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Abstract— Consider a multi-agent network comprised of risk-
averse social sensors and a controller that jointly seek to
estimate an unknown state of nature, given noisy measurements.

The network of social sensors perform Bayesian social learn-
ing - each sensor fuses the information revealed by previous
social sensors along with its private valuation using Bayes’ rule
- to optimize a local cost function. The controller sequentially
modifies the cost function of the sensors by discriminatory
pricing (control inputs) to realize long term global objectives.

We formulate the stochastic control problem faced by the
controller as a Partially Observed Markov Decision Process
(POMDP) and derive structural results for the optimal control
policy as a function of the risk-aversion factor in the Condi-
tional Value-at-Risk (CVaR) cost function of the sensors. We
show that the optimal price sequence when the sensors are risk-
averse is a super-martingale; i.e, it decreases on average over
time.

Index Terms— Social Learning, Social Sensors, Monopoly
Pricing, Structural Results, POMDP, Controlled Fusion, Risk-
averse, CVaR

I. INTRODUCTION

A social sensor is an information processing system having
the following attributes:

i.) It affects the behaviour of other sensors.
ii.) It shares quantized information (decisions/actions) and

has its own dynamics.
iii.) It has limited processing capabilities - boundedness.
iv.) It is rational - fuses all available information using

Bayes’ rule to take optimal action.
Social learning is the process by which social sensors are
influenced by the behaviour of other sensors in a multi-
agent network. We present a model of Bayesian social
learning with focus on understanding the interaction between
a controller and a multi-agent network of risk-averse social
sensors.

[1] considers the interaction of a controller and a network
of social sensors, where the sensors perform social learning
to estimate an unknown parameter and optimize a local utility
function. The controller seeks to detect a change in the
parameter as soon as possible by observing the actions of the
sensors. This is the well studied Controlled Sensing problem,
see [2], where the observation (action) statistics is controlled
to meet the desired objectives. In [1], well known inefficien-
cies of the standard social learning model [3], [4] like herding
(sensors choose the same action irrespective of their private
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information) and informational cascades (information fusion
results in no improvement in uncertainty) are shown to be
the consequence of the belief state (probability distribution
on the parameter) belonging to suitably defined regions in
the belief space. Using this characterization, structural results
(threshold policies) on the optimal policy of the controller
are derived in [1]. [5] extends the analysis to the case where
the sensors display an aversion to risk; i.e, social sensors
having risk aversion as an additional attribute. It is shown
that when the sensors are risk-averse (modeled using CVaR),
the herding behaviour is more pronounced - social learning
is absent when the sensors are sufficiently risk-averse. In
this paper, we extend the results in [5] to the case where
the controller directly modifies the cost function of the
social sensors, and this problem is termed as the controlled
information fusion problem. The controller fuses (aggregates)
the information on the state revealed in the form of decisions
of the risk-averse social sensors.

The contribution of this paper is two fold:
1) We study the interaction of a controller and a network

of risk-averse social sensors, using a Partially Observed
Markov Decision Process (POMDP) framework. Unlike
controlled sensing, the interaction is such that the con-
troller can influence the information fusion in social
sensors.

2) We obtain structural results for the optimal policy of
the controller and characterize the properties of the
optimal (price) sequence, when the social sensors are
risk-averse.

[6], [7] consider monopoly pricing in the presence of social
learning and establish various properties of the value function
and the optimal policy for the monopoly. It is shown that
using discriminatory pricing the monopoly is able to delay
the process of herding in risk-neutral social sensors, to suit its
needs. The optimal price (control) sequence is shown to be a
super-martingale. We consider monopoly pricing and social
learning under CVaR risk-measure1; see [8] for an overview
of risk measures.

CVaR is an extension of VaR that gives the total loss
given a loss event, and is a coherent risk measure; see
[9]. The value at risk (VaR) is the percentile loss namely,
VaRα(x) = min{z : Fx(z) ≥ α} for cdf Fx, and
CVaRα(x) = E{X|X > VaRα(x)}. CVaR is one of the

1A risk measure % : L → R is a mapping from the space of measurable
functions to the real line which satisfies the following properties: (i) %(0) =
0. (ii) If S1, S2 ∈ L and S1 ≤ S2 a.s then %(S1) ≤ %(S2). (iii) if a ∈ R
and S ∈ L, then %(S + a) = %(S) + a. The risk measure is coherent if in
addition % satisfies: (iv) If S1, S2 ∈ L, then %(S1+S2) ≤ %(S1)+%(S2).
(v) If a ≥ 0 and S ∈ L, then %(aS) = a%(S). The expectation operator
is a special case where subadditivity is replaced by additivity.
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‘big’ developments in risk modelling in the last 15 years. In
this paper, we choose CVaR risk measure as it exhibits the
following properties: (i) It associates higher risk with higher
cost. (ii) It ensures that risk arises only from the services.
(iii) It is convex.

Organization and Main Results

Sec. II details the Bayesian social learning model for
the process of information fusion by CVaR social sensors
and the pricing protocol employed by the controller. The
controller’s long term objective is to maximize a discounted
reward function.
Sec. III formulates the stochastic control problem faced by
the controller as a Partially Observed Markov Decision Pro-
cess (POMDP) and is solved using dynamic programming.
The structure of the value function and optimal policy is
completely characterized.
Sec. IV describes the nature of the price sequence that
is input to the multi-agent network. It is shown that the
controller prices high initially and subsequently lowers the
price, i.e the price input sequence over time is a super-
martingale.

II. CVAR SOCIAL LEARNING MODEL AND CONTROLLER
OBJECTIVE

We consider the classical sequential social learning frame-
work [1], [5], [10]. The social sensors and the controller
jointly seek to estimate an unknown state of nature to meet
the desired objectives. The controller sequentially chooses
price inputs to the multi-agent network in exchange for ser-
vices and the sensors decide to utilize the services depending
on its quality. The decision (action) of each sensor depends
on the cost, risk factor, private valuation and the decisions
of the other sensors in the network2.

Let x ∈ X = {1(Low), 2(High)} denote the state. In this
paper, we study the problem of localization; i.e, the quality is
a random variable. Let the initial distribution (on the quality)
be denoted as π0 = (π0(i), i ∈ X ), where π0(i) = P(x0 =
i).

Each sensor acts once in a predetermined sequential or-
der indexed by k = 1, 2, · · · . The index k can also be
viewed as the discrete time instant when sensor k acts.
Each sensor k obtains noisy private valuations, yk ∈ Y =
{1(Low), 2(High)}, of the quality xk and considers this in
addition to the actions of its predecessors. The controller
does not have any information about xk ∈ X but infers it
from the information revealed by the actions of the individual
sensors, ak ∈ A = {1(Don’t Utilize), 2(Utilize)}, and
chooses the price inputs3 uk ∈ [0, 1] at each time k (or
at each sensor k).

2Amazon Web Services (AWS), for example, provides an on-demand
cloud platform with a wide range of services like storage, developer tools,
analytics etc for client-side applications at different prices. AWS is only
partially aware of the quality of its services, while the clients learn about it
from the experience of other clients and self-valuation.

3The range of prices chosen by the controller is normalized to [0, 1] for
convenience.

A. CVaR Social Learning Model and Pricing Protocol

The social learning model and the pricing protocol of the
controller is as follows:

1. Social Sensor’s Private Observation: Social sensor k’s
private observation denoted by yk ∈ Y = {1, 2} is a
noisy measurement of the true quality. It is obtained
from the observation likelihood distribution as,

Bij = P(yk = j|xk = i) (1)

The discreteness of the observation distribution captures
the boundedness or the limited processing capabilities
of the sensor.

2. Social Learning and Private Belief update: Social sen-
sor k updates its private belief by fusion of the obser-
vation yk and the prior public belief πk−1(i) = P(xk =
i|a1, . . . , ak−1) as the following Hidden Markov Model
(HMM) update

ηykk =
Bykπk−1

1′Bykπk−1
(2)

where Byk denotes the diagonal matrix having
[P(yk|xk = 1) P(yk|xk = 2))] along the diagonal
and 1 denotes the 2-dimensional vector of ones. HMM
update is a consequence of Bayes’ rule, information on
the state conditioned on the new observation.

3. Social Sensor’s Action: Social sensor k executes an
action ak ∈ A = {1, 2} to myopically minimize its
cost. Let c(xk, ak) denote the cost incurred if the sensor
takes action ak when the underlying state is xk.
The form of the state-action dependent cost is taken as
c(xk, ak) = uk − v(xk) (see [10] for a justification),
where v is the valuation of the services by each sensor
and uk is the price chosen by the controller at time k.
It is assumed without loss of generality that

v(xk) =

{
0 if xk = 1;
1 if xk = 2.

The state-action dependent costs for x ∈ X are thus
given as:

c(xk, ak) =


[
0
0

]
if ak = 1;[

uk
uk − 1

]
if ak = 2.

The sensor chooses an action ak to minimize the CVaR
measure as

ak = argmin
a∈A

{CVaRα(c(xk, a))} (3)

= argmin
a∈A

{min
z∈R
{z +

1

α
Eyk [max{(c(xk, a)− z), 0}]}}

Here α ∈ (0, 1] reflects the degree of risk-aversion for
the sensor (the smaller α is, the more risk-averse the
sensor is). Note that when α = 1, the cost function is
the risk-neutral cost function as in [6], [7], [10]. Define

Gk := σ- algebra generated by (u1, a1, u2, a2, . . . , uk, yk)
(4)



Eyk denotes the expectation with respect to private
belief, i.e, Eyk = E[.|Gk] when the private belief is
updated after observation yk.

4. Controller Reward: We consider two possible reward
functions for the controller. The controller chooses one
of the following reward functions at k = 0 and accrues
the corresponding reward at each time k as
Case 1. Self-Interested: The controller accrues a reward

when the sensors utilize the services,

ruk = (uk − β)I(ak = 2|πk). (5)

Case 2. Altruistic: The controller accrues a reward
when the sensors act according to their valuations,

ruk = (uk − β)I(ak = yk|πk). (6)

Here I denotes the indicator function and β ∈ (0, 1) is
a fixed4 cost incurred by the controller. It could denote
the cost of service. The controller being self-interested
can be seen as profit maximizing, and being altruistic
can be seen as social welfare maximizing5.

5. Public Belief update: Sensor k’s action is shared by the
controller with the multi-agent network and the public
belief on the quality is updated according to the social
learning Bayesian filter (see [1], [5]) as follows

πk = Tπ(πk−1, ak) =
R
πk−1
ak πk−1

1′Rπk−1
ak πk−1

. (7)

Here, πk(i) = P(xk = i|a1, . . . , ak), R
πk−1
ak =

diag(P(ak|x = i, πk−1), i ∈ X ), where P(ak|x =
i, πk−1) =

∑
y∈Y

P(ak|y, πk−1)P(y|xk = i) and

P(ak|y, πk−1) =

{
1 if ak = argmin

a∈A
{CVaRα(c(xk, a))};

0 otherwise.

Note that πk belongs to the unit simplex

Π(2)
∆
={π ∈ R2 : π(1) +π(2) = 1, 0 ≤ π(i) ≤ 1 for i ∈ {1, 2}}

Here the expectation in CVaR measure is with respect
to the sigma-algebra Gk. Social learning filter update is
a consequence of Bayes’ rule, information on the state
conditioned on the new action.

6. Information Fusion Price: Let the history recorded by
the controller and the multi-agent network be denoted as
Hk = {π0, u1, a1, · · · , uk, ak}. The controller chooses
uk+1 = µk+1(Hk) ∈ [0, 1] for the sensor k+1 and the
protocol is repeated for all the sensors in the system.
Here µk+1 denotes the pricing policy at time k + 1.

Fig. 1 shows the CVaR social learning model.

4Note that β could be made state dependent without affecting the nature
of the results in the paper. Here it is assumed to be independent of the state
for simplicity.

5Social welfare is maximized when the controller and the sensors in the
multi-agent network take decisions considering network externalities; see
(Chapter 4, [10]). We shall see in Sec. IV that I(a = y) improves the
value of information fused by the successive sensors, thereby promoting
welfare.

Fig. 1: CVaR Social Learning model. The social sensor k receives
the public belief πk−1 from all its predecessors. yk denotes the
private valuation of the quality and uk denotes the price charged
by the controller for the services. The decision ak is shared by the
controller and the updated public belief πk+1 is received by the
successive sensors.

B. Controlled Fusion Objective

The controller chooses the price inputs to the social
sensors sequentially as

uk = µk(Hk−1) ∈ [0, 1] (8)

where Hk = {π0, u1, a1, · · · , uk−1, ak−1}. Since Hk is
increasing with time k, to implement a controller, it is
useful to obtain a sufficient statistic that does not grow in
dimension. The public belief πk−1 computed via the social
learning filter (7) forms a sufficient statistic for Hk and6 (8)
can be written as

uk = µk(πk−1). (9)

The controller maximizes the cumulative discounted reward

Jµ(π) = Eµ{
∞∑
k=1

ρkruk |π0 = π}. (10)

Here uk = µ(πk−1) and ρ ∈ [0, 1) denotes the economic
discount factor indicating the degree of impatience of the
controller. In (10), the controller seeks to find the optimal
stationary policy µ∗ such that

Jµ∗(π0) = supµ∈µJµ(π0). (11)

The stochastic control problem faced by the controller is
formulated as a partially observed Markov decision process
(POMDP) with dynamics (7) and objective (11), and is
solved using dynamic programming.

III. STRUCTURE OF OPTIMAL PRICING POLICY

In this section, we characterize the nature of the optimal
pricing policy for (10). It is shown that due to the structure
of the social learning filter in (7), the choice of price inputs
reduces from a continuum to a finite number at every belief.

Assumptions:
(A1) The observation distribution Bxy = P(y|x) is TP2(total

positive of order 2), i.e, the determinant of the matrix
B is non-negative; see [2].

6The rewards are a function of the price and the state (see Lemma 8
and Lemma 9), and hence restriction to Markov policies is without loss of
generality.



The optimal policy µ∗ and the value function V (π) for
the POMDP satisfy the Bellman’s dynamic programming
equation

Q(π, u) = ru + ρ
∑
a∈A

V (Tπ(π, a))σ(π, a),

µ∗(π) = argmax
u∈[0,1]

Q(π, u),

V (π) = max
u∈[0,1]

Q(π, u), Jµ∗(π0) = V (π0). (12)

Theorem 1. Given a risk-aversion factor α ∈ (0, 1], let
uH(π) = 1− ηy=2(1)

α and uL(π) = 1− ηy=1(1)
α denote two

possible prices at the belief π. Under (A1), the Q function
(12) can be simplified for the rewards (5) and (6) as
Case 1.) Self-Interested:

Q(π, u) =


(u− β) + ρV (π) if u ∈ [0, uL(π)];
(u− β)× 1′By=2π
+ρEV (π) if u ∈ (uL(π), uH(π)];
0 otherwise.

and V (π) = maxQ(π, u), where V (π) ≥ 0.
Case 2.) Altruistic:

Q(π, u) =

{
(u− β) + ρEV (π) if u ∈ (uL(π), uH(π)];
0 otherwise.

and V (π) = maxQ(π, u), where V (π) ≥ 0.

Here,

EV (π) = 1′Bπy=1π × V (ηy=1) + 1′Bπy=2π × V (ηy=2).

The prices uH(π) and uL(π) are such that sensors utilize
the services when y = 2 and y = {1, 2} respectively. The
proof of Theorem 1 will be given in the appendix. Theorem 1
represents the Q function (12) over a price input range [0, 1]
for rewards (5) and (6) respectively, in three and two regions.
The following corollaries highlight why such partitions are
useful.

Corollary 2. Let the controller reward be given by (5). At
every public belief π ∈ Π(2), it is sufficient to choose one of
the three prices {uL(π), uH(π), uH(π) + ε} for any ε > 0.

Corollary 3. Let the controller reward be given by (6). At
every public belief π ∈ Π(2), it is sufficient to choose one
of the two prices {uH(π), uH(π) + ε} for any ε > 0.

The following theorem completely characterizes the opti-
mal pricing policy when the controller aims to maximize the
reward. The proof is given in the appendix.

Theorem 4. For every public belief π ∈ Π(2) and an ε > 0,
the optimal policy µ∗(π) = argmaxuQ(π, u) is given as
Case 1.) Self-Interested:

µ∗(π) =

 uH(π) + ε if π(2) ∈ [0, π∗(2));
uH(π) if π(2) ∈ [π∗(2), π∗∗(2));
uL(π) π(2) ∈ [π∗∗(2), 1].

(13)

1

π
e1 e2

R1 R2

π
∗ π

∗∗

R3

µ(π)

V (π)

(a) Risk-aversion factor α = 0.9

1

π

V (π)µ(π)

R1 R2

R3

π
∗∗

π
∗e1 e2

(b) α = 0.3

Fig. 2: Value function and optimal pricing policy of the controller

in the self-interested case. B =

[
0.7 0.3
0.3 0.7

]
, the discount factor

ρ = 0.7, and R1 − [0, π∗), R2 − [π∗, π∗∗), and R3 − [π∗∗, 1]
are the cut-off, social learning and herding regions respectively. It
can be seen that the width of R1 increases with increased aversion
to risk. This is equivalent to saying that risk-averse sensors that
show an increased aversion to risk, choose to utilize the services
only when they are reasonably certain about the quality. So it is
profitable to the controller if it offers services only when it believes
that the quality is high.

for π∗(2), π∗∗(2) ∈ [0, 1].
Case 2.) Altruistic:

µ∗(π) =

{
uH(π) + ε if π(2) ∈ [0, π̂∗(2));
uH(π) if π(2) ∈ [π̂∗(2), 1].

(14)

for π̂∗(2) ∈ (0, 1).

Discussion: From Theorem 1, Corollary 2 and Corol-
lary 3, the value function in (12) can be represented as

(Self-Interested)

V (π) = max{0, (uL(π)− β) + ρV (π),

(uH(π)− β)× 1′By=2π + ρEV (π)}
(Altruistic)

V (π) = max{0, (uH(π)− β) + ρEV (π)}

The key takeaway is that due to the structure of the social
learning filter, the choice of price inputs at every belief is
reduced to a finite number of values instead of the range
[0, 1]. Characterizing the optimal policy amounts to selecting
among the these price inputs as a function of the public
belief. Theorem 4 completely determines the regions in the
belief space Π(2) where it is optimal to choose a particular
price input. Fig. 2a and Fig. 2b show the value function and
the optimal policy for two different risk-aversion factors (α)
in a simple numerical example.

Let R1, R2, R3 denote the three regions determined by
Theorem 4 where uH(π)+ε, uH(π), uL(π) respectively are
optimal. R1 is the cut-off region - the controller terminates
the services to the multi-agent network. In the Self-Interested
case, the price inputs are such that no sensor has an incentive
to utilize the services. R2 is the social learning region -
the sensors act according to their private valuations. The
price inputs are such that the sensor having a high valuation
y = 2 will utilize the services, while the sensor having



low valuation y = 1 finds it prohibitive. Since the sensors
act according to their valuation, sensor deciding at a future
instant can successfully infer the private valuation of its
predecessors; in other words, the information fusion reduces
uncertainty about the quality of the service.R3 is the herding
region - every sensor utilizes the services. The controller
chooses a low input uL(π)(< uH(π)), which prompts the
sensor with even a low valuation y = 1 to utilize the service.
Notice that when the controller chooses u = uL(π) (when
π(2) ∈ [π∗∗(2), 1]), the value function is V (π) = (uL(π)−β)

(1−α)
- a fixed payoff. This means the controller induces a herd
(sensors choose the same action irrespective of their private
valuation) that leads to an information cascade (information
fusion results in no improvement in uncertainty) - public
belief is frozen.

In the Altruistic case, the price inputs (two at every belief)
are chosen so as to encourage the sensors to act according
to their valuations. This implies that the controller chooses
inputs to maximize the width of the social learning region
R2. The herding region R3 is absent as u = uL(π) is
not chosen by the controller. The cut-off region indicates
the flexibility to terminate the services when the expected
valuation is less than the cost of service.

IV. PROPERTIES OF THE OPTIMAL PRICE SEQUENCE

In this section, we describe the relation between the
optimal policy (13) and (14), and the price sequence uk =
µ∗(πk).

Theorem 5. Let Fk be the σ-algebra generated by
(u1, a1, u2, a2, . . . , uk−1, ak−1, uk, ak), where π0 is the ini-
tial belief. The optimal price sequence uk = µ∗(πk−1) is a
super-martingale7 when the quality is a random variable for
any α ∈ (0, 1].

Discussion: When the controller is profit maximizing
or self-interested, it initially chooses higher price inputs
to encourage sensors with higher valuation to utilize the
services. Decisions at higher prices are more informative8,
which in turn results in higher public beliefs when a = 2.
Due to the concavity of the pricing policy, higher belief
causes the future price inputs to increase. Once sufficient
information about the quality is accumulated, the controller
either chooses low price inputs to allow every sensor to
utilize the services or terminates its services to the multi-
agent network.

When the controller is altruistic, it always chooses high
price inputs to encourage the sensors to act according to their
private valuations.

7Decreases on average over time.
8Informativeness is in the sense of Blackwell; see [2]. For any two

observation matrices B1 and B2, B1 is more informative than B2 in the
Blackwell sense (B1 �B B2) if B2 = B1Q, for any stochastic matrix Q.
Note here that when u = uH(π), the action likelihood matrix in (7) RH =

B; and when u = uL(π), the action likelihood matrix RL =

[
1 0
1 0

]
. We

have for Q =

[
1 0
1 0

]
, RL = RHQ⇒ RH �B RL.

APPENDIX

Lemma 6 ( [2]). Let ηy denote the private belief update (2)
with a public prior belief π. Under (A1), ηy is increasing9

in y, i.e, ηy=1(1) > ηy=2(1).

Theorem 7 ( [2]). Let the instantaneous rewards be non-
decreasing in π. Under (A1), the value function V (π) with
finite number of actions at every belief, is monotone and
convex.

Lemma 8. The instantaneous reward (u− β)I(a = 2|π) is
given as∑

j∈Y

∑
i∈X

(u− β)I(u ≤ 1− ηy=j(1)

α
)Bijπ(i). (15)

Lemma 9. The instantaneous reward (u− β)I(a = y|π) is
given as

(u− β) I(uL(π) < u ≤ uH(π)). (16)

The proofs follow from the structure of the social learning
filter (see Theorem 2, [5]), property of the CVaR measure
(see Lemma 6, [5]), and Bayes’ rule. It is omitted.
We will prove Theorem 1 and Theorem 4 for the Self-
Interested case. The proof for the Altruistic case follows
similarly.
Proof of Theorem 1:
Consider Q(π, u) as in (10) for u ∈ [0, 1].

i.) Let u ∈ [0, uL(π)]. Recall that uL(π) = 1 − ηy=1(1)
α .

The instantaneous reward in (15) is (u − β). The
continuation payoff

∑
a∈A V (Tπ(π, a))σ(π, a) is given

as follows. From (7), Rπa =

[
0 1
0 1

]
.

(⇒)
∑
a∈A

V (Tπ(π, a))σ(π, a) = V (π).

∴ Q(π, u) = (u− β) + ρV (π). (17)

ii.) Let u ∈ (uL(π), uH(π)]. The instantaneous reward in
(15) is (u− β)× 1′By=2π. From (7), Rπa = B.

(⇒)
∑
a∈A

V (Tπ(π, a))σ(π, a) = EV (π).

∴ Q(π, u) = (u− β)× 1′By=2π + ρEV (π). (18)

iii.) Let u ∈ (uH(π), 1]. This implies that u > 1− ηy=2(1)
α .

The instantaneous reward in (15) is 0. From (7), Rπa =[
1 0
1 0

]
. Since P(a = 1) = 1, the controller doesn’t

accrue any profit by offering services. Therefore the
instantaneous and continuation payoff is 0.

(⇒)Q(π, u) = 0. (19)

The result follows from (17), (18) and (19).

9π2 ≥ π1 if the determinant∣∣∣∣π1(1) π1(2)
π2(1) π2(2)

∣∣∣∣ ≥ 0



Proof of Theorem 4:
Define the following:

δ∗ = min{π(2)| ηy=1(2) ≥ 1− α},
γ∗ = {π|(uH(π)− β)× 1′By=2π + ρEV (π) = 0},

π∗(2) = max{δ∗, γ∗},
π∗∗(2) = {π(2)|(uL(π)− β) + ρV (π) =

(uH(π)− β)× 1′By=2π + ρEV (π)}.

i.) Consider π(2) ∈ [0, π∗(2)). We will show that
{max Q(π, u) = 0}.
Let V (0) denote the value at π =

[
1
0

]
. As π(2) → 0,

we have EV (0)→ V (0) and uH(0) = uL(0)→ 1− 1
α .

Assume on the contrary V (π) = (uL(π)−β) +ρV (π).
As π(2) → 0, V (0) =

(1− 1
α−β)

(1−ρ) . Since α ∈ (0, 1],
1
α ≥ 1 and V (0) < 0. From Theorem 1, V (π) ≥ 0.
Contradiction.
Similarly if V (π) = (uH(π)−β)×1′By=2π+ρEV (π),
we have V (0) < 0. Therefore, V (0) = 0 and we have
Q(0, uH(0)) < 0 and Q(0, uL(0)) < 0.
From the convexity of the value function, EV (π) ≥
V (π). Since Q(π, uH(π)) < 0 for π(2) = [0, π∗(2)),
by definition of π∗(2), we have

(uH(π)− β)× 1′By=2π + ρEV (π) < 0

V (π) ≥ 0→ EV (π) ≥ 0 by Jensen’s Inequality.

∴ (uH(π)− β) < 0.

(uH(π)− β) < 0→ (uL(π)− β) < 0 from Lemma 6.

If on the contrary V (π) = (uL(π)− β) + ρV (π), then
V (π) < 0; a contradiction.

∴ Q(π, uL(π)) < 0 for all π(2) = [0, π∗(2)].

⇒ V (π) = 0 for all π(2) = [0, π∗(2)].

ii.) π∗∗(2) = {π(2)|Q(π, uH(π) = Q(π, uL(π)))}. We
will show that for π(2) ∈ (π∗∗(2), 1], Q(π, uL(π))) >
Q(π, uH(π))) > 0.
Assume Q(π, uH(π)) > Q(π, uL(π)) on the contrary.
Consider π(2) → 1. Let V (1) and b(= 1′By=2π) ∈

[0, 1] denote the values at π =

[
0
1

]
. We have

uH(1) = uL(1)→ 1 and EV (1)→ V (1)

⇒ (1− β)× b+ ρEV (1) > (1− β) + ρV (1)

⇒ b > 1, a contradiction as β > 0.

⇒ Q(π, uL(π)) > Q(π, uH(π)).

From Theorem 1, V (π) ≥ 0 and therefore, EV (π) ≥ 0.

For π(2) ∈ [π∗∗(2), 1], (uH(π)− β)× 1′By=2π > 0

(⇒)Q(π, uH(π)) > 0.

iii.) Since π∗∗(2) = {π(2)|Q(π, uH(π) = Q(π, uL(π)))}
and Q(π, uL(π)) < 0 for all π(2) = [0, π∗(2)] , from
part (ii) we have

Q(π, uH(π))) > Q(π, uL(π))) for all π(2) ∈ [π∗(2), π∗∗(2)).

Note that Q(π, uH(π))) > 0 for all π(2) ∈
[π∗(2), π∗∗(2)) by definition of π∗(2) and the fact that
Q(π, u) ↑ π (Theorem 7).

Proof of Theorem 5:
The public belief πk is a martingale when the state is a
random variable, i.e, E[πk+1|Fk] = πk; see [7], [10].
It can easily be verified10 that uH(π) is a concave function
and uL(π) is a convex function of π for α ∈ (0, 1].

i.) Self-Interested: For ε → 0, we have for
πk(2), πk+1(2) ∈ [0, π∗∗(2)), uk = uH(πk) and
it satisfies E[uH(πk+1)|Fk] ≤ uk by Jensen’s
inequality.
We know that uL(π) ≤ uH(π) from Lemma 6. For
the case of πk(2) ∈ [π∗(2), π∗∗(2)) and πk+1(2) ∈
[π∗∗(2), 1], we have

E[uk+1|Fk] = E[uL(πk+1)|Fk] ≤ E[uH(πk+1)|Fk] ≤ uk.

Note that the belief is frozen in [π∗∗(2), 1], so
πk+1(2) ∈ [π∗(2), π∗∗(2)) and πk(2) ∈ [π∗∗(2), 1] is
irrelevant.

ii.) Altruistic: Here π∗∗(2) = 1. For ε → 0, we have for
πk(2), πk+1(2) ∈ [0, 1], uk = uH(πk) and it satisfies
E[uH(πk+1)|Fk] ≤ uk by Jensen’s inequality.
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