
D

2

P
D

2

P
D

3

P
D

3

P
D

4

P
D

4

P
A

1

(b) The maximum matching pro-
cess for rogue UAV interception.
Figure taken from [67].

Fig. 11: Multi-vehicle analysis using HJ reachability and
higher-level logic.

IX. CONCLUSIONS

Hamilton-Jacobi (HJ) reachability is a useful tool for guar-
anteeing goal satisfaction and safety under controlled safety-
critical scenarios with bounded disturbances. However, a
direct application of HJ reachability in most cases becomes
intractable due to its exponentially-scaled computational
complexity with respect to the continuous state dimension. In
this tutorial, we start from a comprehensive overview of HJ
reachability theory from its roots in differential games theory.
We then provide an overview of the recent theoretical work
that aims at alleviating the curse of dimensionality, including
several applications that leverage these ideas to ensure safety.

ACKNOWLEDGMENT

The authors would like to thank Jaime F. Fisac whose write
up on differential games was immensely helpful in preparing
this tutorial document.

X. APPENDIX: QUICK-START GUIDE

To familiarize ourselves with the tools available in tool-
boxLS and helperOC, we will walk through a simple example
file to run several different forms of reachability analysis for
a 3D Dubins car example.

A. Defining and Handling Dynamic Systems

Before setting up the analyses, we must first understand
how to use the code to create and handle dynamic systems
like the 3D Dubins car. In helperOC we use object-oriented

code to define our dynamics. This allows us to create, for
example, a Dubins car “object” that inherits the properties
and functions related to a dynamic system and its own
dynamics and parameters. In this section we will review the
class structure.

The dynamic systems class is found under
helperOC/dynSys/@DynSys. This class defines several
properties and functions inherent to any dynamical system
used for reachability analysis. All systems in helperOC are
sub-classes of @DynSys. The sub-classes are also found
in helperOC/dynSys. For now we will review the sub-class
@DubinsCar as an example. This folder contains four files:
DubinsCar.m, dynamics.m, optCtrl.m, and optDstb.m. The
dynamics of the Dubins car is defined by: ṗx

ṗy
θ̇

 =

 v cos(θ) + b1
v sin(θ) + b2

a+ b3

a ∈ A, b = [b1, b2, b3] ∈ B

(17)

where a is the control, and b is the disturbance. DubinsCar.m
is the main function of the Dubins car sub-class. This
function defines the properties of a Dubins car (e.g. speed
v, angular control a, and disturbance b), as well as the
constructor function for creating a Dubins car object. This
function takes in the object parameters and constructs a
Dubins car object with said parameters.

The function dynamics.m sets the dynamics for the system.
Open this file for a demonstration of how to incorporate
the dynamics of your system into the code. Note that the
inputs are the object, state, control, and disturbance. For
time-varying systems, a time input can be included as well.

The functions optCtrl.m and optDstb.m are used to find
the optimal control and disturbance at every grid point in
the state space for each time step. These functions are
determined by taking the inner product between the spatial
gradients of the value function and the system dynamics, i.e.
by computing the Hamiltonian, as required in equation (13),
and as of now must be defined by hand. The control that
either maximizes or minimizes the Hamiltonian (depending
on what is desired) is the optimal control. The optimal
disturbance does the opposite. As an example we will derive
the optimal control and disturbance for the Dubins car in the
case where uMode = ‘min’ and dMode = ‘max.’ Note that
we will use Gpx to denote the partial derivative of the value
function with respect to state px.

∇G · f(x, a, b)
= Gpx(v cos(θ) + b1) +Gpy (v sin(θ) + b2) +Gθ(a+ b3)

a ∈ [amin, amax], [b1, b2, b3] ∈ [bmin, bmax]
(18)

Gathering terms multiplied by the control, we can find the
optimal control by taking the argmin of these terms.

a∗ = arg mina {< ∇G, f(x, a, b) >} = arg mina {Gθ ∗ a}
= amin if Gθ ≥ 0, amax if Gθ ≤ 0

(19)

Fig. 12: Visualization that should appear when running
tutorial test.m, illustrating a backward reachable set (BRS)
for a Dubins car.

We follow a similar procedure to find one of the optimal
disturbances.

b∗1 = arg maxb1 {< ∇G, f(x, a, b) >}
= arg maxb1 {Gpx ∗ b1}

= b1 max if Gpx ≥ 0, b1 min if Gpx ≤ 0
(20)

The optimal disturbances b∗2 and b∗3 can be similarly
computed. These results are coded into optCtrl.m and
optDstb.m for the Dubins car sub-class. For examples
using more complicated dynamics, one can explore other
sub-classes within helperOC/dynSys.

B. Reachability Analysis Setup

The example file we will use here to define the reachability
analysis is tutorial test.m, and is contained within the helpe-
rOC repository. This function consists of modifiable code
to run several different forms of reachability analysis for a
3D Dubins car example. Try running this function to verify
correct installation. A visualization of a spiral red set in 3D
should appear, as shown in Fig. 12.

The comments at the top of the script explain how to
modify the function to test different versions. In this section
we will briefly go through the different blocks of the code
in this file.

1) Trajectory Computation?
This block is set to true when you want to test
the results of the reachability analysis using a test
trajectory. Note that this can only be used for backward
reachable sets and tubes.

2) Grid
In order to compute a reachable set numerically, the
level set toolbox discretizes the state space and solves
for the value function over a discrete grid.4 This block

4This is the key cause of the curse of dimensionality in the BRS
computation.

defines the grid by setting the minimum and maximum
states, along with the number of grid points in each
dimension. Periodic dimensions should be noted (to
account for periodic behavior), and the grid is created.
Note that the grid bounds should be large enough
to enclose the target and the reachable set or tube.
Also note that a finer discretization will lead to more
accurate results.

3) Target Set
Here we define the target set of the system. As noted
in Section II, this is either a subset of the state space
we want the system to reach, or an unsafe set that
we want the system to avoid. In this example we
use the function shapeCylinder.m to create a target set
that is circular in px, py space and encompasses all θ
states. Functions for other shapes can be found in the
toolboxLS user manual.

4) Time Vector
In this block the initial and final times are set, as
well as the time step desired. Note that for forward
reachable sets the variable tau moves forward in time,
and for backward reachable sets tau moves backward
in time. See Section V-A for more details on FRSs and
BRSs.

5) Problem Parameters
Here the problem parameters for the dynamical system
are introduced. These problem parameters are defined
by the class of the dynamical system (in this case, a
Dubins car). The control and (if applicable) disturbance
modes (uMode and dMode) are also defined here.
This refers to whether the control (or disturbance) is
trying to maximize or minimize the value function (see
Section V-C for details). Table I shows the modes
needed depending on the reachability problem. The
disturbance mode dMode is generally the opposite
of uMode for the worst-case analysis. The table also
differentiates between whether the control is trying
to reach the target set (goal), or avoid the target set
(avoid).

TABLE I: uMode Conditions

uMode
Target set goal (larger set) avoid (smaller set)
Forward max min
Backward min max

6) Pack Problem Parameters
This block packs problem parameters into the variables
needed for the reachability computation. The dynami-
cal system is defined using the input parameters from
the previous block and calling upon the appropriate
dynamic system class that was created in Section X-
A. The system, grid, uMode (and dMode if applicable),
and accuracy level are set. The accuracy options are
low, medium, high, and veryHigh. Note that higher
accuracy results in a more accurate gradient calculation
of the value function, but takes more time to compute

the value function.
7) Obstacles

Obstacles (or unsafe sets) should be defined here using
the same format used for creating the target set. The
obstacles should then be combined in a cell structure
and set to HJIextraArgs.obstacles.

8) Compute Value Function
In this block we set the HJIextraArgs parameter to
visualize the reachability analysis during computa-
tion. We then use the main function of helperOC,
HJIPDE solve.m, to perform the reachability analysis
and to acquire the discrete form of the continuous value
function in equation (6). Note that the function can
solve for a reachable set by setting the minWith input to
‘none’, or a tube by setting the minWith input to ‘zero’.
The differences between sets and tubes are explained
in Section V-B. More information on HJIPDE solve.m
and extra functionalities are in Section X-C.

9) Compute Optimal Trajectory for Some Initial State
If the Trajectory Computation block is set to true, this
block computes and visualizes an optimal trajectory
from a given initial state and the optimal controller
derived from the value function, which is computed
using equation (14) for a BRS, for example.

C. Using HJIPDE Solve.m

The main function used by helperOC is HJIPDE Solve.m,
which can be found in helperOC/valFuncs. This function
interfaces the tools developed in helperOC with the functions
used in toolboxLS. The inputs are the initial values at
each grid point (data0), the time vector (tau), the problem
parameters for toolboxLS (schemeData), whether to compute
a set or a tube (minWith), and any additional inputs desired
(extraArgs). The outputs are the value function at each grid
point at each time step (data), the time vector (tau), and any
additional outputs desired (extraOuts).

The range of possibilities for the extraArgs input are
described in comments at the beginning of the function. You
can include obstacles, visualize the set over time, stop when
the set reaches some initial state, save the data periodically,
and more.

REFERENCES

[1] J. Sethian, “A fast marching level set method for monotonically
advancing fronts,” National Academy of Sciences, vol. 93, no. 4, pp.
1591–1595, 1996.

[2] S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. Springer-Verlag, 2006.

[3] I. Mitchell, “Application of level set methods to control and reacha-
bility problems in continuous and hybrid systems,” Ph.D. dissertation,
Stanford University, 2002.

[4] ——, “A toolbox of level set methods,” Department of Computer
Science, University of British Columbia, Vancouver, BC, Canada,
http://www. cs. ubc. ca/˜ mitchell/ToolboxLS/toolboxLS.pdf, Tech. Rep.
TR-2004-09, 2004.

[5] A. Bayen, I. Mitchell, M. Osihi, and C. Tomlin, “Aircraft autolander
safety analysis through optimal control-based reach set computation,”
AIAA J. Guidance, Control, and Dynamics, vol. 30, no. 1, pp. 68–77,
2007.

[6] J. Ding, J. Sprinkle, S. Sastry, and C. Tomlin, “Reachability calcula-
tions for automated aerial refueling,” in Proc. IEEE Conf. Decision
and Control, 2008.

[7] P. Bouffard, “On-board model predictive control of a quadrotor he-
licopter: Design, implementation, and experiments,” Master’s thesis,
University of California, Berkeley, 2012.

[8] A. Aswani, H. Gonzalez, S. Sastry, and C. Tomlin, “Provably safe and
robust learning-based model predictive control,” Automatica, vol. 49,
no. 5, pp. 1216–1226, 2013.

[9] H. Huang, J. Ding, W. Zhang, and C. Tomlin, “A differential game
approach to planning in adversarial scenarios: A case study on capture-
the-flag,” in Proc. IEEE Int. Conf. Robotics and Automation, 2011.

[10] M. Chen, S. Bansal, J. Fisac, and C. Tomlin, “Robust Sequential Path
Planning Under Disturbances and Adversarial Intruder,” IEEE Trans.
Control Syst. Technol., to appear.

[11] M. Chen, Q. Hu, C. Mackin, J. Fisac, and C. Tomlin, “Safe platooning
of unmanned aerial vehicles via reachability,” in Proc. IEEE Conf.
Decision and Control, 2015.

[12] S. Herbert, M. Chen, S. Han, S. Bansal, J. Fisac, and C. Tomlin,
“FaSTrack: a modular framework for fast and guaranteed safe motion
planning,” Proc. IEEE Conf. Decision and Control, 2017.

[13] M. Chen, S. Herbert, M. Vashishtha, S. Bansal, and C. Tomlin,
“Decomposition of reachable sets and tubes for a class of nonlinear
systems,” arXiv preprint arXiv:1611.00122, 2016.

[14] M. Chen, S. Herbert, and C. Tomlin, “Fast reachable set approxima-
tions via state decoupling disturbances,” in Proc. IEEE Conf. Decision
and Control, 2016.

[15] J. Darbon and S. Osher, “Algorithms for overcoming the curse of
dimensionality for certain Hamilton-Jacobi equations arising in control
theory and elsewhere,” Research in the Math. Sciences, vol. 3, no. 1,
p. 19, 2016.

[16] Y. Chow, J. Darbon, S. Osher, and W. Yin, “Algorithm for overcoming
the curse of dimensionality for time-dependent non-convex Hamilton-
Jacobi equations arising from optimal control and differential games
problems,” J. Scientific Computing, pp. 1–27, 2016.

[17] C. Baier, J. Katoen, and K. Larsen, Principles of Model Checking.
Cambridge, MA: MIT Press, 2008.

[18] C. Belta, B. Yordanov, and E. Gol, Formal Methods for Discrete-Time
Dynamical Systems, ser. Studies in Systems, Decision and Control.
Springer International Publishing, 2017, vol. 89.

[19] M. Reynolds, “Continuous temporal models,” in Proc. Australian Joint
Conf. Artificial Intelligence, 2001.

[20] G. Fainekos, A. Girard, H. Kress-Gazit, and G. Pappas, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[21] S. Jha, V. Raman, D. Sadigh, and S. Seshia, “Safe autonomy under
perception uncertainty using chance-constrained temporal logic,” J.
Automated Reasoning, 2017.

[22] S. Coogan, M. Arcak, and C. Belta, “Formal methods for control of
traffic flow: Automated control synthesis from finite-state transition
models,” IEEE Control Systems, vol. 37, no. 2, pp. 109–128, 2017.

[23] M. Bolton, E. Bass, and R. Siminiceanu, “Using formal verification to
evaluate human-automation interaction: A review,” IEEE Trans. Syst.
Man Cybern. A., Syst. Humans, vol. 43, no. 3, pp. 488–503, 2013.

[24] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable
verification of hybrid systems,” in Proc. Int. Conf. Computer Aided
Verification, 2011.

[25] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in Proc. Int. Conf. Computer Aided
Verification, 2013.

[26] M. Althoff, “An introduction to CORA 2015,” in Proc. ARCH@
CPSWeek, 2015.

[27] P. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: A
verification tool for stateflow models,” in Proc. Int. Conf. Tools and
Algorithms for the Construction and Analysis of Systems, 2015.

[28] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. Duggirala, “Automatic
reachability analysis for nonlinear hybrid models with C2E2,” in Proc.
Int. Conf. Computer Aided Verification, 2016.

[29] S. Kong, S. Gao, W. Chen, and E. Clarke, “dReach: δ-Reachability
analysis for hybrid systems,” in Proc. Int. Conf. Tools and Algorithms

for the Construction and Analysis of Systems, 2015. [Online].
Available: http://link.springer.com/10.1007/978-3-662-46681-0{ }15

[30] P. Duggirala, C. Fan, M. Potok, B. Qi, S. Mitra, M. Viswanathan,
S. Bak, S. Bogomolov, T. Johnson, L. Nguyen et al., “Tutorial:
Software tools for hybrid systems verification, transformation, and syn-
thesis: C2E2, HyST, and TuLiP,” in Proc. Conf. Control Applications,
2016.

[31] P. Parrilo, “Structured semidefinite programs and semialgebraic
geometry methods in robustness and optimization,” Ph.D. Dissertation,
California Institute of Technology, 2000. [Online]. Available:
http://resolver.caltech.edu/CaltechETD:etd-05062004-055516

[32] R. Tedrake, I. Manchester, M. Tobenkin, and J. Roberts, “LQR-trees:
Feedback motion planning via sums-of-squares verification,” Int. J.
Robotics Research, vol. 29, no. 8, pp. 1038–1052, 2010.

[33] A. Barry, A. Majumdar, and R. Tedrake, “Safety verification of reactive
controllers for UAV flight in cluttered environments using barrier
certificates,” in Proc. IEEE Int. Conf. Robotics and Automation, 2012.

[34] A. Majumdar, A. Ahmadi, and R. Tedrake, “Control design along
trajectories with sums of squares programming,” in Proc. IEEE Int.
Conf. Robotics and Automation, 2013.

[35] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” Int. J. Robotics Research, vol. 36, no. 8,
pp. 947–982, 2017.

[36] E. Barron, “Differential games with maximum cost,” Nonlinear anal-
ysis: Theory, methods & applications, vol. 14, no. 11, pp. 971–989,
1990.

[37] I. Mitchell, A. Bayen, and C. Tomlin, “A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games,”
IEEE Trans. Autom. Control, vol. 50, no. 7, pp. 947–957, 2005.

[38] O. Bokanowski and H. Zidani, “Minimal time problems with moving
targets and obstacles,” IFAC Proceedings Volumes, vol. 44, no. 1, pp.
2589–2593, 2011.

[39] J. Fisac, M. Chen, C. Tomlin, and S. Sastry, “Reach-avoid problems
with time-varying dynamics, targets and constraints,” in Proc. ACM
Int. Conf. Hybrid Systems: Computation and Control, 2015.

[40] A. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability
analysis: internal approximation,” Systems & control letters, vol. 41,
no. 3, pp. 201–211, 2000.

[41] ——, “On ellipsoidal techniques for reachability analysis. Part II: In-
ternal approximations box-valued constraints,” Optimization Methods
and Software, vol. 17, no. 2, pp. 207–237, 2002.

[42] J. Maidens, S. Kaynama, I. Mitchell, M. Oishi, and G. Dumont,
“Lagrangian methods for approximating the viability kernel in high-
dimensional systems,” Automatica, vol. 49, no. 7, pp. 2017–2029,
2013.

[43] A. Majumdar, R. Vasudevan, M. Tobenkin, and R. Tedrake, Convex op-
timization of nonlinear feedback controllers via occupation measures,
2014, vol. 33, no. 9, pp. 1209–1230.

[44] T. Dreossi, T. Dang, and C. Piazza, “Parallelotope bundles for
polynomial reachability,” in Proc. ACM Int. Conf. Hybrid Systems:
Computation and Control, 2016.

[45] D. Henrion and M. Korda, “Convex computation of the region of at-
traction of polynomial control systems,” IEEE Trans. Autom. Control,
vol. 59, no. 2, pp. 297–312, 2014.

[46] E. Coddington and N. Levinson, Theory of ordinary differential
equations. Tata McGraw-Hill Education, 1955.

[47] L. Evans and P. Souganidis, “Differential games and representation
formulas for solutions of Hamilton-Jacobi-Isaacs equations,” WIS-
CONSIN UNIV-MADISON MATHEMATICS RESEARCH CEN-
TER, Tech. Rep., 1983.

[48] L. Evans, Partial differential equations. Amer. Math. Soc., 2010.
[49] I. Mitchell, “Comparing forward and backward reachability as tools

for safety analysis,” in Proc. Int. Workshop on Hybrid Systems:
Computation and Control, 2007.

[50] J. Lygeros, “On reachability and minimum cost optimal control,”
Automatica, vol. 40, no. 6, pp. 917–927, 2004.

[51] K. Margellos and J. Lygeros, “HamiltonJacobi formulation for
reachavoid differential games,” IEEE Trans. Autom. Control, vol. 56,
no. 8, pp. 1849–1861, 2011.

[52] M. Chen, S. Herbert, and C. Tomlin, “Exact and efficient Hamilton-
Jacobi-based guaranteed safety analysis via system decomposition,”
Proc. IEEE Int. Conf. Robotics and Automation, 2017.

[53] I. Mitchell and C. Tomlin, “Overapproximating reachable sets by
Hamilton-Jacobi projections,” J. Scientific Computing, vol. 19, no. 1-3,
pp. 323–346, 2003.

[54] S. Kaynama and M. Oishi, “Complexity reduction through a Schur-
based decomposition for reachability analysis of linear time-invariant
systems,” Int. J. Control, vol. 84, no. 1, pp. 165–179, 2011.

[55] ——, “A modified Riccati transformation for decentralized computa-
tion of the viability kernel under LTI dynamics,” IEEE Trans. Autom.
Control, vol. 58, no. 11, pp. 2878–2892, 2013.

[56] J. Fisac, A. Akametalu, M. Zeilinger, S. Kaynama, J. Gillula, and
C. Tomlin, “A general safety framework for learning-based control in
uncertain robotic systems,” arXiv preprint arXiv:1705.01292, 2017.

[57] A. Akametalu, J. Fisac, J. Gillula, S. Kaynama, M. Zeilinger, and
C. Tomlin, “Reachability-based safe learning with Gaussian pro-
cesses,” in Proc. IEEE Conf. Decision and Control, 2014.

[58] K. N. Niarchos and J. Lygeros, “A neural approximation to continuous
time reachability computations,” in Proc. IEEE Conf. Decision and
Control, 2006.

[59] B. Djeridane and J. Lygeros, “Neural approximation of PDE solutions:
An application to reachability computations,” in Proc. IEEE Conf.
Decision and Control, 2006.

[60] V. R. Royo and C. Tomlin, “Recursive regression with neural
networks: Approximating the HJI PDE solution,” 2016. [Online].
Available: http://arxiv.org/abs/1611.02739

[61] F. Jiang, G. Chou, M. Chen, and C. Tomlin, “Using neural
networks to compute approximate and guaranteed feasible Hamilton-
Jacobi-Bellman PDE solutions,” 2016. [Online]. Available: http:
//arxiv.org/abs/1611.03158

[62] T. Prevot, J. Rios, P. Kopardekar, J. Robinson III, M. Johnson, and
J. Jung, “UAS Traffic Management (UTM) concept of operations to
safely enable low altitude flight operations,” in Proc. AIAA Aviation
Technol., Integration, and Operations Conf., 2016.

[63] M. Chen, Q. Hu, J. Fisac, K. Akametalu, C. Mackin, and C. Tomlin,
“Reachability-based safety and goal satisfaction of unmanned aerial
platoons on air highways,” AIAA J. Guidance, Control, and Dynamics,
pp. 1–14, 2017.

[64] M. Chen, S. Bansal, K. Tanabe, and C. Tomlin, “Provably safe and
robust drone routing via sequential path planning: A case study
in San Francisco and the Bay Area,” 2017. [Online]. Available:
http://arxiv.org/abs/1705.04585

[65] S. Bansal, M. Chen, J. Fisac, and C. Tomlin, “Safe sequential path
planning of multi-vehicle systems under presence of disturbances and
imperfect information,” in Proc. Amer. Control Conf., 2017.

[66] M. Chen, J. Shih, and C. Tomlin, “Multi-vehicle collision avoidance
via Hamilton-Jacobi reachability and mixed integer programming,” in
Proc. IEEE Conf. Decision and Control, 2016.

[67] M. Chen, Z. Zhou, and C. Tomlin, “Multiplayer reach-avoid games
via pairwise outcomes,” IEEE Trans. Autom. Control, vol. 62, no. 3,
pp. 1451–1457, 2017.

http://link.springer.com/10.1007/978-3-662-46681-0{_}15
http://resolver.caltech.edu/CaltechETD:etd-05062004-055516
http://arxiv.org/abs/1611.02739
http://arxiv.org/abs/1611.03158
http://arxiv.org/abs/1611.03158
http://arxiv.org/abs/1705.04585

	I Introduction
	II Backward Reachable Set (BRS)
	III Two-person Zero-sum Differential Games
	IV The Level Set Approach: From Games of Kind to Games of Degree
	V Different flavors of reachability
	V-A Forward vs. Backward Reachable Set
	V-B Reachable Sets vs. Tubes
	V-C Roles of the Control and Disturbance
	V-D Presence of State Constraints

	VI Computational Tools for HJ Reachability
	VI-A The Level Set Toolbox (toolboxLS)
	VI-B The Berkeley Efficient API in C++ for Level Set methods (BEACLS) Toolbox

	VII Current Research in HJ Reachability Theory
	VII-A System Decomposition Techniques for Nonlinear Systems
	VII-B System Decomposition Techniques for Linear Time-Invariant Systems
	VII-C Fast and Safe Tracking for Motion Planning
	VII-D HJ Reachability for Safe Learning-Based Control
	VII-E HJ Reachability Analysis using Neural Networks
	VII-F Generalized Hopf Formula for Linear Systems

	VIII Some Current Applications of HJ Reachability
	VIII-A Unmanned Aerial Systems Traffic Management (UTM) using Air Highways
	VIII-B Sequential Robust Space-Time Reservations
	VIII-C Multi-Vehicle Coordination Using HJ Reachability and High-Level Logic

	IX Conclusions
	X Appendix: Quick-Start Guide
	X-A Defining and Handling Dynamic Systems
	X-B Reachability Analysis Setup
	X-C Using HJIPDE_Solve.m

	References

