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Attitude and Gyro Bias Estimation Using GPS and IMU Measurements

Soulaimane Berkane and Abdelhamid Tayebi

Abstract— We propose an attitude and gyro-bias estimation
scheme for accelerated rigid body systems using an inertial
measurement unit (IMU) and a global positioning system (GPS).
The proposed scheme allows to obtain attitude estimates directly
on the Special Orthogonal group SO(3) while estimating the
gyro bias and the unknown apparent acceleration of the vehicle.
We prove semi-global exponential stability of the estimation
errors. Furthermore, a new switching technique for the attitude
state is introduced which results in a velocity-aided hybrid
attitude observer with proven global exponential stability.

I. INTRODUCTION

There has been a growing interest in the last decade for

the control of Unmanned Aerial Vehicles (UAV), Unmanned

Underwater Vehicles (UUV) and other vehicles that operate

without human occupant. Attitude information needs to be

extracted from on-board sensors for these vehicles to be oper-

ated. When cost and size of the vehicle is important, low-cost

and small-size sensors are often used in Inertial Navigation

Systems (INS). A typical IMU device contains an accelerom-

eter, a gyroscope and a magnetometer. Accelerometers pro-

vide body-frame measurements of the apparent acceleration

(all non-gravitational forces per unit mass). Gyroscopes pro-

vide the 3-axis body-frame angular rate while magnetometers

measure the earth magnetic field which is assumed constant

and known in the inertial frame. Attitude information can

be extracted from the IMU-based vector observations (ac-

celerometer and magnetometer measurements) by assuming

“negligible” acceleration of the vehicle using static attitude

reconstruction [1] or more advanced complementary filtering

techniques where the gyroscopic measurements are used to

complement the vector measurements [2], [3], [4].

When considering applications with vehicles subject to

important accelerations, the above mentioned attitude estima-

tion schemes fail due to the fact that the accelerometer does

no longer measures a known inertial vector. To cope with

the problem of unknown inertial-frame acceleration, IMU

measurements are often complemented with linear velocity

measurements. The inertial-frame linear velocity can be, for

instance, differentiated to obtain the inertial-frame acceler-

ation which will be then used along with the body-frame

acceleration (obtained from the accelerometer) to obtain an

attitude information. However, this ad-hoc method is not very

desirable in practice due to noise amplification inherited from
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the approximate derivative operation. A nonlinear velocity-

aided observer has been proposed in [5] to estimate both the

orientation of the vehicle and the gyro bias vector with local

convergence and stability. Following similar lines, velocity-

aided attitude estimators have been proposed in [6], [7] gyro-

bias-free case. These observers have the strong property

of providing “meaningful” attitudes on SO(3) with semi-

global exponential stability. A velocity-aided attitude and

gyro bias estimator has been proposed in [8] with global

exponential stability by relaxing the attitude estimates to lie

outside SO(3). Note that in the above mentioned papers, the

IMU measurements are complemented with an inertial frame

velocity measurements (such as those obtained from a GPS

receiver) where some other existing works have considered

linear velocity measurements in the body-fixed frame (such

as those obtained from Airspeed or Doppler Velocity Log

(DVL) sensors) [9], [10], [11], [12], [13], [14]. This paper

addresses the attitude estimation problem using IMU and

inertial-frame velocity measurements.

The design of a velocity-aided attitude observer on SO(3)
with gyro bias estimation and a proven large domain of con-

vergence and stability remains an open problem. In practice,

an ad-hoc method to estimate the gyro-bias vector is to add

a simple adaptation law (integral action) to the velocity-

aided observer of [6] or [7] similar to the one which has

been used in [4] in the case of constant and known inertial

vectors. However, no stability proof has been derived until

now due to: i) the complexity of the proof (even gyro-free

case) used in [6] although albeit relaxed in [7] and ii) the fact

that both assumptions of known and constant inertial vectors

used in [4] do not hold since the accelerometer measures

and unknown and time-varying inertial vector. In this paper,

despite the aforementioned difficulties, we build a velocity-

aided attitude observer on SO(3) with gyro bias estimation

by augmenting the observer of [7] with a projection-based

adaptive estimation law for the gyro-bias vector. We prove

that the proposed attitude observer guarantees semi-global

exponential stability. Thereafter, we endorse the proposed

attitude estimation scheme with a new hybrid switching

mechanism that jumps the attitude states to the region

of exponential stability. The velocity-aided hybrid attitude

observer is proven to be globally exponentially stable using

a rigorous Lyapunov-based proof for hybrid systems.

II. BACKGROUND AND PRELIMINARIES

Throughout the paper, we use R and R+ to denote,

respectively, the sets of real and nonnegative real numbers.

The Euclidean norm of x ∈ Rn is defined as ‖x‖ =
√
x⊤x.

For matrices A,B ∈ Rm×n, their inner product is defined
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as 〈〈A,B〉〉 = tr(A⊤B) and the Frobenius norm of A is

‖A‖F =
√

〈〈A,A〉〉. For a square matrix A ∈ Rn×n,

we denote by λAi , λ
A
min, and λAmax the ith, minimum, and

maximum eigenvalue of A, respectively.

The rigid body attitude evolves on SO(3) := {R ∈
R3×3| det(R) = 1, RR⊤ = I}, where I is the three-

dimensional identity matrix and R ∈ SO(3) is called a

rotation matrix. The group SO(3) has a compact mani-

fold structure with its tangent spaces being identified by

TRSO(3) := {RΩ | Ω ∈ so(3)} , where the Lie algebra of

SO(3), denoted by so(3) :=
{

Ω ∈ R3×3 | Ω⊤ = −Ω
}

, is

the vector space of 3-by-3 skew-symmetric matrices. The

map [·]× : R3 → so(3) is defined such that [x]×y = x × y,

for any x, y ∈ R3, where × is the vector cross-product on

R3. Let vex : so(3) → R3 denote the inverse isomorphism

of the map [·]×, such that vex([ω]×) = ω, for all ω ∈ R3 and

[vex(Ω)]× = Ω, for all Ω ∈ so(3). Defining Pa : R3×3 →
so(3) as the projection map on the Lie algebra so(3) such

that Pa(A) := (A−A⊤)/2, we can extend the definition of

vex to R
3×3 by taking the composition map ψ := vex ◦ Pa

such that, for a 3-by-3 matrix A := [aij ]i,j=1,2,3, we have

ψ(A) := vex (Pa(A)) =
1

2





a32 − a23
a13 − a31
a21 − a12



 . (1)

Let R ∈ SO(3) be a rotation matrix, and let |R|I ∈ [0, 1]
be the normalized Euclidean distance on SO(3) which is

given by |R|2I := 1
8‖I − R‖2F = 1

4 tr(I − R). An element

R ∈ SO(3) can be represented as a rotation of angle θ ∈ R

around a unit vector axis u ∈ S2 using the map Ra : R ×
S2 → SO(3):

Ra(θ, u) := eθ[u]× = I+sin(θ)[u]×+(1− cos θ)[u]2×, (2)

where eA denotes the matrix exponential of A. In this paper,

we make use of the framework for dynamical hybrid systems

found in [15], [16]. A subset E ⊂ R≥0 × N is a hybrid

time domain, if it is a union of finitely or infinitely many

intervals of the form [tj , tj+1] × {j} where 0 = t0 ≤ t1 ≤
t2 ≤ ..., with the last interval being possibly of the form

[tj , tj+1]×{j} or [tj ,∞)×{j}. Let ⇒ denote a set-valued

mapping. A general model of a hybrid system H takes the

form:

H
{

ẋ ∈ F (x), x ∈ C
x+ ∈ G(x), x ∈ D

(3)

where the flow map, F : Rn
⇒ Rn governs continuous

flow of x ∈ Rn, the flow set C ⊂ Rn dictates where the

continuous flow could occur. The jump map, G : Rn
⇒ Rn,

governs discrete jumps of the state x, and the jump set D ⊂
R

n defines where the discrete jumps are permitted. Note that

the state x ∈ Rn could possibly include both continuous and

discrete components. A hybrid arc is a function x : domx→
Rn, where domx is a hybrid time domain and, for each fixed

j, t 7→ x(t, j) is a locally absolutely continuous function on

the interval Ij = {t : (t, j) ∈ dom x}.

III. PROBLEM FORMULATION

Consider the following dynamics of an accelerated rigid

body
{

v̇ = ge3 +Rba,

Ṙ = R[ω]×,
(4)

where R ∈ SO(3) is the attitude matrix describing the

orientation of a body-attached frame with respect to the

inertial frame, ω ∈ R3 is the rigid body’s angular velocity

expressed in the body-attached frame, v ∈ R3 is the inertial

linear velocity of the rigid body, g is the acceleration due

to gravity, e3 = [0, 0, 1]⊤ and ba ∈ R3 is the body-

frame “apparent acceleration”, capturing all non-gravitational

forces applied to the vehicle expressed in the body frame.

Assume that the following measurements are available :

• Linear velocity v, which may be obtained using a GPS.

• Magnetometer measurements bm of the (constant and

known) earth magnetic field rm expressed in the body

frame such that bm = R⊤rm.

• Accelerometer measurements ba of the apparent accel-

eration ra := v̇− ge3 expressed in the body frame such

that ba = R⊤ra.

• Gyroscope measurements ωy of the angular velocity

vector ω such that ωy = ω + bω and bω ∈ R3 is a

constant gyro bias.

Moreover, the following realistic assumptions (constraints)

are placed in order to carry out our stability analysis.

Assumption 1 (Observability condition): There exists a

constant c0 > 0 such that ‖rm × ra(t)‖/‖rm‖‖ra(t)‖ ≥ c0
for all t ≥ 0.

Assumption 2: There exist constants c1, c2, c3 > 0 such

that c1 ≤ ‖ra(t)‖ ≤ c2 and ‖ṙa(t)‖ ≤ c3 for all t ≥ 0.

Assumption 3: There exists constants c4, c5 > 0 such that

‖ω(t)‖ ≤ c4 and ‖bω‖ ≤ c5 for all t ≥ 0.

Assumption 1 is a standard (uniform) observability condition

in attitude estimation problems. It is guaranteed if the time-

varying apparent acceleration ra(t) is non-vanishing and is

always not collinear to the constant magnetic field vector

rm. Note that ra(t) = 0 corresponds the rigid body being in

a free-fall case (v̇ = ge3) which is not likely under normal

flight conditions. Assumptions 2 and 3 impose some realistic

constraints on the systems trajectory.

Our objective is to design a nonlinear observer that

combines all the measurements/information available (as

described above) and provide exponentially stable attitude

estimates on SO(3) while compensation and estimating the

unknown bias vector bω.

IV. DISCUSSIONS OF PREVIOUS WORKS

Perhaps the first (invariant) nonlinear attitude observer

with gyro bias compensation for accelerated vehicles has

been proposed in [5] but only with local stability and

convergence analysis. An attitude observer without gyro bias

compensation has been proposed in [6] with proven semi-

global exponential stability. It has the following structure
{

˙̂v = ge3 + R̂ba + kvσv,
˙̂
R = R̂[ωy + kRσR]×,

(5)



with kv, kR > 0 and the correction terms σv and σR being

defined, for ρ1, ρ2 > 0, as follows

σv = v − v̂, (6)

σR = ρ1(bm × R̂⊤rm) + ρ2(ba × R̂⊤(v − v̂)), (7)

Defining the estimation errors R̃ = RR̂⊤ and ṽ = v− v̂, the

interconnection of the observer (5) with the system model

(4) leads to the following closed loop system

˙̃R = −kRρ1R̃[(R̃⊤rm × rm)]× − g1(ṽ), (8)

˙̃v = −kvṽ + g2(R̃), (9)

where g1(ṽ) = kRρ2R̃[(R̃
⊤ra × ṽ)]× and g2(R̃) = (I −

R̃⊤)ra. The reduced attitude error system (8) when ṽ = 0
corresponds to the closed loop system of a nonlinear com-

plementary filter [4] that uses one single vector measurement

bm of the magnetic field. Note that the best result one can

achieve, using a single vector measurement (without any

persistency of excitation condition), is to drive the reduced

attitude error to zero. Interestingly, however, it is shown in

[6] that for all initial conditions such that |R̃|2I < 1, there

exists kv > 0 such that for all kv > kv, the equilibrium

point (ṽ, R̃) = (0, I) of the closed loop system (8)-(9) is

exponentially stable. The dynamic system (9) of the velocity

error ṽ which feeds the attitude estimation error dynamics

through the term g1(ṽ) has permitted to drive the full attitude

error to zero.

Another velocity-aided attitude observer has been intro-

duced in [7] which takes the same form as (5) with the

following correction terms

σv = v − v̂ +
kR
k2v
R̂[σR]×ba, (10)

σR = ρ1(bm × R̂⊤rm) + ρ2(ba × R̂⊤r̂a), (11)

r̂a = kv(v − v̂) + R̂ba. (12)

The main difference between the observer of [6] and that

of [7] is the additional term proportional to R̂[σR]×ba
in the velocity correction term σv. This has facilitated to

obtain an asymptotic “estimate” of the apparent acceleration

vector ra(t) given by r̂a in (12). In fact, by introducing the

estimation error r̃a = ra − r̂a, the closed loop system can

be written as

˙̃R = −kRR̃[ρ1(R̃⊤rm × rm) + ρ2(R̃
⊤ra × ra)]× − g1(r̃a),

˙̃ra = −kv r̃a + g2(R̃), (13)

where g1(r̃a) = kRρ2R̃[(R̃
⊤ra × r̃a)]× and g2(R̃) = (I −

R̃⊤)ṙa. In contrast to the closed loop system (8)-(9) of the

observer in [6], the reduced attitude error system (13) when

r̃a = 0 corresponds to the closed loop system of a nonlinear

complementary filter [4] that uses two body-frame vector

measurements, rm (the magnetic field) and ra (the apparent

acceleration), which can be shown to be almost globally

asymptotically stable (assuming r̃a = 0). Therefore, the

closed loop system (13) can be seen as an interconnection of

two exponentially stable systems. The first (attitude system)

is semi-globally exponentially stable and almost globally

asymptotically stable and the second (r̃a subsystem) is

globally exponentially stable. Moreover, both subsystems can

be shown to have an ISS property inside some region [17].

Therefore, under the small gain theorem for ISS systems, the

interconnection can be shown to be asymptotically stable as

well. This small gain condition is reflected by the condition

on the gain kv and the initial attitude state found in [7]

although derived using a direct Lyapunov-based proof. To

put all together, the discussions of this section showed that,

at the cost of an additional correction term in the velocity

estimation dynamics compared to [6], the observer proposed

in [7] is able to estimate the apparent acceleration ra(t)
while also estimating the attitude matrix R(t). Moreover, the

closed loop system results in a nice interconnection of two

exponentially stable systems. However, both observers fail to

provide compensation and/or estimation of the unavoidable

gyro bias bω in the angular velocity measurements.

V. A VELOCITY-AIDED ATTITUDE OBSERVER WITH

GYRO-BIAS ESTIMATION

In this section, we provide a solution to the attitude

estimation problem of accelerated rigid body systems using

GPS and IMU measurements as formulated in Section III.

We propose the following attitude observer on SO(3) with

gyro-bias estimation:










˙̂v = ge3 + R̂ba + kvσv,
˙̂
R = R̂[ωy − b̂ω + kRσR]×,
˙̂
bω = Proj

(

b̂ω,−kbσR
)

,

(14)

with kv, kR, kb > 0 and the correction terms σR and σv are

similar to (10)-(12). The projection function Proj satisfies

the following properties [18]:

P1. ‖b̂ω(t)‖ ≤ c5, ∀t ≥ 0,

P2. (b̂ω − bω)
⊤Proj(µ, b̂ω) ≤ (b̂ω − bω)

⊤µ,,
P3. ‖Proj(µ, b̂ω)‖ ≤ ‖µ‖.

The following theorem is the first main result of the paper.

Theorem 1: Consider the interconnection of the rigid

body dynamics (4) with the attitude observer (14) where

Assumptions 1-3 are satisfied. For each 0 < εR < 1 and

for all initial conditions |R̃(0)|I ≤ εR and ‖r̃a(0)‖ ∈ R3,

there exist gains kv, kR > 0 such that, for all kv > kv and

kR ≥ kR, the equilibrium point (R̃, b̃ω, r̃a) = (I, 0, 0) is

exponentially stable.

Proof: The attitude error dynamics are given by

˙̃R = ṘR̂⊤ −R(
˙̂
R)⊤ = R[ω]×R̂ −R[ωy − b̂ω + kRσR]×R̂,

= R̃[R̂(−kRσR − b̃ω)]×. (15)

On the other hand, it can be shown that σR defined in (11)-

(12) is written as σR = 2R̂⊤ψ(AR̃) − ρ2(ba × R̂⊤r̃a)),
with A(t) = ρ1rmr

⊤
m + ρ2ra(t)ra(t)

⊤ where the fact that

ψ(AR̃) = 1
2 R̂ρ1(bm× R̂⊤rm)+ 1

2 R̂ρ2(ba× R̂⊤ra) has been

used. This results in the following attitude and bias errors

dynamics

˙̃R = R̃[−2kRψ(AR̃)− R̂b̃ω + kRρ2(R̃ra × r̃a)]×, (16)

˙̃
bω = Proj

(

b̂ω, kbσR
)

. (17)



Moreover, the error dynamics of r̃a are obtained as follows

˙̃ra = ṙa − kv(v̇ − ˙̂v)− ( ˙̃R)⊤ra

= −kv r̃a + (I − R̃⊤)ṙa + R̂[ba]×b̃ω. (18)

Note hat all the error signals involved in the closed loop

system (16)-(18) are a priori bounded. In fact, the attitude

error state R̃ is bounded by the compactness of SO(3). The

bias estimation error is bounded thanks to the projection

mechanism. Let cb > 0 be an upper bound on ‖b̃ω(t)‖ for all

t ≥ 0. Moreover, in view of the fact that ‖I − R̃‖2F = 8|R̃|2I
and using Assumption 1, it follows that

˙̃ra ≤ −kv r̃a + (
√
8c3 + c2cb), (19)

which shows that r̃a cannot grow unbounded due to the

presence of the negative term −kv r̃a. Our next goal is to

prove that for all 0 < ǫR < 1 and under some conditions on

kv and kR, the set ℧(εR) = {R̃ ∈ SO(3) | |R̃|I ≤ ǫR} is

forward invariant. Integrating (19) and using the comparison

lemma, one obtains

‖r̃a(t)‖ ≤ e−kvt‖r̃a(0)‖+
ca
kv

(1− e−kvt), ∀t ≥ 0, (20)

with ca =
√
8c3 + c2cb. It can be verified from (20) that the

upper bound on ‖r̃a(t)‖ is either increasing from ‖r̃a(0)‖
to ca/kv (if ‖r̃a(0)‖ ≤ ca/kv), or decreasing from ‖r̃a(0)‖
to ca/kv (if ‖r̃a(0)‖ ≥ ca/kv). Therefore, in all cases, for

all εa > 0 and choosing kv > ca/(‖r̃a(0)‖ + εa), one has

‖r̃a(t)‖ ≤ ‖r̃a(0)‖+εa for all t ≥ 0. Under this condition, let

us compute the minimum time tR necessary for R̃(t) to go,

in the worst case senario, outside the set ℧(εR) (starting from

R̃(0) ∈ ℧(εR)). The time derivative of |R̃|2I = tr(I − R̃)/4,

in view of (16), satisfies

d

dt
|R̃|2I = −tr(Ṙ)/4

= −tr(Pa(R̃)[−2kRψ(AR̃)− R̂b̃ω + kRρ2(R̃ra × r̃a)]×)/4

= −kRψ(R̃)⊤ψ(AR̃)−
1

2
ψ(R̃)⊤(R̂b̃ω − kRρ2(R̃ra × r̃a))

= −4kRλ
Ā
min|R̃|2I(1− |R̃|2I) + |R̃|I‖b̃ω‖+ kRρ2c2|R̃|I‖r̃a‖

(21)

with Ā = 1
2 (tr(A)−A), where we used the following facts

(see [19] and identities therein) tr([u]×[v]×) = −2u⊤v,

Pa(R̃) = [ψ(R̃)]×, ψ(R̃)⊤ψ(AR̃) = ψ(R̃)⊤Āψ(R̃) and

‖ψ(R̃)‖2 = 4|R̃|2I(1− |R̃|2I). It follows that

d

dt
|R̃|2I ≤ |R̃|I‖b̃ω‖+ kRρ2c2|R̃|I‖r̃a‖,

≤ cb + kRρ2c2(‖r̃a(0)‖+ εa).

In view of the above inequality on the velocity of |R̃|2I , it

can be deduced that the minimum time necessary for R̃(t)
to go outside the set ℧(εR) satisfies

tR ≥ tR =
ε2R − |R̃(0)|2I

cb + kRρ2c1(‖r̃a(0)‖+ εa)
.

Since we have a knowledge about the minimum time neces-

sary for the attitude error to go outside the set ℧(εR), it is

possible to prevent such a scenario by imposing some (high

gain) conditions on the gains kv and kR. First, we start by

finding a minimum gain on kv such that ‖r̃a(t)‖ ≤ Ba/kR,

for some Ba > 0, for all t ≥ ta, and such that ta ≥ tR ≥ 0.

Assume that kv ≥ k∗v > cakR/Br for some k∗v > 0. Note

that if ‖r̃a(0)‖ ≤ ca/kv then ‖r̃a(t)‖ ≤ ca/kv < Br/kR
for all t ≥ 0. Otherwise, the minimum time ta necessary to

enter the ball ‖r̃a(t)‖ ≤ Br

kR
satisfies

ta ≤ t̄a =
1

k∗v
ln

(‖r̃a(0)‖ − ca/k
∗
v

Br/kR − ca/k∗v

)

. (22)

Note that the value of k∗v can be arbitrary increased to make

t̄a arbitrary small. Let k∗v be chosen such that t̄a ≤ tR.

Hence, it this case, it is true that ‖r̃a(t)‖ ≤ Br/kR for all

t ≥ ta. Therefore, it follows from (21) that for all t ≥ ta
one has

d|R̃(t)|2I
dt

≤ −4kRλ
Ā
min|R̃(t)|2I(1− |R̃(t)|2I) + cb + ρ2c2Ba.

Note that the matrix Ā is positive definite in view of Assump-

tion 1. In fact, it can be easily verified that Ā = 1
2 (tr(A)−

A) = − 1
2ρ1[rm]2×− 1

2ρ2[ra]
2
× which is positive definite if rm

and ra(t) are non-collinear for all times. Now assume that

|R̃(t)|I = εR and kR > (cb + ρ2c2Ba)/(4λ
Ā
minε

2
R(1 − ε2R))

then one has

d

dt
|R̃(t)|2I ≤ −4kRλ

Ā
minε

2
R(1− ε2R) + cb + ρ2c2Ba < 0.

This implies that |R̃(t)|I is strictly decreasing whenever

|R̃(t)|I = εR. It follows from the continuity of the solution

that R̃(t) will never move outside the ball ℧(εR) for all

t ≥ ta. Recall also that |R̃(t)|I ≤ εR for all t ≤ tR.

Consequently, since ta ≤ t̄a ≤ tR ≤ tR, one concludes

that |R̃(t)|I ≤ εR for all t ≥ 0 under the following gain

conditions

kR >
cb + ρ2c2Ba

4λĀminε
2
R(1− ε2R)

, ∀Ba > 0. (23)

kv > max

(

ca
‖r̃a(0)‖+ εa

, k∗v

)

, ∀εa > 0, (24)

which implies that the set ℧(εR) is forward invariant. Now,

we are ready to prove the exponential stability. Consider the

following Lyapunov function candidate

V = |R̃|2I +
µkR
2kb

b̃⊤ω b̃ω + µb̃⊤ω R̂
⊤ψ(R̃) +

1

2
r̃⊤a r̃a, (25)

where µ is some positive scalar. Using the fact that

‖ψ(R̃)‖ ≤ 2|R̃|I and letting z := [z1, z2, z3]
⊤ =

[|R̃|I , ‖b̃ω‖, ‖r̃a‖]⊤, it can be checked that V satisfies the

quadratic inequality z⊤P1z ≤ V ≤ z⊤P2z where the

matrices P1 and P2 are given by

P1 =





1 −µ 0

−µ µkR

2kb

0

0 0 1
2



 , P2 =





1 µ 0

µ µkR

2kb

0

0 0 1
2



 .

Let us compute the time derivative of the cross term X =
b̃⊤ω R̂

⊤ψ(R̃) along the trajectories of the closed-loop system.

Using [19, Lemma 1] and in view of (15) one obtains



ψ̇(R̃) = E(R̃)(−R̂(b̃ω + kRσR)) with E(R̃) = 1
2 (tr(R̃)I −

R̃). Also, it can be checked that the following properties for

E(R̃) hold:

x⊤(I − E(R̃))x ≤ 2|R̃|2I‖x‖2, (26)

x⊤(I − E(R̃))y ≤ (2|R̃|2I +
√
2|R̃|I)‖x‖‖y‖, (27)

for all x, y ∈ R3 and R̃ ∈ SO(3). Moreover, one has

‖σR‖ ≤ 2‖ψ(AR̃)‖+ρ2‖ra‖‖r̃a‖ ≤ 4λĀmax|R̃|I+ρ2c2‖r̃a‖.
Consequently, it follows that

Ẋ = b̃⊤ω R̂
⊤E(R̃)

(

−R̂(b̃ω + kRσR)
)

− b̃⊤ω [ω + b̃ω + kRσR]×

R̂⊤ψ(R̃) + Proj
(

b̂ω, kbσR

)⊤
R̂⊤ψ(R̃)

≤ −‖b̃ω‖2 + b̃⊤ω R̂
⊤(I − E(R̃))R̂b̃ω + kRb̃

⊤

ω R̂
⊤(I − E(R̃))R̂σR

− kRb̃
⊤

ω σR + cω‖b̃ω‖
∥

∥ψ(R̃)
∥

∥+ (kRcb + kb)‖σR‖
∥

∥ψ(R̃)
∥

∥

≤ −‖b̃ω‖2 − kRb̃
⊤

ω σR + 2c2b |R̃|2I + kRcb
(

2|R̃|2I +
√
2|R̃|I

)

‖σR‖
+ 2(kb + kRcb)|R̃|I‖σR‖+ 2cω‖b̃ω‖|R̃|I
≤ −‖b̃ω‖2 − kRb̃

⊤

ω σR + (α1 + kRα2)|R̃|2I
+ (α3 + kRα4)|R̃|I‖r̃a‖+ 2cω‖b̃ω‖|R̃|I ,

such that α1 = 2c2b+8λĀmaxkb, α2 = 4λĀmaxcb(4+
√
2), α3 =

2ρ2c2kb and α4 = ρ2c2cb(4 +
√
2). Recall also that

1

2

d

dt
‖b̃ω‖2 ≤ b̃⊤ωProj

(

b̂ω, kbσR
)

≤ kbb̃
⊤
ωσR

1

2

d

dt
‖r̃a‖2 ≤ −kv‖r̃a‖2 +

√
8c3|R̃|‖r̃a‖+ c2‖b̃ω‖‖r̃a‖.

Consequently, in view of the above results, the time deriva-

tive of V along the trajectories of the closed loop system

satisfies

V̇ ≤ −z⊤12P12z12 − z⊤13P13z13 − z⊤23P23z23, (28)

where zij = [zi, zj]
⊤ and the matrices Pij are

P12 =

[

kR
(

2λĀmin(1− ε2R)− µα2

)

− µα1 −(12 + cωµ)
∗ µ

2

]

,

P13 =

[

2kRλ
Ā
min(1− ε2R) −(kRρ2c2+

√
8c3+µ(α3+kRα4)

2 )

∗ kv

2

]

,

P23 =

[

µ
2 − c2

2

− c2
2

kv

2

]

.

Now, if we pick µ > 0 such that µ < λĀmin(1− ε2R)/α2 and

choose the gains kR and kv such that

kR > max

{

2µkb,
2α1µ

2 + (1 + 2cωµ)
2

2µλĀmin(1− ε2R)

}

,

kv > max

{

c21
µ
,
2(kRρ2c1

2 +
√
2c2 +

µ(α3+kRα4)
2 )2

kRλĀmin(1− ε2R)

}

,

then matrices P1, P2, P12, P13 and P23 are all positive defi-

nite. The exponential stability immediately follows.

VI. HYBRID VELOCITY-AIDED ATTITUDE OBSERVER

WITH GYRO-BIAS ESTIMATION

The exponential stability of the proposed attitude observer

(14) is best described as semi global. Note that, for large

initial conditions such that |R̃(0)|2I → 1, the conditions

of Theorem 1 require high gains for kR and kv which

tend to infinity as the attitude error gets closer to 180◦.

Although, simulation results suggest that this might not be

an issue in practice and that the derived high-gain conditions

on the observer gains are only conservative, it is desirable

from a theoretical point of view to remove these conditions.

Hybrid observers have been proposed recently in [20], [21]

to overcome the topological obstruction for global attractivity

on SO(3). Our hybrid observer proposed in [21] which

is an extension to the nonlinear complementary filter [4]

guarantees global exponential stability when using vector

measurements of constant and known inertial vectors. In this

section, we adopt a different approach to design a hybrid

observer that is able to deal with “time-varying” vector

measurements, which is suitable for the problem dealt with

in the present work.

First, let us define the following function

Φ0(R̂, bm, ba, ra) = 3− r⊤mR̂bm
‖bm‖2 − (rm × ra)R̂(bm × ba)

‖bm × ba‖2

− (rm × rm × ra)R̂(bm × bm × ba)

‖bm × bm × ba‖2
. (29)

For simplicity, if no argument is indicated for Φ0 then it

should be understood that Φ0 ≡ Φ0(R̂, bm, ba, ra). Consider

the following “reset” rule for the attitude estimate R̂










˙̂v = ge3 + R̂ba + kvσv,
˙̂
R = R̂[ωy − b̂ω + kRσR]×,
˙̂
bω = Proj

(

b̂ω,−kbσR
)

,

(v̂, R̂, b̂ω) ∈ F , (30)







v̂+ = v̂,

R̂+ = Ra(π, u)R̂,

b̂+ω = b̂ω,

(v̂, R̂, b̂ω) ∈ J , (31)

where the flow set F and jump set J are defined as follows

F = {(v̂, R̂, b̂ω) : Φ(v̂, R̂) ≤ δ}, (32)

J = {(v̂, R̂, b̂ω) : Φ(v̂, R̂) ≥ δ}, (33)

and Φ(v̂, R̂) = Φ0(R̂, bm, ba, R̂ba + kv(v − v̂)) which is a

measurable quantity. The correction terms σv and σR are

similar to (10) and (11)-(12), respectively. The unit vector

u ∈ S2 that appears in (31) is defined as

u = arg min
i∈{1,2,3}

Φ(v̂,R(π, ui)R̂), (34)

where {u1, u2, u3} is any orthonormal basis of R3. We state

our second main result of the paper.

Theorem 2: Consider the attitude kinematics with the

hybrid attitude observer (30)-(34) where Assumptions 1-3

are satisfied. Assume that δ, α > 0 such that 3 + 5α/2 <
δ < 4− α and α < 2/7. Then, there exist gains kv, kR > 0



such that, for all kv > kv and kR ≥ kR, the equilibrium

point (R̃, b̃ω, r̃a) = (I, 0, 0) is globally exponentially stable.

Before proceeding with the proof of the theorem, some

remarks are in order. The innovative idea of the hybrid

observer (30)-(34) is to employ discrete transitions of the

estimated attitude state R̂ rather than transitions in the

observer’s correction term as in previous synergistic hybrid

techniques [20], [21]. This allows to deal with the problem of

time-varying inertial as is the case of the problem at hand. In

fact, rotating the attitude estimate by an angle of 180◦ (which

results in a rotation of 180◦ for the attitude error R̃ = RR̂⊤

as well) in some specific direction u whenever the current

attitude error is close to 180◦, results in a decrease in the

attitude error. However, since measurements of the attitude

error is not available to check how “close” the error is to

180◦, we use the measurable cost Φ(v̂, R̂) as a criterion. In

fact, under the conditions of Theorem 2, it will be shown

in the proof of the theorem that when the attitude error is

close to 180◦, the cost Φ(v̂, R̂) exceeds certain pre-defined

constant threshold δ which forces the observer (30)-(34) to

jump its state and therefore reducing the estimation error.

Proof: Let us show that there exist 0 < ǫR < 1 and an

initial finite time t0 ≥ 0 such that |R̃(t)|2I ≤ ǫR during the

flows of F for all t ≥ t0. In perfect conditions (noise-free), it

can be verified that Φ0(R̂, bm, ba, ra) = tr(I − R̃) = 4|R̃|2I .

Using the fact that R̂ba + kv(v − v̂) = ra − r̃a, it can be

verified that

Φ = Φ0 +
(rm × r̃a)R̂(bm × ba)

‖bm × ba‖2
+

(rm × rm × r̃a)R̂(bm × bm × ba)

‖bm × bm × ba‖2
.

Therefore, in view of Assumptions (1)-(2), it follows that

Φ0 −
2‖r̃a‖
c1c20

≤ Φ ≤ Φ0 +
2‖r̃a‖
c1c20

. (35)

Assume that the gain kv is chosen such that kv > 2ca/αc1c
2
0

for some α > 0. Hence, there exists a finite time t0 ≥ 0
such that ‖r̃a(t)‖ ≤ αc1c

2
0/2 for all t ≥ t0. Therefore, the

following holds

Φ0 − α ≤ Φ ≤ Φ0 + α, t ≥ t0. (36)

Let R̃ ∈ Ra(π, S
2) which implies that Φ0 = 4|R̃|2I = 4.

Hence, making use of (36), it follows that Φ ≥ Φ0−α = 4−
α > δ. Consequently, one has (v̂, R̂, b̂ω) ∈ J . Since |R̃|2I can

not be equal 1 inside the flow set F , one concludes that there

exist 0 < ǫR < 1 such that |R̃(t)|I ≤ ǫR < 1 for all t ≥ t0.

We have just showed that the set ℧(ǫR) is forward invariant

(starting from time t0 ≥ 0) without requiring a condition on

the initial states. The proof of exponential convergence from

all initial conditions, during the flows of F , follows the same

lines as (25)-(28) and here omitted for space limitation. It

remains to show that the Lyapunov function V used in (25)

is strictly decreasing during the jumps of the hybrid observer

(31). First, using the fact that Ra(π, ui) = −I+2uiu
⊤
i , one

has
3
∑

i=1

tr(I − R̃R(π, ui)) = 3tr(I + R̃)− 2

3
∑

i=1

tr(R̃uiu
⊤
i ),

= 12− tr(I − R̃),

where we have used the fact that {u1, u2, u3} is an or-

thonormal basis and hence
∑3

i=1 uiu
⊤
i = 1. Moreover,

in view of (34) and (36) and using the fact that Φ+ =
mini∈{1,2,3} Φ(v̂,R(π, ui)R̂), one obtains

Φ+ ≤ 1

3

3
∑

i=1

Φ(v̂,R(π, ui)R̂)

≤ 1

3

(

3
∑

i=1

tr(I − R̃R(π, ui)) + 3α

)

= 4− 4

3
|R̃|2I + α.

Consequently, it follows using (36) and |R̃+|2I = Φ+
0 /4 that

|R̃+|2I − |R̃|2I ≤ 1

4

(

Φ+ + α
)

− |R̃|2I ≤ 1− 4

3
|R̃|2I +

α

2
,

≤ 1− (δ − α)

3
+
α

2
=

1

3
(3 + 5α/2− δ).

where we have also used the fact that |R̃|2I = Φ0/4 ≥ (Φ−
α)/4 ≥ (δ − α)/4. Therefore, by letting the constant µ in

(25) to satisfy 0 < µ ≤ (δ − 5α/2− 3)/24cb, one deduces

V + − V = |R̃+|2I − |R̃|2I + µb̃⊤ω R̂
⊤(ψ(R̃+)− ψ(R̃))

≤ 1

3
(3 + 5α/2− δ) + 4µcb ≤

1

6
(3 + 5α/2− δ) < 0.

The proof is complete by invoking [22, Theorem 1].

VII. SIMULATION RESULTS

We provide simulation results that demonstrate the effec-

tiveness of the proposed velocity-aided estimation schemes

(hybrid and non-hybrid) with bias compensation. We con-

sider a rigid body system evolving according to (4) with the

following linear velocity and angular velocity vectors

v(t) =





2 cos(0.5t + 0.5)
3.75 cos(1.25t + 0.5)
0.5 cos(0.5t + 0.5)



 , ω(t) =





sin(0.1t + π)
0.5 sin(0.2t)

0.1 sin(0.3t + π/3)



 .

The true attitude is initialized at R(0) = Ra(π, [0, 1, 0]
⊤)

and the estimated attitude at R̂(0) = I . We consider

gyroscopic measurements of the angular velocity vector with

a constant bias bω = [5, 5, 5]⊤(deg/s). Also we consider an

IMU equipped with a magnetometer and an accelerometer

providing in the dody-frame, respectively, measurements of

the earth’s magnetic field rm = [0.18, 0, 0.54]⊤ and the

apparent acceleration (unknown in the inertial frame). We

implement the observer (14) with the gains kv = ρ1 =
ρ2 = 1, kR = 2 and kv = 3. The hybrid observer (30)-

(34) is also implemented with the same gains and parameters

ui = ei, i = 1, 2, 3 and δ = 3.6. The hybrid observer

has switched at around 1.42s to reduce the attitude error as

shown in Figure 1. Although both observers are successful

in estimating the attitude, the gyro bias and the unknown

acceleration of the vehicle, this simulation showed that the

hybrid observer exhibits a faster transient response.
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Fig. 1: Attitude estimation error angle in degrees.
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Fig. 3: Apparent acceleration estimation error in m/s.

VIII. CONCLUSION

We extended the velocity-aided attitude observer of [7]

with a projection-based gyro-bias estimation scheme. We

proved that the origin of the closed-loop system is semi-

globally exponentially stable. To the best of our knowledge,

this is the first result providing semi-global exponential

stability results for a velocity-aided attitude observer with

gyro-bias estimation. This extension is far from being trivial

due to the fact that one of the reference vectors, namely

ra, is unknown and time-varying. Moreover, we proposed a

new hybrid attitude observer scheme to enlarge the region

of attraction of the observer, leading to global exponential

stability results. The hybrid observer jumps its state to an

attitude estimate which is guaranteed to be closer to the true

attitude after each jump. The performance of the proposed

estimation schemes is illustrated by some simulation results.
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