
ar
X

iv
:1

70
8.

07
62

0v
2

 [m
at

h.
O

C
]

5
A

pr
 2

01
8

1

Fenchel Dual Gradient Methods for Distributed Convex

Optimization over Time-varying Networks

Xuyang Wu and Jie Lu

Abstract

In the large collection of existing distributed algorithms for convex multi-agent optimization, only a

handful of them provide convergence rate guarantees on agent networks with time-varying topologies,

which, however, restrict the problem to be unconstrained. Motivated by this, we develop a family of

distributed Fenchel dual gradient methods for solving constrained, strongly convex but not necessarily

smooth multi-agent optimization problems over time-varying undirected networks. The proposed algo-

rithms are constructed based on the application of weighted gradient methods to the Fenchel dual of the

multi-agent optimization problem, and can be implemented in a fully decentralized fashion. We show

that the proposed algorithms drive all the agents to both primal and dual optimality asymptotically under

a minimal connectivity condition and at sublinear rates under a standard connectivity condition. Finally,

the competent convergence performance of the distributed Fenchel dual gradient methods is demonstrated

via simulations.

I. INTRODUCTION

In many engineering scenarios, a network of agents often need to jointly make a decision so that a

global cost consisting of their local costs is minimized and certain global constraints are satisfied. Such

a multi-agent optimization problem has found a considerable number of applications, such as estimation

by sensor networks [1], network resource allocation [2], and cooperative control [3].

To address convex multi-agent optimization in an efficient, robust, and scalable way, distributed

optimization algorithms have been substantially exploited, which allow each agent to reach an optimal or

suboptimal decision by repeatedly exchanging its own information with neighbors [1]–[32]. One typical

approach is to let the agents perform consensus operations so as to mix their decisions that are updated

using first-order information of their local objectives (e.g., [4]–[14]). Recently, rates of convergence to

optimality have been established for a few consensus-based algorithms. By assuming that the problem

is unconstrained and smooth (i.e., the gradient of each local objective is Lipschitz) and that the network

is fixed, the consensus-based multi-step gradient methods [8]–[11] are able to achieve sublinear rates

of convergence, and also linear rates if the local objectives are further (restricted) strongly convex.

Unlike these algorithms, the Subgradient-Push method [12], the Gradient-Push method [13], the DIGing

X. Wu and J. Lu are with the School of Information Science and Technology, ShanghaiTech University, 201210 Shanghai,

China. Email: {wuxy, lujie}@shanghaitech.edu.cn.

This work has been supported by the National Natural Science Foundation of China under grant 61603254, the Shanghai

Pujiang Program under grant 16PJ1406400, and the Natural Science Foundation of Shanghai under grant 16ZR1422500.

April 6, 2018 DRAFT

http://arxiv.org/abs/1708.07620v2

2

algorithm [14], and the Push-DIGing algorithm [14] can be implemented over time-varying networks

and still provide convergence rate guarantees. Specifically, Subgradient-Push converges to optimality

at a sublinear rate of O(ln k/
√
k) for unconstrained, nonsmooth problems with bounded subgradients

[12]. In addition, when the problem is unconstrained, strongly convex, and smooth, an O(ln k/k) rate is

established for Gradient-Push [13], and linear rates are provided for DIGing and Push-DIGing [14].

Another standard approach is to utilize dual decomposition techniques, which often lead to a dual

problem with a decomposable structure, so that it can be solved in a distributed fashion by classic

optimization methods including the gradient projection method, the accelerated gradient methods, the

method of multipliers, and their variants (e.g., [2], [3], [15]–[24]). Compared with the aforementioned

consensus-based primal methods, many distributed dual/primal-dual algorithms can handle more com-

plicated coupling constraints, yet still manage to achieve sublinear rates of convergence to dual and

primal optimality when the dual function is smooth, and achieve linear rates when the dual function is

also strongly concave. Despite this advantage, most of such methods require a fixed network topology.

Although the primal-dual subgradient methods in [19], the primal-dual perturbation method in [21],

and the proximal-minimization-based method in [24] cope with time-varying agent networks, they only

guarantee asymptotic convergence to optimality and no results on convergence rate are provided. In

addition to the above two approaches, there are other lines of research on distributed optimization,

including incremental optimization methods (e.g., [1], [25], [26]), distributed Newton methods (e.g.,

[27]–[29]), and continuous-time distributed optimization algorithms (e.g., [30]–[32]).

This paper is motivated by the lack of distributed optimization algorithms in the literature that are

able to address constrained convex multi-agent optimization at a guaranteed convergence rate over time-

varying networks. We propose, in this paper, a family of distributed Fenchel dual gradient methods that are

able to solve a class of constrained multi-agent optimization problems at sublinear rates on time-varying

undirected networks, where the local objectives of the agents are strongly convex but not necessarily

differentiable and the global constraint is the intersection of the local convex constraints of the agents.

To develop such algorithms, we first derive the Fenchel dual of the multi-agent optimization problem,

which consists of a separable, smooth dual function and a coupling linear constraint. Additionally, the

gradient of the Fenchel dual function can be evaluated in parallel by the agents. We then utilize a

class of weighted gradient methods to solve the Fenchel dual problem, which can be implemented over

time-varying networks in a distributed fashion and can be viewed as a generalization of the distributed

weighted gradient methods in [33], [34]. We show that the proposed Fenchel dual gradient algorithms

asymptotically converge to both dual and primal optimality if the agents and their infinitely occurring

interactions form a connected graph. We also show that the dual optimality is reached at an O(1/k) rate

and the primal optimality is achieved at an O(1/
√
k) rate if the underlying agent interaction graph during

every B iterations is connected. Finally, the efficacy of the Fenchel dual gradient methods is illustrated

through numerical examples.

The outline of the paper is as follows: Section II formulates the multi-agent optimization problem, and

Section III develops the distributed Fenchel dual gradient methods. Section IV establishes the convergence

April 6, 2018 DRAFT

3

results of the proposed algorithms. Section V presents simulation results, and Section VI concludes the

paper. All the proofs are included in the appendix. This paper is a significantly improved version of an

earlier, 6-page conference paper [35].

Throughout the paper, we use ‖ · ‖ to represent the Euclidean norm and ‖ · ‖1 the ℓ1 norm. For any set

X ⊆ R
d, intX represents its interior and |X| its cardinality. Let PX(x)= arg miny∈X ‖x − y‖ denote

the projection of x ∈ R
d onto X, which uniquely exists if X is closed and convex. The ball centered

at x ∈ R
d with radius r > 0 is denoted by B(x, r) := {y ∈ R

d : ‖y − x‖ ≤ r}. The floor of a real

number is represented by ⌊·⌋. For any x ∈ R
nd, x = (xT1 , . . . , x

T
n)

T means the even partition of x into

n blocks, i.e., xi ∈ R
d ∀i = 1, . . . , n. For any function f : Rd → R, ∂f(x) denotes any subgradient of

f at x ∈ R
d, i.e., f(y)− f(x)− ∂f(x)T (y−x) ≥ 0 ∀y ∈ R

d. If f is differentiable, then ∇f(x) denotes

the gradient of f at x ∈ R
d. In addition, Id is the d × d identity matrix, Od is the d × d zero matrix,

1d ∈ R
d is the all-one vector, 0d ∈ R

d is the all-zero vector, and ⊗ is the Kronecker product. For any

matrices M,M ′ ∈ R
n×n, M � M ′ and M ′ � M both mean M ′ − M is positive semidefinite. Also,

[M]ij represents the (i, j)-entry of M , R(M) the range of M , and Null(M) the null space of M . If M

is a block diagonal matrix with diagonal blocks M1, . . . ,Mm, we write it as M = diag(M1, . . . ,Mm).

If M is symmetric positive semidefinite, we use λ↓
i (M) ≥ 0 to denote its ith largest eigenvalue and M †

its Moore-Penrose pseudoinverse.

II. PROBLEM FORMULATION

Consider a set V = {1, 2, . . . , n} of agents, where each agent i ∈ V possesses a local objective function

fi : R
d → R and a local constraint set Xi ⊆ R

d. All of the n ≥ 2 agents attempt to solve the constrained

optimization problem

minimize
x∈Rd

∑

i∈V fi(x)

subject to x ∈ ⋂i∈V Xi,
(1)

which satisfies the following assumption.

Assumption 1. (a) Each fi, i ∈ V is strongly convex over Xi with convexity parameter θi > 0, i.e., for

any x, y ∈ Xi and any subgradient ∂fi(x) of fi at x, fi(y)− fi(x)− ∂fi(x)
T (y − x) ≥ θi‖y − x‖2/2.

(b) 0d ∈ int
⋂

i∈V Xi.

Assumption 1 ensures the existence of a unique optimal solution x⋆ ∈ ⋂i∈V Xi to problem (1). Notice

that Assumption 1(a) is a common assumption for distributed optimization methods with convergence

rate guarantees (e.g., [2], [3], [13], [14], [20], [22]). In addition, unlike many existing works that require

each fi to be continuously differentiable (e.g., [7]–[11], [13], [14], [17], [21], [22], [27]–[30], [32]),

here each fi is not necessarily differentiable. Also, Assumption 1(b) can always be replaced with the

less restrictive condition int
⋂

i∈V Xi 6= ∅, which is also assumed in [4]–[6], [24]. To see this, suppose

x′ ∈ int
⋂

i∈V Xi for some x′ 6= 0d. Consider the change of variable z = x − x′, and write each fi(x)

and Xi as fi(z + x′) and {z ∈ R
d : z + x′ ∈ Xi}, respectively. Then, the resulting new problem with

the decision variable z is in the form of (1) and satisfies Assumption 1.

April 6, 2018 DRAFT

4

We model the n agents and their interactions as an undirected graph Gk = (V, Ek) with time-varying

topologies, where k ∈ {0, 1, . . .} represents time, V = {1, 2, . . . , n} is the set of nodes (i.e., the agents),

and Ek ⊆ {{i, j} : i, j ∈ V, i 6= j} is the set of links (i.e., the agent interactions) at time k. Without

loss of generality, we assume that Ek 6= ∅ ∀k ≥ 0. In addition, for each node i ∈ V , let N k
i = {j ∈ V :

{i, j} ∈ Ek} be the set of its neighbors (i.e., the nodes that it directly communicates with) at time k.

To enable cooperation of the nodes, we need to impose an assumption on network connectivity, so that

the local decisions of the nodes can be mixed across the network. To this end, define E∞ := {{i, j} :

{i, j} ∈ Ek for infinite many k ≥ 0}. Then, consider the following assumption.

Assumption 2 (Infinite connectivity). The graph (V, E∞) is connected.

Assumption 2 is equivalent to the connectivity of the graph (V,∪∞
t=kE t) for all k ≥ 0. This is a minimal

connectivity condition for distributed optimization algorithms to converge to optimality, which ensures

every node to directly or indirectly influence any other nodes infinitely many times [4]. As Assumption 2

does not quantify how quickly the local decisions of the nodes diffuse throughout the network, we need

a stronger connectivity condition to derive performance guarantees for the algorithms to be developed.

Assumption 3 (B-connectivity). There exists an integer B > 0 such that for any integer k ≥ 0, the

graph (V,⋃(k+1)B−1
t=kB E t) is connected.

Assumption 3 forces each node to have an impact on the others in the time intervals [kB, (k+1)B−1]

∀k ≥ 0 of length B. Compared with Assumption 2, Assumption 3 is more restrictive but more commonly

adopted in the literature (e.g., [4]–[6], [12]–[14], [19], [21], [24], [26], [32]).

III. FENCHEL DUAL GRADIENT ALGORITHMS

In this section, we develop a family of distributed algorithms to solve (1) based on Fenchel duality.

A. Fenchel Dual Problem

We first transform (1) into the following equivalent problem:

minimize
x∈Rnd

F (x) :=
∑

i∈V fi(xi)

subject to xi ∈ Xi, ∀i ∈ V,
x ∈ S,

(2)

where x = (xT1 , . . . , x
T
n)

T and S := {x ∈ R
nd : x1 = x2 = · · · = xn}. Note that problem (2) has

a unique optimal solution x⋆ = ((x⋆)T , . . . , (x⋆)T)T , where x⋆ ∈ ⋂i∈V Xi is the unique optimum of

problem (1). In addition, its optimal value F ⋆ is equal to that of problem (1).

Next, we construct the Fenchel dual problem [36] of (2). To this end, we introduce a function qi :

R
d × R

d → R for each i ∈ V defined as

qi(xi, wi) = wT
i xi − fi(xi).

April 6, 2018 DRAFT

5

The conjugate convex function di : R
d → R is then given by

di(wi) = sup
xi∈Xi

qi(xi, wi).

With the above, the Fenchel dual problem of (2) can be described as

maximize
w∈Rnd

−D(w) := −∑i∈V di(wi)

subject to w ∈ S⊥,
(3)

where w = (wT
1 , . . . , w

T
n)

T and S⊥ := {w ∈ R
nd : w1 + w2 + · · · + wn = 0d} is the orthogonal

complement of S. Note that (3) is a convex optimization problem. Also, with Assumption 1, it can be

shown that strong duality between (2) and (3) holds, i.e., the optimal value −D⋆ of (3) equals F ⋆, and

that the optimal set of (3) is nonempty [36]. Moreover, w⋆ = ((w⋆
1)

T , . . . , (w⋆
n)

T)T ∈ S⊥ is an optimal

solution to (3) if and only if ∇di(w
⋆
i) = ∇dj(w

⋆
j) ∀i, j ∈ V [34, Lemma 3.1], i.e., ∇D(w⋆) ∈ S.

Below we acquire a couple of properties regarding the Fenchel dual problem (3). Notice from As-

sumption 1(a) that for each i ∈ V and each wi ∈ R
d, there uniquely exists

x̃i(wi) := arg maxx∈Xi
qi(x,wi). (4)

Thus, di is differentiable [37] and

∇di(wi) = x̃i(wi). (5)

The following proposition shows that di is smooth, i.e., ∇di is Lipschitz.

Proposition 1. [2, Lemma II.1] Suppose Assumption 1 holds. Then, for each i ∈ V , ∇di is Lipschitz

continuous with Lipschitz constant Li = 1/θi, where θi > 0 is defined in Assumption 1, i.e., ‖∇di(ui)−
∇di(vi)‖ ≤ Li‖ui − vi‖ ∀ui, vi ∈ R

d.

In fact, the strong convexity of fi on Xi assumed in Assumption 1(a) is both sufficient and necessary

for the smoothness of di [2].

Likewise, we can see that D(w) is differentiable and

∇D(w) = x̃(w) := (x̃1(w1)
T , . . . , x̃n(wn)

T)T . (6)

According to (4) and (6), if each wi is known to node i, then the gradient of the Fenchel dual function D

can be evaluated in parallel by the nodes, while the Lagrange dual of (equivalent forms of) problem (2)

does not have such a favorable feature when the network is time-varying and not necessarily connected

at each time instance. Further, notice that F (x) in problem (2) is strongly convex over X1 × · · · ×Xn

with convexity parameter θmin := mini∈V θi. Also note that D(w) = supx∈X1×···×Xn
wTx−F (x). Like

Proposition 1, we can establish the Lipschitz continuity of ∇D.

Corollary 1. Suppose Assumption 1 holds. Then, ∇D is Lipschitz continuous with Lipschitz constant

L = 1/θmin.

Finally, we show that the dual optimal set and the level sets of D on S⊥ are bounded.

April 6, 2018 DRAFT

6

Proposition 2. Suppose Assumption 1 holds. For any optimal solution w⋆ ∈ S⊥ of problem (3),

‖w⋆‖ ≤
(
∑

i∈V maxxi∈B(0d,rc) fi(xi))− F ⋆

rc
< ∞, (7)

where rc ∈ (0,∞) is such that B(0d, rc) ⊆ ⋂

i∈V Xi. In addition, for any w ∈ S⊥, the level set

S0(w) := {w′ ∈ S⊥ : D(w′) ≤ D(w)} is compact.

Proof. See Appendix A.

The boundedness of the dual optimal set relies on the nonemptyness of int
⋂

i∈V Xi assumed by

Assumption 1(b), without which the dual optimal set can be unbounded (e.g., Xi = {(z1, z2)T ∈ R
2 :

z1 = 0} ∀i ∈ V).

B. Algorithms

In [33], [34], a set of weighted gradient methods are proposed to solve a network resource allocation

problem, which can be cast in the form of (3). Inspired by this, we consider a class of weighted gradient

methods as follows: Starting from an arbitrary w0 ∈ S⊥, the subsequent iterates are generated by

wk+1 = wk − αk(HGk ⊗ Id)∇D(wk), ∀k ≥ 0, (8)

where αk > 0 is the step-size and HGk ∈ R
n×n is the weight matrix that depends on the topology of

Gk, defined as

[HGk]ij =























∑

s∈N k
i

hkis, if i = j,

−hkij, if {i, j} ∈ Ek,

0, otherwise,

∀i, j ∈ V. (9)

We require hkij = hkji > 0 ∀{i, j} ∈ Ek ∀k ≥ 0. We also assume that there exists a finite interval [h, h̄]

such that

hkij ∈ [h, h̄] ⊂ (0,∞), ∀k ≥ 0, ∀i ∈ V, ∀j ∈ N k
i . (10)

Since Ek 6= ∅, HGk 6= On for any k ≥ 0. Moreover, HGk is symmetric positive semidefinite and

HGk1n = 0n. Thus, using the same rationale as [33], [34], the proposition below shows that as long as

w0 is feasible, so are wk ∀k ≥ 1.

Proposition 3. Let (wk)∞k=0 be the iterates generated by (8). If w0 ∈ S⊥, then (wk)∞k=0 ⊆ S⊥.

Remark 1. The weighted gradient method (8) can be tuned to solve problems of minimizing
∑

i∈V di(wi)

subject to
∑

i∈V wi = c, ∀c ∈ R
d. To do so, we can simply replace the initial condition w0 ∈ S⊥ with

∑

i∈V w0
i = c.

Next, we introduce primal iterates to the weighted gradient method (8) that is intended for the Fenchel

dual problem (3). Note from (9) and (6) that (8) can be written as

xki = x̃i(w
k
i), ∀i ∈ V,

April 6, 2018 DRAFT

7

wk+1
i = wk

i − αk
∑

j∈N k
i

hkij(x
k
i − xkj), ∀i ∈ V,

where wk
i ∈ R

d is the ith d-dimensional block of wk and x̃i(w
k
i) is defined in (4). We assign each wk

i

and xki to node i as its dual and primal iterates, with xki being node i’s estimate on the optimal solution

x⋆ of problem (1). Thus, the above algorithm with both dual and primal iterates can be implemented in

a distributed and possibly asynchronous way on the time-varying network, as is shown in Algorithm 1.

Algorithm 1 Fenchel Dual Gradient Method

1: Initialization: Each node i ∈ V selects w0
i ∈ R

d so that
∑

j∈V
w0

j = 0d (or simply sets w0
i = 0d), and sets

x0
i = arg maxx∈Xi

(w0
i)

Tx− fi(x).

2: for k = 0, 1, . . . do

3: Each node i ∈ V with N k
i 6= ∅ sends its xk

i to all j ∈ N k
i .

4: Upon receiving xk
j ∀j ∈ N k

i , each node i ∈ V with N k
i 6= ∅ updates wk+1

i = wk
i −αk

∑

j∈Nk
i
hk
ij(x

k
i −xk

j).

5: Each node i ∈ V with N k
i 6= ∅ computes xk+1

i = arg maxx∈Xi
(wk+1

i)Tx− fi(x).

6: Each node i ∈ V with N k
i = ∅ takes no action, i.e., wk+1

i = wk
i and xk+1

i = xk
i .

7: end for

In Algorithm 1, the initial condition w0 ∈ S⊥ can simply be realized by setting w0
i = 0d ∀i ∈ V .

Subsequently at each iteration, every node i with at least one neighbor updates its dual iterate wk
i via

local interactions with its current neighbors and then updates its primal iterate xki on its own.

To implement Algorithm 1, each node i needs to select the weights hkij ∀j ∈ N k
i that satisfy hkij = hkji

in a predetermined interval [h, h̄] ⊂ (0,∞), where h and h̄ may or may not be related with Gk ∀k ≥ 0.

This can be done through inexpensive interactions between neighboring nodes. Two typical examples of

HGk are the graph Laplacian matrix

[HGk]ij = [LGk]ij :=



















|N k
i |, if i = j,

−1, if {i, j} ∈ Ek,

0, otherwise,

(11)

and the Metropolis weight matrix [33]

[HGk]ij =























∑

s∈N k
i

1
max{|N k

i |Li,|N k
s |Ls}

, if i = j,

− 1
max{|N k

i |Li,|N k
j |Lj}

, if {i, j} ∈ Ek,

0, otherwise.

(12)

When HGk is set to (11), each node i does not need any additional efforts in computing the weights

hkij ∀j ∈ N k
i since they are 1 by default. When HGk is set to (12), each node i only needs to obtain

from every neighbor j ∈ N k
i the product of node j’s neighborhood size |N k

j | and Lipschitz constant

Lj = 1/θj of ∇dj .

April 6, 2018 DRAFT

8

The remaining parameter to be determined is the step-size αk. Later in Section IV, we will show that

the following step-size condition is sufficient to guarantee the convergence of Algorithm 1: Suppose there

is a finite interval [α, ᾱ] such that

αk ∈ [α, ᾱ] ⊂ (0, 2/δ), ∀k ≥ 0, (13)

where δ > 0 can be any positive constant satisfying

HGk � δΛ−1
L , ∀k ≥ 0, (14)

with ΛL := diag(L1, . . . , Ln). Note that such δ always exists because Λ−1
L is positive definite and HGk

is positive semidefinite. For example, we may choose δ = L supk≥0 λ
↓
1(HGk), where L = 1/θmin =

maxi∈V Li. More conservatively, because HGk � h̄LGk and λ↓
1(LGk) ≤ n, we can always let δ = Lh̄n

and thus

[α, ᾱ] ⊂ (0,
2

Lh̄n
).

Since h̄ can be predetermined and known to all the nodes, this condition only requires the nodes to obtain

the global quantities n and L = maxi∈V Li, which can be computed decentralizedly by some consensus

schemes (e.g., [38]). Below, we provide less conservative step-size conditions for the two specific choices

of HGk in (11) and (12), which also can be satisfied by the nodes without any centralized coordination.

Example 1. When HGk is set to the graph Laplacian matrix LGk as in (11), in addition to the afore-

mentioned choice δ = L supk≥0 λ
↓
1(LGk), another option for δ could be δ = 2sup

k≥0
max
i∈V

|N k
i |Li, so that

δΛ−1
L −LGk is diagonally dominant and thus positive semidefinite for each k ≥ 0. Therefore, αk can be

selected in the interval [α, ᾱ] satisfying

0 < α ≤ ᾱ <
1

min{L
2 sup

k≥0
λ↓
1(LGk), sup

k≥0
max
i∈V

|N k
i |Li}

.

The above step-size condition can be simplified for some special interaction patterns. For instance, if the

nodes interact in a gossiping pattern, i.e., each Ek contains only one link, then we may let 0 < α ≤ ᾱ <

1/L. Even though the topologies of (Gk)∞k=0 are completely unknown, since λ↓
1(LGk) ≤ n, we can adopt

a more conservative step-size condition 0 < α ≤ ᾱ < 2/(nL).

Example 2. When HGk is set according to (12), we can simply take δ = 2, because 2Λ−1
L − HGk is

diagonally dominant and thus 2Λ−1
L � HGk . Hence, the step-sizes can be selected as

0 < α ≤ αk ≤ ᾱ < 1, ∀k ≥ 0,

which requires no global information and is independent of the network and the problem.

The underlying weighted gradient method (8) in Algorithm 1 can be viewed as a generalization of

the distributed weighted gradient methods in [33], [34]. By assuming the (directed) network to be time-

invariant and connected, [33] proposes a class of weighted gradient methods in the form of (8) but with

a constant weight matrix. It is also shown in [33] that if the time-invariant network is further undirected,

April 6, 2018 DRAFT

9

the constant weight matrix can be determined in a distributed fashion via (11) or (12). The step-size

conditions in [33] for fixed undirected networks and fixed weight matrices given by (11) and (12) are

extended here in Examples 1 and 2 to handle time-varying networks and time-varying weight matrices.

On the other hand, [34] considers time-varying undirected networks satisfying Assumption 3. By setting

HGk to LGk in (11) and αk = 1/(2nL) ∀k ≥ 0, (8) reduces to the algorithm in [34]. Note from Example 1

that here we allow for a much broader step-size range for this particular weight matrix.

IV. CONVERGENCE ANALYSIS

This section is dedicated to analyzing the convergence performance of Algorithm 1.

A. Asymptotic convergence under infinite connectivity

In this subsection, we show that Algorithm 1 asymptotically converges to the optimum of problem (1)

under Assumption 2.

We first show that the step-size condition (13) ensures (D(wk))∞k=0 to be non-increasing.

Lemma 1. Suppose Assumption 1 holds. Let (wk)∞k=0 be the dual iterates generated by Algorithm 1. If

the step-sizes (αk)∞k=0 satisfy (13), then for each k ≥ 0,

D(wk+1)−D(wk) ≤ −ρ∇D(wk)T (HGk ⊗ Id)∇D(wk),

where ρ := min{α− α2δ
2 , ᾱ− ᾱ2δ

2 } ∈ (0,∞), with α, ᾱ > 0 in (13) and δ > 0 in (14).

Proof. See Appendix B.

Lemma 1, along with Propositions 2 and 3, implies that for each k ≥ 0, wk ∈ S0(w
0) and ‖wk−w⋆‖ ≤

M0, where w⋆ is any optimum of problem (3) and

M0 := max
w∈S0(w0), w⋆∈S⊥:D(w⋆)=D⋆

‖w −w⋆‖ ∈ [0,∞). (15)

Another important consequence of Lemma 1 is that the differences of the primal iterates along the

time-varying links are vanishing. To see this, by adding the inequality in Lemma 1 from k = 0 to ∞,

∞
∑

k=0

〈xk, (HGk⊗Id)x
k〉=

∞
∑

k=0

〈∇D(wk), (HGk⊗Id)∇D(wk)〉

≤ (D(w0)−D⋆)/ρ < ∞,

where xk = ((xk1)
T , . . . , (xkn)

T)T . This implies that 〈xk, (HGk⊗Id)x
k〉 → 0 as k → ∞. Since 〈xk, (HGk⊗

Id)x
k〉 =∑{i,j}∈Ek hkij‖xki − xkj ‖2 and hkij ≥ h > 0 ∀{i, j} ∈ Ek, we have

lim
k→∞

max
{i,j}∈Ek

‖xki − xkj ‖ = 0. (16)

Because Gk may not be connected at each k ≥ 0, (16) alone is insufficient to assert that the primal iterates

xki ∀i ∈ V asymptotically reach a consensus. Nevertheless, by integrating (16) with Assumption 2, we

are able to show in Lemma 2 below that such an assertion is indeed true. The main idea of proving this

April 6, 2018 DRAFT

10

can be summarized as follows: By (16) we know that ‖xki − xkj‖ ∀{i, j} ∈ Ek can be arbitrarily small

after some time T ≥ 0. Then, instead of studying the differences ‖xki − xkj‖ ∀i, j ∈ V across the entire

network, we show that such differences within each connected component of the graph (V,∪k
t=T E t)

become sufficiently small after some k ≥ T . Finally, note from Assumption 2 that the graph (V,∪k
t=T E t)

must be connected when k ≥ T is sufficiently large. The dissipation of the differences among all the

xki ’s can thus be concluded.

Lemma 2. Suppose Assumptions 1 and 2 hold. Let (xk)∞k=0 be the primal iterates generated by Algo-

rithm 1. If the step-sizes (αk)∞k=0 satisfy (13), then lim
k→∞

max
i,j∈V

‖xki − xkj ‖ = 0.

Proof. See Appendix C.

Since xki ∈ Xi ∀i ∈ V , xk is feasible if and only if xk ∈ S. Thus, ‖PS⊥(xk)‖ can be used to quantify

the infeasibility of xk. Note that ‖PS⊥(xk)‖2 = ‖xk − PS(x
k)‖2 =

∑

i∈V ‖xki − 1
n

∑

j∈V xkj ‖2 ≤
1
n

∑

i∈V

∑

j∈V ‖xki − xkj ‖2. It follows from Lemma 2 that ‖PS⊥(xk)‖2 → 0 as k → ∞. This can further

be utilized to establish the asymptotic convergence to both dual and primal optimality, as is shown in

the theorem below.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let (wk)∞k=0 and (xk)∞k=0 be the dual and primal iterates

generated by Algorithm 1, respectively. If the step-sizes (αk)∞k=0 satisfy (13), then limk→∞ ‖PS⊥(xk)‖ =

0, limk→∞D(wk) = D⋆, limk→∞ F (xk) = F ⋆, and limk→∞ xk = x⋆.

Proof. See Appendix D.

B. Convergence rates under B-connectivity

In this subsection, we offer sublinear rates of convergence for Algorithm 1 under Assumption 3.

Inspired from [34], we first provide a bound on the accumulative drop in the value of D over each

time interval [tB, (t+ 1)B − 1], t ∈ {0, 1, . . .}, which depends only on the dual iterate at time tB and

the underlying interaction graph during these B iterations. To this end, for each k ≥ 0, let G̃k = (V, Ẽk)

be any spanning subgraph of (V,⋃k+B−1
t=k E t), which, owing to Assumption 3, is chosen to be connected

at k ∈ {0, B, 2B, . . .}. Also let ̟k be the maximum degree of G̃k and ¯̟ := supt∈{0,1,...} ̟
tB . Clearly,

1 ≤ ̟tB ≤ ¯̟ ≤ n− 1 ∀t ∈ {0, 1, . . .}.

Lemma 3. Suppose Assumptions 1 and 3 hold. Let (wk)∞k=0 be the dual iterates generated by Algorithm 1.

If the step-sizes (αk)∞k=0 satisfy (13), then for each k ∈ {0, B, 2B, . . .},

k+B−1
∑

t=k

∇D(wt)T (HGt ⊗ Id)∇D(wt) ≥ ∇D(wk)T (LG̃k ⊗ Id)∇D(wk)/η, (17)

where η := 3B ¯̟ ᾱ2δL + 3/h ∈ (0,∞), with ᾱ > 0 in (13), δ > 0 in (14), L > 0 in Corollary 1, and

h > 0 in (10).

Proof. See Appendix E.

April 6, 2018 DRAFT

11

When HGk = LGk and αk = 1/(2nL), [34, Lemma A.9] provides a similar bound to (17) with η

replaced by 3B/2 and G̃k being a spanning tree. Lemma 3 improves this bound since η ≤ 3B/4+ 3 for

such a particular choice of HGk and αk, allows for more general selections of HGk and αk, and sheds

light on how the network topologies come into play.

Lemma 1 and Lemma 3 together bound the decrease in the value of D during every B iterations,

with which we are able to provide a rate for D(wk) → D⋆. Prior to doing that, we define a sequence

(M̃k)
∞
k=0 as follows: Let M̃0 ∈ R be any positive constant and define

M̃k = max
t=0,...,k−1

min
w⋆∈S⊥:D(w⋆)=D⋆

‖wtB −w⋆‖, ∀k ≥ 1. (18)

Notice that 0 ≤ M̃k ≤ M0 < ∞, where M0 is given by (15).

Theorem 2. Suppose Assumptions 1 and 3 hold. Let (wk)∞k=0 be the dual iterates generated by Algo-

rithm 1. If the step-sizes (αk)∞k=0 satisfy (13), then for each k ≥ 0,

D(wk)−D⋆ ≤
ηM̃2

⌊k/B⌋(D(w0)−D⋆)

ηM̃2
⌊k/B⌋ + ρλ(D(w0)−D⋆)⌊k/B⌋

, (19)

where M̃⌊k/B⌋ ∈ [0,M0] is defined in (18) with M0 ≥ 0 in (15), λ := inft∈{0,1,...} λ
↓
n−1(LG̃tB) ∈ (0,∞),

and η, ρ > 0 are given in Lemma 3 and Lemma 1, respectively.

Proof. See Appendix F.

Theorem 2 says that Algorithm 1, or equivalently, the underlying weighted gradient method (8),

converges to the optimal value D⋆ of problem (3) at an O(1/k) rate. The derivation of this result requires

each di to be smooth and the dual optimal set to be compact. These two conditions on problem (3) may

not hold if Assumption 1 is not satisfied (cf. Section III-A). Note that without the compactness of the dual

optimal set, (19) still holds, but we cannot guarantee (wk)∞k=0 and thus M̃⌊k/B⌋ ∀k ≥ 0 to be bounded.

The distributed weighted gradient methods in [33], [34] also require the above two conditions on

problem (3) to establish their convergence to D⋆. By imposing an additional assumption that the Hessian

matrices of di ∀i ∈ V are positive definite, the methods in [33] are proved to achieve linear convergence

rates on fixed networks. In contrast, Theorems 1 and 2 allow for time-varying networks and do not

even require the existence of the Hessian matrices of di ∀i ∈ V . The algorithm in [34] is shown to

asymptotically drive D(wk) to D⋆ and satisfy mint=1,...,k ‖PS⊥(∇D(wtB))‖2 ≤ C · n3B/k for some

C > 0. Our results in Theorems 1 and 2 for the more general algorithm (8) are still stronger. We show

that limk→∞D(wk) = D⋆ under the less restrictive Assumption 2, and that D(wk) converges to D⋆ at

an O(1/k) rate under Assumption 3. Also, since ∇D(wk) = xk, the first inequality in Theorem 3 below

is comparable to and slightly stronger than the aforementioned convergence rate in [34].

Based on Theorem 2, below we show that the primal errors ‖xk −x⋆‖ and |F (xk)−F ⋆| in optimality

and ‖PS⊥(xk)‖ in feasibility all converge to zero at rates of O(1/
√
k). Like many Lagrange dual gradient

methods (e.g., [3], [37]), we do so by relating such primal errors with the dual error D(wk)−D⋆.

April 6, 2018 DRAFT

12

Theorem 3. Suppose Assumptions 1 and 3 hold. Let (xk)∞k=0 be the primal iterates generated by

Algorithm 1. If the step-sizes (αk)∞k=0 satisfy (13), then for each k ≥ 0,

‖PS⊥(xk)‖ ≤ ‖xk − x⋆‖ ≤

√

√

√

√

2LηM̃2
⌊k/B⌋(D(w0)−D⋆)

ηM̃2
⌊k/B⌋+ρλ(D(w0)−D⋆)⌊k/B⌋

,

F (xk)−F ⋆≤‖wk‖

√

√

√

√

2LηM̃2
⌊k/B⌋(D(w0)−D⋆)

ηM̃2
⌊k/B⌋+ρλ(D(w0)−D⋆)⌊k/B⌋

,

F (xk)−F ⋆≥−‖w⋆‖

√

√

√

√

2LηM̃2
⌊k/B⌋(D(w0)−D⋆)

ηM̃2
⌊k/B⌋+ρλ(D(w0)−D⋆)⌊k/B⌋

,

where w⋆ is any optimal solution of problem (3), L is given in Corollary 1, and the remaining constants

have been introduced in Theorem 2.

Proof. See Appendix G.

Since wk ∈ S0(w
0) ∀k ≥ 0 and S0(w

0) is compact, the term ‖wk‖ that appears in the convergence

rate of F (xk)− F ⋆ is uniformly bounded above by M0 + ‖w⋆‖. Consequently, the primal convergence

rates of Algorithm 1 in Theorem 3 are all of order O(1/
√
k), which commensurate with the convergence

rate of the classic (centralized) subgradient projection method [39].

In the final part of this section, we compare the primal convergence rates of Algorithm 1 with those of

the existing distributed optimization algorithms that also have guaranteed convergence rates over time-

varying networks, including Subgradient-Push [12], Gradient-Push [13], DIGing [14], and Push-DIGing

[14]. Different from Algorithm 1 that is developed by applying distributed weighted gradient methods to

the Fenchel dual, Subgradient-Push and Gradient-Push are constructed by incorporating the subgradient

method and the stochastic gradient descent method into the Push-Sum consensus protocol [40], DIGing

is designed by combining a distributed inexact gradient method with a gradient tracking technique, and

Push-DIGing is derived by introducing Push-Sum into DIGing.

The convergence rates of the aforementioned algorithms are all established under Assumption 3.1

For each of these algorithms, Table I lists its assumptions and convergence rate. Observe that only

Algorithm 1 is capable of solving problems with different local constraints of the agents, while the

remaining algorithms all require the problem to be unconstrained and their extensions to constrained

problems are still open challenges. Also, Gradient-Push, DIGing, and Push-DIGing require both strong

convexity and smoothness of the fi’s, leading to faster convergence rates than the O(1/
√
k) rate of

Algorithm 1. This is natural because we assume a weaker condition on fi ∀i ∈ V , which allows the

strongly convex fi’s to be nonsmooth. Subgradient-Push needs neither strong convexity nor smoothness

of each fi, and the resulting convergence rate O(ln k/
√
k) is slower than our O(1/

√
k) result. Note that

1When it comes to Subgradient-Push, Gradient-Push, and Push-DIGing, “connected” in Assumption 3 is indeed “strongly

connected” since they consider directed networks.

April 6, 2018 DRAFT

13

Algorithm unconstrained strongly Lipschitz bounded undirected convergence

problem convex gradient subgradient links rate

Subgradient-Push [12]
√ √

O(ln k/
√
k)

Gradient-Push [13]
√ √ √

O(ln k/k)

DIGing [14]
√ √ √ √

O(qk), 0 < q < 1

Push-DIGing [14]
√ √ √

O(qk), 0 < q < 1

Algorithm 1
√ √

O(1/
√
k)

TABLE I

Comparison of Algorithm 1 and related methods in assumptions and convergence rate. Here,
√

means the assumption is

required.

the assumption on the fi’s for Algorithm 1 is not necessarily more restrictive than that for Subgradient-

Push, since Subgradient-Push requires the subgradients of each fi to be uniformly bounded over Rd but

Algorithm 1 does not. Unlike Subgradient-Push, Gradient-Push, and Push-DIGing that admit directed

links, DIGing and Algorithm 1 are only applicable to undirected graphs. With that said, Algorithm 1

is guaranteed to converge to the optimum with the minimal connectivity condition, i.e., Assumption 2,

while the other methods have no such convergence results.

V. NUMERICAL EXAMPLES

In this section, we demonstrate the competent convergence performance of the proposed distributed

Fenchel dual gradient methods by comparing them with a number of existing distributed optimization

algorithms via simulations.

A. Constrained case

We first compare the convergence performance of a consensus-based subgradient projection method

[4], a proximal-minimization-based method [24], and Algorithm 1 with HGk given by the graph Laplacian

matrix (11) and the Metropolis weight matrix (12), respectively, in solving constrained distributed opti-

mization problems in the form of (1). It has been proved that when each local constraint Xi is compact,

the consensus-based subgradient projection method and the proximal-minimization-based method, with

diminishing step-sizes (e.g., 1/k), asymptotically converge to an optimum over time-varying networks

satisfying Assumption 3 [6], [24]. Thus, consider the following multi-agent ℓ1-regularization problem

that often arises in machine learning:

minimize
x∈R5

∑

i∈V(x
TAix+ bTi x+ 1

n‖x‖1)
subject to x ∈ ⋂i∈V{x ∈ R

5 : pi ≤ x ≤ qi},
(20)

where each Ai ∈ R
5×5 is symmetric positive definite, bi ∈ R

5, and pi ≤ x ≤ qi with pi, qi ∈ R
5 means

an elementwise inequality. In addition, for each i ∈ V , the convexity parameter of its local objective is

θi = λ↓
5(Ai) > 0.

April 6, 2018 DRAFT

14

0 50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Time k

1 n

∑
i
∈
V
‖
x
k i
−

x
⋆
‖

(a) n = 50, B = 10, 2 < θi < 3

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

10
2

Time k

1 n

∑
i
∈
V
‖
x
k i
−

x
⋆
‖

(b) n = 500, B = 10, 2 < θi < 3

0 50 100 150 200 250
10

−6

10
−4

10
−2

10
0

10
2

Time k

1 n

∑
i
∈
V
‖
x
k i
−

x
⋆
‖

(c) n = 50, B = 10, 0.2 < θi < 0.4

0 50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Time k

1 n

∑
i
∈
V
‖
x
k i
−

x
⋆
‖

(d) n = 50, B = 50, 2 < θi < 3

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

10
2

Time k

1 n

∑
i
∈
V
‖
x
k i
−

x
⋆
‖

(e) n = 500, B = 50, 2 < θi < 3

0 50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Time k

1 n

∑
i
∈
V
‖
x
k i
−

x
⋆
‖

(f) n = 50, B = 10, 5 < θi < 10

Fig. 1. Primal errors in solving problem (20) (The grey dashed, blue dashed, black solid, and red solid curves correspond to

the consensus-based subgradient projection method, the proximal-minimization-based method, Algorithm 1 with HGk in (11),

and Algorithm 1 with HGk in (12), respectively.).

For Algorithm 1, we adopt αk = 1/(Ln) for HGk in (11) and αk = 1/2 for HGk in (12) to satisfy

the step-size condition (13). For the other two methods, we adopt the diminishing step-size 1/k and the

local (unweighted) averaging operation as the consensus scheme to guarantee convergence. We also let

the algorithms all start from the same initial primal iterate.

Figure 1 presents the average primal errors produced by the aforementioned algorithms with different

values of n, B and θi ∀i ∈ V . Observe that Algorithm 1 with the Metropolis weight matrix (12)

outperforms the others in all six cases. Moreover, although at early stage the subgradient projection method

and the proximal minimization method converge faster than Algorithm 1 with the Laplacian weight matrix

(11), their convergence gradually becomes much slower due to the diminishing nature of the step-size. By

comparing Figure 1(a) versus 1(d) and Figure 1(b) versus 1(e), we can see that smaller B leads to faster

convergence of Algorithm 1, which is consistent with our convergence analysis in Section IV, while the

impact of B on the subgradient projection method and the proximal minimization method is not apparent.

Besides, Figure 1(a) versus 1(b) and Figure 1(d) versus 1(e) suggest that Algorithm 1 with HGk in (12)

is more scalable to the network size n than the others. Additionally, by comparing Figures 1(c) and 1(f)

with Figure 1(a), it can be inferred that the larger the θi’s are, the better Algorithm 1 performs.

B. Unconstrained case

In Section IV-B, we have compared Algorithm 1 versus Subgradient-Push [12], Gradient-Push [13],

DIGing [14], and Push-DIGing [14] in the theoretical aspects. Here, we compare, via simulation, their

April 6, 2018 DRAFT

15

convergence performance in solving the following unconstrained quadratic program that satisfies all the

assumptions in [13], [14]:

minimizex∈R5

∑

i∈V(x
TAix+ bTi x), (21)

where we let θi = λ↓
5(Ai) ∈ (2, 3) ∀i ∈ V and (n,B) = (50, 10). For fair comparison, we assume there

is no stochastic error in gradient evaluation for Gradient-Push. Then, Gradient-Push and Subgradient-

Push have the same algorithmic form when the local objectives are differentiable, and below we omit

Subgradient-Push.

Figure 2(a) plots the evolution of the average primal error for Gradient-Push, DIGing, Push-DIGing,

and Algorithm 1 with the Laplacian weight matrix (11) and with the Metropolis weight matrix (12). We

adopt the same step-sizes for Algorithm 1 as in Section V-A. For the other three methods, we fine-tune the

step-sizes while satisfying the step-size conditions in [13], [14] that theoretically ensure their convergence

rates. Observe that Gradient-Push, DIGing, and Push-DIGing almost stop making progress after a few

iterations with a non-negligible primal error, while Algorithm 1 achieves much better accuracy with the

above two choices of HGk .

As all the convergence rate results in [13], [14] and this paper are derived from worst-case analysis, the

theoretical step-size conditions could be very conservative. Thus, in Figure 2(b) we empirically choose

the step-sizes for these algorithms, whose values may violate the theoretical conditions but speed up

convergence. After some tuning, we select the step-sizes to be 1/(nL), 1.7, 0.15/k, 0.05, and 0.04 for

Algorithm 1 with HGk in (11), Algorithm 1 with HGk in (12), Gradient-Push, DIGing, and Push-DIGing,

respectively. Note that for Algorithm 1 with HGk in (11), the empirical step-size coincides with the

theoretical one in Figure 2(a). By comparing Figure 2(b) with Figure 2(a), we can observe that with

the above empirically-selected step-sizes, Gradient-Push slightly accelerates its convergence, DIGing and

Push-DIGing exhibit prominently improved convergence performance, yet Algorithm 1 with HGk in (12)

still performs best.

VI. CONCLUSION

We have constructed a family of distributed Fenchel dual gradient methods for solving multi-agent

optimization problems with strongly convex local objectives and nonidentical local constraints over time-

varying networks. The proposed algorithms have been proved to asymptotically converge to the optimal

solution under a minimal connectivity condition, and have an O(1/
√
k) convergence rate under a standard

connectivity condition. Simulation results have illustrated the competitive performance of the distributed

Fenchel dual gradient methods by comparing them with related algorithms. In future, this work may

be extended in a number of directions such as problems with general convex objective functions and

networks with directed links.

April 6, 2018 DRAFT

16

0 20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

Time k

1 n

∑
i∈
V
‖
x
k i
−
x
⋆
‖

(a) Theoretically-selected step-sizes

20 40 60 80 100
10

−6

10
−4

10
−2

10
0

10
2

Time k

1 n

∑
i∈
V
‖x

k i
−

x
⋆
‖

(b) Empirically-selected step-sizes

Fig. 2. Primal errors in solving problem (21) (The red dashed, grey dashed, blue dashed, black solid, and red solid curves

correspond to Gradient-Push, DIGing, Push-DIGing, Algorithm 1 with HGk in (11), and Algorithm 1 with HGk in (12),

respectively.).

APPENDIX

A. Proof of Proposition 2

Let w⋆ = ((w⋆
1)

T , . . . , (w⋆
n)

T)T be an optimal solution of problem (3). Since Assumption 1(b) assumes

0d ∈ int
⋂

i∈V Xi, there exists rc ∈ (0,∞) such that B(0d, rc) ⊆
⋂

i∈V Xi. For each i ∈ V , if w⋆
i 6= 0d,

let x′i = rc
w⋆

i

‖w⋆
i ‖

; otherwise let x′i = 0d. Clearly, x′i ∈ B(0d, rc). Consequently,

D⋆ = D(w⋆) =
∑

i∈V

(

sup
xi∈Xi

(w⋆
i)

Txi − fi(xi)
)

April 6, 2018 DRAFT

17

≥
∑

i∈V

(

(w⋆
i)

Tx′i − fi(x
′
i)
)

= rc
∑

i∈V

‖w⋆
i ‖ −

∑

i∈V

fi(x
′
i).

This, along with ‖w⋆‖ ≤ ∑i∈V ‖w⋆
i ‖ and D⋆ = −F ⋆, implies that ‖w⋆‖ ≤

(

(
∑

i∈V fi(x
′
i)) − F ⋆

)

/rc.

Note that
∑

i∈V fi(x
′
i) ≤ ∑

i∈V maxxi∈B(0d,rc) fi(xi), where F ⋆ ≤
∑

i∈V

max
xi∈B(0d,rc)

fi(xi) < ∞ because

B(0d, rc) is compact. Therefore, (7) holds, which suggests that the optimal set of problem (3) is compact.

Then, due to the convexity of D and S⊥, the level sets S0(w) ∀w ∈ S⊥ are compact [41, proposition

1.4.5].

B. Proof of Lemma 1

For convenience, let yk = (HGk ⊗ Id)∇D(wk). Due to the Descent Lemma [36] and (8),

D(wk+1)−D(wk) ≤ 〈∇D(wk),wk+1 −wk〉+ (wk+1 −wk)T
ΛL ⊗ Id

2
(wk+1 −wk)

= −αk〈∇D(wk),yk〉+ (αk)2(yk)T
ΛL ⊗ Id

2
yk. (22)

Then, consider the following lemma.

Lemma 4. Suppose M,M̄ ∈ R
n×n are symmetric positive semidefinite and M � M̄ . Then, for any

x ∈ R
nd and any y ∈ R(M ⊗ Id),

〈x, (M ⊗ Id)x〉 ≥ 〈(M ⊗ Id)x, (M̄
† ⊗ Id)(M ⊗ Id)x〉.

Proof. Let x ∈ R
nd. Then,

〈x, (M ⊗ Id)x〉 − 〈(M ⊗ Id)x, (M̄
† ⊗ Id)(M ⊗ Id)x〉 = xT [(M −MM̄ †M)⊗ Id]x. (23)

In addition, by Schur complement condition, M � On and M̄ � M implies
(

M M

M M̄

)

� O2n

and the inequality above leads to M − MM̄ †M � On. Combining this with (23), the proof can be

completed.

From Lemma 4, (yk)T (ΛL ⊗ Id)y
k≤δ〈∇D(wk),yk〉. Combining this with (22) leads to

D(wk+1)−D(wk) ≤ (
(αk)2δ

2
− αk)〈∇D(wk),yk〉.

This, along with (13), completes the proof.

C. Proof of Lemma 2

We first consider the following optimization problem: For any I ⊆ V , I 6= ∅ and any c ∈ R
d,

minimize
wi∈Rd ∀i∈I

∑

i∈I di(wi)

subject to
∑

i∈I wi = c.
(24)

April 6, 2018 DRAFT

18

Similar to problem (3), w′
i ∀i ∈ I compose an optimum to (24) if and only if for any i, j ∈ I ,

∇di(w
′
i) = ∇dj(w

′
j) [34, Lemma 3.1], or equivalently, x̃i(w

′
i) = x̃j(w

′
j). With the above setting, consider

the following lemma.

Lemma 5. Suppose Assumption 1 and the step-size condition (13) hold. Let u,v ∈ R
nd be two feasible

solutions of problem (3) such that ui ∀i ∈ I and vi ∀i ∈ I are feasible to problem (24). Suppose

‖x̃i(vi) − x̃j(vj)‖ ≤ ǫ′ ∀i, j ∈ I for some ǫ′ > 0,
∑

i∈I di(ui) ≤ ∑

i∈I di(vi), and D(v) ≤ D(w0),

where w0 ∈ S⊥ is the initial dual iterate of Algorithm 1. Then,

‖x̃i(ui)− x̃j(uj)‖ ≤ 4
√

LM0(|I| − 1)ǫ′, ∀i, j ∈ I,

where M0 is defined in (15).

Proof. Let w′ = (w′T
1 , . . . , w′T

n)T ∈ R
nd be such that w′

i ∈ R
d ∀i ∈ I compose an optimal solution to

(24) and w′
j = vj ∀j /∈ I . Due to the convexity of each di and (5),

∑

i∈I

di(vi)−
∑

i∈I

di(w
′
i) ≤

∑

i∈I

〈x̃i(vi), vi − w′
i〉.

Let x̄v := 1
|I|

∑

i∈I
x̃i(vi). Since w′

i ∀i ∈ I and vi ∀i ∈ I are feasible to (24), we have
∑

i∈I w
′
i =

∑

i∈I vi,

which gives

∑

i∈I

〈x̃i(vi), vi −w′
i〉 =

∑

i∈I

〈x̃i(vi)− x̄v, vi − w′
i〉 ≤

∑

i∈I

‖x̃i(vi)− x̄v‖ · ‖vi − w′
i‖.

Also note that for each i ∈ I , ‖x̃i(vi) − x̄v‖ = 1
|I|‖

∑

j∈I(x̃i(vi) − x̃j(vj))‖ ≤ |I|−1
|I| ǫ′. Combining the

above,

∑

i∈I

di(vi)−
∑

i∈I

di(w
′
i) ≤

|I| − 1

|I| ǫ′
∑

i∈I

‖vi − w′
i‖ ≤ (|I| − 1)ǫ′

√

∑

i∈I

‖vi − w′
i‖2. (25)

Since
∑

i∈I di(w
′
i) ≤

∑

i∈I di(vi) and w′
j = vj ∀j /∈ I , we have D(w′) ≤ D(v) ≤ D(w0), implying

that w′,v ∈ S0(w
0) and that for any optimum w⋆ of problem (3),

‖w′ − v‖ ≤ ‖w′ −w⋆‖+ ‖v −w⋆‖ ≤ 2M0.

This inequality and (25) together yield

∑

i∈I

di(vi)−
∑

i∈I

di(w
′
i) ≤ 2M0(|I| − 1)ǫ′. (26)

Due to the optimality of w′
i ∀i ∈ I with respect to (24), we have ∇di(w

′
i) = ∇dj(w

′
j) ∀i, j ∈ I . Also,

because of the feasibility of ui ∀i ∈ I ,
∑

i∈I ui =
∑

i∈I w
′
i. Therefore,

∑

i∈I〈∇di(w
′
i), ui − w′

i〉 = 0.

This, along with (5), (26), and the inequality di(ui) − di(w
′
i) ≥ 〈∇di(w

′
i), ui − w′

i〉 + 1
2L‖∇di(w

′
i) −

∇di(ui)‖2 [39, Theorem 2.1.5], implies

∑

i∈I

‖x̃i(ui)− x̃i(w
′
i)‖2 ≤ 2L

∑

i∈I

(di(ui)− di(w
′
i))

April 6, 2018 DRAFT

19

≤ 2L
∑

i∈I

(di(vi)− di(w
′
i)) ≤ 4LM0(|I| − 1)ǫ′.

Hence, for any i, j ∈ I , we have ‖x̃i(ui) − x̃j(uj)‖ ≤ ‖x̃i(ui) − x̃i(w
′
i)‖ + ‖x̃j(uj) − x̃j(w

′
j)‖ ≤

4
√

LM0(|I| − 1)ǫ′, where the first inequality is from the optimality of w′
i ∀i ∈ I and (5).

Next, we define the following: Arbitrarily pick ǫ > 0. Due to (16), ∃Tǫ ≥ 0 such that

‖xki − xkj ‖ ≤ ǫ, ∀{i, j} ∈ Ek, ∀k ≥ Tǫ. (27)

Then, for each i ∈ V , let Ck
i,ǫ = ∅ ∀k ∈ [0, Tǫ). For each k ≥ Tǫ, let

Ck
i,ǫ ={i} ∪ {j ∈ V : There exists a path between i and j in the graph (V,∪k

t=Tǫ
E t)} ⊆ V.

For each k ≥ Tǫ, observe that in the graph (V,∪k
t=Tǫ

E t), the subgraph induced by Ck
i,ǫ is the largest

connected component that contains node i. Thus, for any two nodes i and j, i 6= j, Ck
i,ǫ and Ck

j,ǫ are either

identical or disjoint. Additionally, for every s ∈ Ck+1
i,ǫ , Ck

s,ǫ is always contained in Ck+1
i,ǫ . This implies that

the number of distinct sets in the collection {Ck
i,ǫ}i∈V is non-increasing with k over [Tǫ,∞). In particular,

from each k to k+1, Ck+1
i,ǫ either equals Ck

i,ǫ or is the union of Ck
i,ǫ and some other Ck

j,ǫ’s that are disjoint

from Ck
i,ǫ. Also due to Assumption 2, there exists Kǫ ∈ [Tǫ,∞) such that Ck

i,ǫ = V ∀i ∈ V ∀k ≥ Kǫ. By

means of the Ck
i,ǫ’s and Lemma 5, below we show that ∀i ∈ V , ∀k ≥ Tǫ,

max
j,ℓ∈Ck

i,ǫ

‖xkj − xkℓ ‖ ≤ Φk
i (ǫ). (28)

Here, Φk
i (ǫ) ∀i ∈ V ∀k ≥ Tǫ are defined recursively as follows: Initially at k = Tǫ, Φ

k
i (ǫ) = (|Ck

i,ǫ|− 1)ǫ.

At each subsequent k ≥ Tǫ + 1,

Φk
i (ǫ) =







4
√

LM0(|Ck
i,ǫ| − 1)Φtk

i (ǫ), if Ck
i,ǫ = Ck−1

i,ǫ ,

(1 + 2Lᾱh̄n)|Ck
i,ǫ|ǫ+

∑

s∈Ck
i,ǫ
Φk−1
s (ǫ), otherwise,

where tk := max{t ∈ [Tǫ, k] : Ct
i,ǫ 6= Ct−1

i,ǫ }. Note that Ck
i,ǫ = Ct

i,ǫ ∀t ∈ [tk, k].

We prove (28) by induction. At time k = Tǫ, for each i ∈ V , if |Ck
i,ǫ| = 1, then maxj,ℓ∈Ck

i,ǫ
‖xkj −xkℓ ‖ =

Φk
i (ǫ) = 0, i.e., (28) is satisfied; otherwise for any j, ℓ ∈ Ck

i,ǫ, j 6= ℓ, there exists a path of length at most

|Ck
i,ǫ| − 1 connecting j and ℓ. It follows from (27) that ‖xkj − xkℓ ‖ ≤ (|Ck

i,ǫ| − 1)ǫ = Φk
i (ǫ), i.e., (28) also

holds. Next, suppose maxj,ℓ∈Ct
i,ǫ
‖xtj − xtℓ‖ ≤ Φt

i(ǫ) ∀i ∈ V ∀t ∈ [Tǫ, k − 1] for some k ≥ Tǫ + 1. For

each i ∈ V , to show that (28) holds, consider the following two cases.

Case i: Ck
i,ǫ = Ck−1

i,ǫ . In this case, we have Tǫ ≤ tk ≤ k − 1. Also, ∀t ∈ [tk + 1, k], ∀j ∈ Ct−1
i,ǫ , we

have N t
j ⊆ Ct−1

i,ǫ = Ck
i,ǫ . Hence, using the same arguments as the proofs of Proposition 3 and Lemma 1,

it can be shown that
∑

s∈Ck
i,ǫ
wk
s =

∑

s∈Ck
i,ǫ
wk−1
s = · · · =

∑

s∈Ck
i,ǫ
wtk
s and that

∑

s∈Ck
i,ǫ
ds(w

k
s) ≤

∑

s∈Ck
i,ǫ

ds(w
k−1
s) ≤ · · · ≤ ∑s∈Ck

i,ǫ
ds(w

tk
s). Let I = Ck

i,ǫ and c =
∑

s∈Ck
i,ǫ

wtk
s in problem (24). It then

follows from Lemma 1 and Lemma 5 with ǫ′ = Φtk
i (ǫ), u = wk, and v = wtk that (28) holds.

Case ii: Ck
i,ǫ 6= Ck−1

i,ǫ . Pick any j, ℓ ∈ Ck
i,ǫ, j 6= ℓ and consider the following two subcases.

Subcase ii(a): Ck−1
j,ǫ = Ck−1

ℓ,ǫ . Then, ‖xkj − xkℓ ‖ ≤ ‖xkj − xk−1
j ‖ + ‖xk−1

j − xk−1
ℓ ‖ + ‖xk−1

ℓ − xkℓ ‖ ≤
‖xkj − xk−1

j ‖+ ‖xkℓ − xk−1
ℓ ‖+Φk−1

j (ǫ). Also, from (5), Proposition 1, (8), and (27), we have

‖xkp − xk−1
p ‖ ≤ Lp‖wk

p − wk−1
p ‖ ≤ Lᾱ‖

∑

q∈N k−1
p

hk−1
pq (xk−1

p − xk−1
q)‖

April 6, 2018 DRAFT

20

≤ Lᾱh̄
∑

q∈N k−1
p

‖xk−1
p − xk−1

q ‖ ≤ Lᾱh̄nǫ, ∀p ∈ V.

Consequently, ‖xkj − xkℓ ‖ ≤ 2Lᾱh̄nǫ+Φk−1
j (ǫ).

Subcase ii(b): Ck−1
j,ǫ ∩ Ck−1

ℓ,ǫ = ∅. Then, there exists a path from j to ℓ belonging to the subgraph

induced in the graph (V,∪k
t=Tǫ

E t) by Ck
i,ǫ. Along the path are nodes p1 = j, s1, p2, s2, . . . , pτ , sτ = ℓ

such that (1) Ck−1
pr,ǫ = Ck−1

sr,ǫ ∀r = 1, . . . , τ ; (2) Ck−1
pr,ǫ ∀r ∈ {1, . . . , τ} are disjoint from each other;

and (3) {sr, pr+1} ∈ Ek ∀r ∈ {1, . . . , τ − 1}. Here, τ ∈ {2, . . . , |Ck
i,ǫ|} is an integer whose value is

no more than the number of distinct sets in the collection {Ck−1
s,ǫ }s∈Ck

i,ǫ
. Hence, ‖xkj − xkℓ ‖ ≤ ‖xkp1

−
xks1‖+

∑τ−1
r=1

(

‖xksr − xkpr+1
‖+ ‖xkpr+1

− xksr+1
‖
)

. For each r = 1, . . . , τ , since pr, sr ∈ Ck−1
pr,ǫ , we obtain

from Subcase ii(a) that ‖xkpr
− xksr‖ ≤ 2Lᾱh̄nǫ+ Φk−1

pr
(ǫ). It then follows from (27) that ‖xkj − xkℓ ‖ ≤

(τ − 1)ǫ+ 2τLᾱh̄nǫ+
∑τ

r=1Φ
k−1
pr

(ǫ) ≤ (1 + 2Lᾱh̄n)|Ck
i,ǫ|ǫ+

∑

s∈Ck
i,ǫ
Φk−1
s (ǫ).

Combining the above two subcases, we obtain (28). This completes the proof of (28) for all i ∈ V and

all k ≥ Tǫ. Further, notice that for each i ∈ V , Φk
i (ǫ) is updated only if either Ck

i,ǫ or Ck−1
i,ǫ is changed.

Also note that Ck
i,ǫ can be expanded at most n times and remains unchanged since time Kǫ. Therefore,

for any k ≥ Kǫ + 1,

max
i,j∈V

‖xki − xkj‖ = max
i∈V

max
j,ℓ∈Ck

i,ǫ

‖xkj − xkℓ‖ ≤ max
i∈V

Φk
i (ǫ) ≤ O(ǫ1/2

n

),

which implies maxi,j∈V ‖xki − xkj ‖ → 0 as k → ∞.

D. Proof of Theorem 1

Let w⋆ be an optimal solution to the dual problem (3). Due to the convexity of D, (5), and Proposition 3,

D(wk)−D⋆ ≤ 〈∇D(wk),wk −w⋆〉 = 〈xk,wk −w⋆〉

≤ ‖PS⊥(xk)‖ · ‖wk −w⋆‖ ≤ M0‖PS⊥(xk)‖,

where M0 is defined in (15). As k → ∞, we have shown in the paragraph below Lemma 2 that

‖PS⊥(xk)‖ → 0. This, along with the above inequality, implies D(wk) → D⋆. In addition, since

Assumption 1 guarantees zero duality gap, we have F (xk) → F ⋆. Finally, for any w ∈ S⊥, due to

Corollary 1, [39, Theorem 2.1.5], and (6),

D(w)−D⋆ ≥ 〈∇D(w⋆),w −w⋆〉+ 1

2L
‖∇D(w)−∇D(w⋆)‖2 = 1

2L
‖x̃(w)− x⋆‖2, (29)

where the last equality is because ∇D(w⋆) = x⋆ ∈ S and w,w⋆ ∈ S⊥. Thus, because limk→∞D(wk)−
D⋆ = 0 and L > 0, ‖xk − x⋆‖2 → 0 as k → ∞.

E. Proof of Lemma 3

Let k ∈ {0, B, 2B, . . .}. For each {i, j} ∈ Ẽk, let tk{i,j} ∈ {k, . . . , k+B−1} be such that {i, j} ∈ E tk{i,j} .

Then, note from Proposition 1 that

‖∇di(w
k
i)−∇di(w

tk{i,j}
i)‖2 = ‖

tk{i,j}−1
∑

t=k

(∇di(w
t+1
i)−∇di(w

t
i))‖2

April 6, 2018 DRAFT

21

≤ B

k+B−1
∑

t=k

‖∇di(w
t+1
i)−∇di(w

t
i)‖2 ≤ L2

iB

k+B−1
∑

t=k

‖wt+1
i − wt

i‖2.

Thus,

∑

{i,j}∈Ẽk

(‖∇di(w
k
i)−∇di(w

tk{i,j}
i)‖2 + ‖∇dj(w

tk{i,j}
j)−∇dj(w

k
j)‖2)

≤B
∑

{i,j}∈Ẽk

k+B−1
∑

t=k

(L2
i ‖wt+1

i − wt
i‖2 + L2

j‖wt+1
j − wt

j‖2)

≤B ¯̟

k+B−1
∑

t=k

∑

i∈V

L2
i ‖wt+1

i − wt
i‖2

≤B ¯̟ ᾱ2
k+B−1
∑

t=k

〈∇D(wt), ((HGtΛ2
LHGt)⊗ Id)∇D(wt)〉.

Note that HGtΛ2
LHGt � LHGtΛLHGt . Also, from (14) and Lemma 4, HGtΛLHGt � δHGt . Hence,

∑

{i,j}∈Ẽk

(‖∇di(wk
i)−∇di(w

tk{i,j}
i)‖2 + ‖∇dj(w

tk{i,j}
j)−∇dj(wk

j)‖2)

≤ B ¯̟ ᾱ2δL

k+B−1
∑

t=k

∇D(wt)T (Ht
G ⊗ Id)∇D(wt). (30)

In addition,

∑

{i,j}∈Ẽk

‖∇di(w
tk{i,j}
i)−∇dj(w

tk{i,j}
j)‖2 ≤ 1

h

k+B−1
∑

t=k

∑

{i,j}∈Et

hkij‖∇di(w
t
i)−∇dj(w

t
j)‖2

≤ 1

h

k+B−1
∑

t=k

∇D(wt)T (Ht
G ⊗ Id)∇D(wt). (31)

It follows from (30) and (31) that

∇D(wk)T (LG̃k ⊗ Id)∇D(wk) =
∑

{i,j}∈Ẽk

‖∇di(w
k
i)−∇dj(w

k
j)‖2

≤3
∑

{i,j}∈Ẽk

(‖∇di(w
k
i)−∇di(w

tk{i,j}
i)‖2+‖∇dj(w

tk{i,j}
j)−∇dj(w

k
j)‖2+‖∇di(w

tk{i,j}
i)−∇dj(w

tk{i,j}
j)‖2)

≤ η

k+B−1
∑

t=k

∇D(wt)T (Ht
G ⊗ Id)∇D(wt).

F. Proof of Theorem 2

Let k ≥ 0. By Lemmas 1 and 3,

(

D(w(k+1)B)−D⋆
)

−
(

D(wkB)−D⋆
)

=

(k+1)B−1
∑

t=kB

(D(wt+1)−D(wt))

April 6, 2018 DRAFT

22

≤ −ρ

(k+1)B−1
∑

t=kB

∇D(wt)T (HGt ⊗ Id)∇D(wt) ≤ −ρ

η
∇D(wkB)T (LG̃kB ⊗ Id)∇D(wkB)

≤ −ρλ

η
‖PS⊥(∇D(wkB))‖2, (32)

where the last inequality is because G̃kB is connected and thus Null(LG̃kB ⊗ Id) = S. Also, since G̃tB

∀t = 0, 1, . . . are connected, we have λ > 0. From Proposition 3, we know that wkB ∈ S⊥. Also, for

any optimal solution w⋆ to (3), because w⋆ ∈ S⊥, we have wkB −w⋆ ∈ S⊥. Then,

D(wkB)−D⋆ ≤〈∇D(wkB),wkB −w⋆〉 = 〈PS⊥(∇D(wkB)),wkB −w⋆〉

≤‖PS⊥(∇D(wkB))‖ · ‖wkB −w⋆‖.

This, along with (32), gives

(

D(w(k+1)B)−D⋆
)

−
(

D(wkB)−D⋆
)

≤ −ρλ
(

D(wkB)−D⋆
)2
/(η min

w⋆∈S⊥:D(w⋆)=D⋆
‖wkB −w⋆‖2).

Finally, using Lemma 6 in [42, Sec. 2.2.1], we obtain

D(wkB)−D⋆ ≤ D(w0)−D⋆

1 + ρλ(D(w0)−D⋆)
η

k−1
∑

t=0
(min
w⋆∈S⊥:D(w⋆)=D⋆

‖wtB −w⋆‖2)−1

≤ D(w0)−D⋆

1 + ρλ(D(w0)−D⋆)k/(ηM̃2
k)

.

Note that the above inequality is equivalent to (19) since (D(wk))∞k=0 is non-increasing.

G. Proof of Theorem 3

Let w ∈ S⊥. Note that ‖PS⊥(x̃(w))‖ = ‖x̃(w)− PS(x̃(w))‖ ≤ ‖x̃(w)− x⋆‖. Thus, from (29),

‖PS⊥(x̃(w))‖ ≤ ‖x̃(w)− x⋆‖ ≤
√

2L(D(w) −D⋆). (33)

Also note that

F (x̃(w))− F ⋆ = 〈w, x̃(w)〉 −D(w) +D⋆ ≤ 〈w, x̃(w)〉 = 〈w, PS⊥(x̃(w))〉.

On the other hand, for any dual optimum w⋆ ∈ S⊥, we have −F ⋆ = D⋆ ≥ 〈w⋆, x̃(w)〉 − F (x̃(w)),

which leads to

F (x̃(w))− F ⋆ ≥ 〈w⋆, PS⊥(x̃(w))〉.

As a result,

− ‖w⋆‖ · ‖PS⊥(x̃(w))‖ ≤ F (x̃(w))− F ⋆ ≤ ‖w‖ · ‖PS⊥(x̃(w))‖. (34)

Combining (33) and (34) with Proposition 3 and Theorem 2 completes the proof.

April 6, 2018 DRAFT

23

REFERENCES

[1] M. G. Rabbat and R. D. Nowak, “Distributed optimization in sensor networks,” in Proc. International Symposium on

Information Processing in Sensor Networks, Berkeley, CA, 2004, pp. 20–27.

[2] A. Beck, A. Nedić, A. Ozdaglar, and M. Teboulle, “An O(1/k) gradient method for network resource allocation problems,”

IEEE Transactions on Control of Network Systems, vol. 1, no. 1, pp. 64–73, 2014.

[3] P. Giselsson, M. D. Doan, T. Keviczky, B. Schutter, and A. Rantzer, “Accelerated gradient methods and dual decomposition

in distributed model predictive control,” Automatica, vol. 49, no. 3, pp. 829–833, 2013.

[4] A. Nedić, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and optimization in multi-agent networks,” IEEE

Transactions on Automatic Control, vol. 55, no. 4, pp. 922–938, 2010.

[5] S. Lee and A. Nedić, “Distributed random projection algorithm for convex optimization,” IEEE Journal of Selected Topics

in Signal Processing, a special issue on Adaptation and Learning over Complex Networks, vol. 7, no. 2, pp. 221–229,

2013.

[6] P. Lin, W. Ren, and Y. Song, “Distributed multi-agent optimization subject to nonidentical constraints and communication

delays,” Automatica, vol. 65, pp. 120–131, 2016.

[7] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimization,” IEEE Transactions on Control of Network

Systems, 2017.

[8] D. Jakovetić, J. Xavier, and J. Moura, “Fast distributed gradient methods,” IEEE Transactions on Automatic Control,

vol. 59, no. 5, pp. 1131–1146, 2014.

[9] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: an exact first-order algorithm for decentralized consensus optimization,”

SIAM Journal on Optimization, vol. 25, no. 2, pp. 944–966, 2015.

[10] G. Qu and N. Li, “Accelerated distributed Nesterov gradient descent,” arXiv preprint arXiv:1705.07176, 2017.

[11] C. Xi and U. Khan, “DEXTRA: A fast algorithm for optimization over directed graphs,” IEEE Transactions on Automatic

Control, 2017.

[12] A. Nedić and A. Olshevsky, “Distributed optimization over time-varying directed graphs,” IEEE Transactions on Automatic

Control, vol. 60, no. 3, pp. 601– 615, 2015.

[13] ——, “Stochastic gradient-push for strongly convex functions on time-varying directed graphs,” IEEE Transactions on

Automatic Control, vol. 61, no. 12, pp. 3936–3947, 2016.

[14] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric convergence for distributed optimization over time-varying

graphs,” SIAM Journal on Optimization, vol. 27, no. 4, pp. 2597–2633, 2017.

[15] B. Johansson, P. Soldati, and M. Johansson, “Mathematical decomposition techniques for distributed cross-layer optimiza-

tion of data networks,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 8, pp. 1535–1547, 2006.

[16] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating

direction method of multipliers,” Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[17] J. Koshal, A. Nedić, and U. V. Shanbhag, “Multiuser optimization: Distributed algorithms and error analysis,” SIAM Journal

on Optimization, vol. 21, no. 3, pp. 1046–1081, 2011.

[18] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for distributed optimization: Convergence and network scaling,”

IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606, 2012.

[19] M. Zhu and S. Martı́nez, “On distributed convex optimization under inequality and equality constraints,” IEEE Transactions

on Automatic Control, vol. 57, no. 1, pp. 151–164, 2012.

[20] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection algorithm for embedded linear model predictive

control,” IEEE Transactions on Automatic Control, vol. 59, no. 1, pp. 18 – 33, 2013.

[21] T. Chang, A. Nedić, and A. Scaglione, “Distributed constrained optimization by consensus-based primal-dual perturbation

method,” IEEE Transactions on Automatic Control, vol. 59, no. 6, pp. 1524–1538, 2014.

[22] I. Necoara and V. Nedelcu, “Rate analysis of inexact dual first-order methods application to dual decomposition,” IEEE

Transactions on Automatic Control, vol. 59, no. 5, pp. 1232–1243, 2014.

[23] P. Bianchi, W. Hachem, and F. Iutzeler, “A coordinate descent primal-dual algorithm and application to distributed

asynchronous optimization,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp. 2947–2957, 2016.

April 6, 2018 DRAFT

24

[24] K. Margellos, A. Falsone, S. Garatti, and M. Prandini, “Proximal minimization based distributed convex optimization,” in

Proc.American Control Conference, Boston, MA, 2016, pp. 2466–2471.

[25] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental subgradient method for distributed optimization in

networked systems,” SIAM Journal on Optimization, vol. 20, no. 3, pp. 1157–1170, 2009.

[26] S. S. Ram, A. Nedić, and V. V. Veeravalli, “Incremental stochastic subgradient algorithms for convex optimization,” SIAM

Journal on Optimization, vol. 20, no. 2, pp. 691–717, 2009.

[27] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed newton method for network utility maximization–i: Algorithm,”

IEEE Transactions on Automatic Control, vol. 58, no. 9, pp. 2162–2175, 2013.

[28] ——, “A distributed newton method for network utility maximization–part ii: Convergence,” IEEE Transactions on

Automatic Control, vol. 58, no. 9, pp. 2176–2188, 2013.

[29] D. Varagnolo, F. Zanella, A. Cenedese, G. Pillonetto, and L. Schenato, “Newton-Raphson consensus for distributed convex

optimization,” IEEE Transactions on Automatic Control, vol. 61, no. 4, pp. 994–1009, 2016.

[30] J. Lu and C. Y. Tang, “Zero-gradient-sum algorithms for distributed convex optimization: The continuous-time case,” IEEE

Transactions on Automatic Control, vol. 57, no. 9, pp. 2348–2354, 2012.

[31] S. S. Kia, J. Cortés, and S. Martı́nez, “Distributed convex optimization via continuous-time coordination algorithms with

discrete-time communication,” Automatica, vol. 55, pp. 254–264, 2015.

[32] Y. Lou, Y. Hong, and S. Wang, “Distributed continuous-time approximate projection protocols for shortest distance

optimization problems,” Automatica, vol. 69, pp. 289–297, 2016.

[33] L. Xiao and S. Boyd, “Optimal scaling of a gradient method for distributed resource allocation,” Journal of Optimization

Theory and Applications, vol. 129, no. 3, pp. 469–488, 2006.

[34] H. Lakshmanan and D. P. de Farias, “Decentralized resource allocation in dynamic networks of agents,” SIAM Journal on

Optimization, vol. 19, no. 2, p. 911940, 2008.

[35] X. Wu and J. Lu, “Fenchel dual gradient methods for distributed convex optimization over time-varying networks,” in

Proc. IEEE Conference on Decision and Control, Melbourne, Australia, 2017, pp. 2894–2899.

[36] D. P. Bertsekas, Nonlinear Programming. Belmont, MA: Athena Scientific, 1999.

[37] J. Lu and M. Johansson, “Convergence analysis of approximate primal solutions in dual first-order methods,” SIAM Journal

on Optimization, vol. 26, no. 4, pp. 2430–2467, 2016.

[38] J.-Y. Chen, G. Pandurangan, and D. Xu, “Robust computation of aggregates in wireless sensor networks: Distributed

randomized algorithms and analysis,” IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 9, pp. 987–

1000, 2006.

[39] Y. Nesterov, Introductory lectures on Convex Optimization: A Basic Course. Norwell, MA: Kluwer Academic Publishers,

2004.

[40] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate information,” in Proc. IEEE Symposium on

Foundations of Computer Science, Cambridge, MA, 2003, pp. 482–491.

[41] D. P. Bertsekas, Convex optimization theory. Belmont, MA: Athena Scientific, 2009.

[42] B. T. Polyak, Introduction to Optimization. New York, NY: Optimization Software, Inc., 1987.

April 6, 2018 DRAFT

	I Introduction
	II Problem Formulation
	III Fenchel Dual Gradient Algorithms
	III-A Fenchel Dual Problem
	III-B Algorithms

	IV Convergence Analysis
	IV-A Asymptotic convergence under infinite connectivity
	IV-B Convergence rates under B-connectivity

	V Numerical Examples
	V-A Constrained case
	V-B Unconstrained case

	VI Conclusion
	Appendix
	A Proof of Proposition 2
	B Proof of Lemma 1
	C Proof of Lemma 2
	D Proof of Theorem 1
	E Proof of Lemma 3
	F Proof of Theorem 2
	G Proof of Theorem 3

	References

