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Abstract— We consider the problem of identifying the topol-
ogy of a weighted, undirected network G from observing snap-
shots of multiple independent consensus dynamics. Specifically,
we observe the opinion profiles of a group of agents for
a set of M independent topics and our goal is to recover
the precise relationships between the agents, as specified by
the unknown network G. In order to overcome the under-
determinacy of the problem at hand, we leverage concepts from
spectral graph theory and convex optimization to unveil the
underlying network structure. More precisely, we formulate the
network inference problem as a convex optimization that seeks
to endow the network with certain desired properties – such as
sparsity – while being consistent with the spectral information
extracted from the observed opinions. This is complemented
with theoretical results proving consistency as the number M
of topics grows large. We further illustrate our method by
numerical experiments, which showcase the effectiveness of the
technique in recovering synthetic and real-world networks.

I. INTRODUCTION

The study of networks and multi-agent systems has at-
tracted enormous interest over the last years. Network-based
problem formulations abound in diverse application domains,
ranging from socio-economical to biological settings, and
from physical to engineering systems [1]–[3]. Often, these
systems display a rich dynamical behavior that emerges from
an interplay of the non-trivial connection topology of the
network. In this context, consensus has been one of the
most popular and well-studied dynamics on networks [4]–
[6]. This is due to both its analytic tractability as well as its
simplicity in approximating several fundamental behaviors.
For instance, in socio-economic domains consensus provides
a model for opinion formation in a society of individuals. For
engineering systems, it has been considered as a basic build-
ing block for an efficient distributed computation of global
functions in networks of sensors, robots, or other agents.

However, especially in the biological and social domains,
the true couplings between the agents are usually unknown,
and have to be inferred from data [7]–[9]. Network inference,
though often not discussed explicitly, is thus a fundamen-
tal constituent of network analysis. Different notions of
network inference have been considered in the literature,
with examples ranging from the estimation of ‘functional’
couplings based on pairwise statistical association measures
(correlation, mutual information), to causal inference [10]. In
this paper, we are interested in what is often called structural
or topological inference [8], [9]: given a system of dynamical
units, we want to infer their direct ‘physical’ interactions,
e.g., for a distributed system on a network, we want to
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infer the exact weighted adjacency relationships between the
nodes.

Optimization-based strategies for such inference tasks
have been proposed in the literature [11], [12]. In relation
to the inference of networks from consensus-like dynamics,
[13] and [14] consider inferring the network based on observ-
ing the (cross-)power spectral density of a consensus process
driven by noise, and a node knockout strategy. Related
approaches have also been pursued in [15], [16]. Further
methods combining notions from spectral identification with
optimization techniques are considered in [17]–[19]. More-
over, [20] proposes an interesting approach for the identifi-
cation of nonlinear systems based on the observation of a
few nodes only, however the recovery is limited to spectral
properties of the underlying network structure, rather than
the full topology. In our previous work [21], [22], we studied
how independent steady-state observations of the same linear
network process can be used to extract information about the
eigenvectors of the unknown underlying network.

Departing from the existing literature, in this paper we
make very few assumptions on the unknown structure and
the samples obtained from observing the consensus process.
In particular, we neither impose a specific sampling scheme
in which samples are drawn at known time instances, nor
do we assume that we have access to a complete time-
series of observations. Instead, we are given a statistical
characterization of the initial inputs, and observe a set of
M independent snapshots of the responses to such inputs
after some unknown time intervals. Surprisingly, even under
these mild assumptions it is possible to (approximately) infer
the network structure, as we demonstrate in the sequel.

After a brief review of preliminary concepts in Section II,
the recovery problem is described rigorously in Section III.
Section IV discusses how several spectral properties of the
unknown network can be inferred from the observation
of a set of output signals (Sections IV-A and IV-B) and
then proposes a convex optimization formulation for the
recovery problem that takes into account this spectral in-
formation (Section IV-C). We illustrate the effectiveness of
this approach through a series of numerical experiments on
synthetic as well as real-world networks in Section V. A
brief outlook in Section VI identifying extensions and future
lines of work wraps-up the paper.
Notation: The entries of matrix X and (column) vector x are
denoted by Xij and xi, respectively; to avoid confusion, the
alternative notation [X]ij and [x]i will be used occasionally,
when dealing with indexed families of matrices (vectors).
The notation >, E(·), and P(·) stands for transpose, expected
value, and probability, respectively; 0, 1, and I refer to the
all-zero vector, the all-one vector, and the identity matrix,
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where the sizes are clear from context. For a vector x,
diag(x) is a diagonal matrix whose ith diagonal entry is xi.

II. PRELIMINARIES

Networks. A weighted and undirected network G consists
of a node set N of known cardinality N , an edge set E of
unordered pairs of elements in N , and non-negative edge
weights Aij ∈ R+ such that Aij = Aji 6= 0 for all
(i, j) ∈ E . The neighborhood of i is defined as the set
of nodes Ni = {j | (j, i) ∈ E} connected to i. The edge
weights Aij can be conveniently collected as entries of the
symmetric adjacency matrix A. Defining the diagonal degree
matrix D := diag(A1), the (combinatorial) Laplacian matrix
associated with network G is given by L := D − A and
can be shown to be positive semi-definite [23]. Since L is a
symmetric and real matrix, it is diagonalized by a unitary
matrix V, i.e. L = VΛV>, where the diagonal matrix
Λ := diag(λ) contains the eigenvalues of L. Throughout
the paper, we are going to assume that all eigenvalues of L,
0 = λ1 < λ2 < . . . < λN , are unique (non-degenerate). This
assumption is not fundamental from a technical viewpoint,
but simplifies the presentation of our results. In particular,
this implies that G is connected. The Laplacian matrix L can
be used to model local dynamics on the associated network
G, as discussed next.

Discrete-time consensus dynamics. Define the state vec-
tor x ∈ RN where the value xi corresponds to the opinion
of agent i in the network. We consider a discrete-time linear
consensus dynamics [4]–[6] in which x evolves locally, i.e.,
the value of xi at a given instant depends exclusively on the
previous values of x at node i and its neighborhood Ni:

xi[t] = xi[t− 1] + αt
∑
j∈Ni

Aij(xj [t− 1]− xi[t− 1]), (1)

where t = 1, 2, . . . indicates discrete time instants. According
to (1), agent i updates its state as a linear combination of
its own state in the previous time step and the weighted
discrepancy with its neighbors in the previous time step. In
this context, αt indicates the relative weight that node i gives
to this discrepancy in the respective update (the ‘learning
rate’ of the nodes at time t). From the definition of L it
readily follows that (1) can be expressed in vector form as
x[t] = x[t− 1]− αtLx[t− 1], or more compactly:

x[t] = (I− αtL)x[t− 1]. (2)

We refer to the above dynamics as discrete-time consensus
because, under mild conditions on αt, the state of all agents
coincides asymptotically, i.e. x[t] = β1 for t → ∞, where
β ∈ R is a constant.

Throughout the paper, we will use x to refer to the initial
signal, i.e. x := x[0], and we denote by y the observation of
the dynamics at a specific time T of interest, i.e., y := x[T ].
It follows then that y is related to x via

y =

T∏
t=1

(I− αtL) x. (3)

Sub-exponential random variables. A random variable
x with mean µ = E(x) is sub-exponential if there exist non-
negative parameters (ν, b) such that, for all γ satisfying |γ| <
1/b, it holds that [24], [25]

E(eγ(x−µ)) ≤ exp

(
ν2γ2

2

)
. (4)

When x is sub-exponential, from the classical Chernoff
bound one can derive that [24], [25]

P(|x− µ| ≥ l) ≤

{
2 exp

(
− l2

2ν2

)
if 0 ≤ l ≤ ν2/b,

2 exp
(
− l

2b

)
if l > ν2/b.

(5)

Moreover, given two sub-exponential random variables x and
y with corresponding parameters (ν1, b1) and (ν2, b2), the
sum z = x + y is also sub-exponential with parameters
(
√
ν21 + ν22 ,max(b1, b2)).

III. PROBLEM FORMULATION

To motivate our problem setup, let us consider the context
of social networks. Assume that we observe, at a specific
instant in time, the opinion profile of all agents in a network
G regarding M independent topics, each of which evolved
according to a consensus dynamics like the one in (3). The
discussion about each of the M topics, which we index via
k ∈ {1, . . . ,M}, may have started at a different point in time
– corresponding to unknown durations Tk for each topic.
Furthermore, the interactions between the agents may have
been heterogeneous across time and topics – associated with
unknown learning rates α(k)

t . Our goal is now to recover
the underlying social network L from the observation of M
opinion profiles {yk} at a given time instant.

Formally, consider M different consensus dynamics evolv-
ing on a single network encoded by the Laplacian L. Each
dynamics corresponds to a distinct input xk and diffusion
rates {α(k)

t } as in (3). Our goal is to recover L from a
single snapshot of the state vectors yk of the M consensus
dynamics. More precisely, we have access to one observation
yk for each dynamics, where yk is given by

yk =

Tk∏
t=1

(I− α(k)
t L) xk, k = 1, . . . ,M. (6)

Notice that, while L is the unknown of interest, we do not
assume that we know Tk, i.e. how long each consensus
dynamics has been running, nor do we assume the knowledge
of the diffusion rates α(k)

t . We assume merely that we have a
statistical characterization of the unknown inputs xk, which
we model here as independent realizations of a zero-mean
multivariate normal random variable x ∼ N (0, σ2I), of
unknown power σ2.

The above problem is markedly under-determined, thus
requiring us to consider a novel recovery scheme for L
that combines spectral information with a regularized convex
optimization approach (see Section IV). To ensure that there
is some information about G contained in the snapshots
{yk}, we assume that the two following mild technical
conditions hold. First, Tk < ∞ for all k, meaning that the
dynamics has not reached consensus yet, in which case all



information about the network structure would be completely
lost. Second, we assume that the deterministic rates α

(k)
t

are small enough to ensure asymptotic convergence of (6).
Specifically, 0 < α

(k)
t < 1/λmax(L) for all k, t.

IV. TOPOLOGY INFERENCE FROM CONSENSUS

The goal is to design a recovery scheme that is able to find
L, despite the scarce information about G at our disposal. Our
discussion is divided into three parts. In Sections IV-A and
IV-B, we highlight how information about the eigenvectors
and eigenvalues of L can be inferred from the observation
of {yk}, and prove some asymptotic consistency results for
the limit of large sample size M . The guiding idea is the
following: since the inputs xk in (6) are realizations of white
Gaussian noise, the color of the outputs yk must contain
information about the unknown L.

In Section IV-C, we use these insights to design an
inference method for L, based on a regularized convex
optimization problem. More precisely, we propose to recover
the unknown L by solving an optimization problem that
searches for a valid Laplacian consistent with the spectral
information extracted from the observations yk, while pro-
moting a desirable sparse structure.

A. Inferring the eigenvectors

Define the linear operators Hk :=
∏Tk

t=1(I−α(k)
t L) so that

yk = Hkxk for all k. Leveraging the eigendecomposition
L = VΛV> we can write

Hk = V
( Tk∏
t=1

(I− α(k)
t Λ)

)
V> = VΛkV

>, (7)

where we have implicitly defined the diagonal matrices
Λk :=

∏Tk

t=1(I− α(k)
t Λ) for all k. Notice that the diagonal

entries of Λk are bounded between (0, 1]. Consider the
sample covariance matrix

SM :=
1

M

M∑
k=1

yky
>
k , (8)

and notice that for k 6= k′ the vectors yk and yk′ are
independent, but not identically distributed. More precisely,

E(yky
>
k ) = HkE(xkx

>
k )H>k = σ2H2

k, (9)

where we used that Hk is symmetric and deterministic, and
that xk is white. Note that, in general, SM will not converge
to the covariance of any specific yk for increasing M . Hence
the procedure based on spectral templates developed in [21],
[22] is not applicable here. However, as we demonstrate in
the sequel, SM can still be used to recover the eigenbasis V
of the unknown Laplacian L.

Before presenting our result formally in Proposition 1, we
state the following lemma, which will be instrumental in the
subsequent proof [cf. (4)].
Lemma 1: Let x ∼ N (0, σ2

1) and y ∼ N (0, σ2
2) be

independent zero-mean scalar Gaussian random variables.
Then, the random variable z = xy is sub-exponential with
parameters (

√
2σ1σ2,

√
2σ1σ2).

Proof (sketch): A direct computation of the moment-
generating function of z yields

E(elz) =
1√

1− σ2
1σ

2
2l

2
. (10)

It is then not hard to verify that

1√
1− σ2

1σ
2
2l

2
≤ exp

(
2σ2

1σ
2
2l

2

2

)
, (11)

for all l such that |l| < 1/(
√

2σ1σ2), and by combining (10)
and (11) the statement of the lemma follows. In order to show
inequality (11), one can begin by showing that 1/(1−w) ≤
e2w is valid for 0 ≤ w ≤ 1/2, then apply the square root to
the inequality and finally substitute w = σ2

1σ
2
2l

2.

We will now show that SM in (8) and L are simultaneously
diagonalizable, provided that M is sufficiently large. For no-
tational purposes, we define the matrix B(M) := V>SMV.
Proposition 1: For M →∞, the eigenbasis V diagonalizes
SM , i.e., for all i 6= j it holds that

lim
M→∞

[V>SMV]ij = lim
M→∞

B
(M)
ij = 0. (12)

Proof: By combining (7) and (8) it follows that

B(M) =
1

M

M∑
k=1

ΛkV
>xkx

>
k VΛk =

1

M

M∑
k=1

wkw
>
k , (13)

where we have defined wk := ΛkV
>xk. Since xk is

a multivariate Gaussian random variable, it follows that
wk ∼ N (0, σ2Λ2

k). For each entry i, j in (13) we thus have

B
(M)
ij =

1

M

M∑
k=1

[wk]i[wk]j , (14)

where [wk]i ∼ N (0, σ2[Λ2
k]ii) and [wk]j ∼ N (0, σ2[Λ2

k]jj)
are independent. Lemma 1 now implies that [wk]i[wk]j
is a sub-exponential random variable with parameters
(vk, bk) := (

√
2σ2[Λk]ii[Λk]jj ,

√
2σ2[Λk]ii[Λk]jj). Conse-

quently, B(M)
ij is equal to the average of M independent

sub-exponential random variables, each of them having zero
mean. Define then the coefficients

v2∗ :=
1

M

M∑
k=1

v2k, b∗ := max
k=1,...,M

bk. (15)

The sub-exponential tail bound in (5) yields

P(|B(M)
ij | ≥ l) ≤ 2 exp

(
−Ml2

2v2∗

)
, (16)

for 0 ≤ l ≤ v2∗/b∗. Recall that every [Λk]ii is upper bounded
by 1, hence v2∗ ≤ 2σ4. Consequently, for small enough l > 0:

lim
M→∞

P(|B(M)
ij | ≥ l) ≤ lim

M→∞
2 exp

(
−Ml2

4σ4

)
= 0, (17)

which proves the proposition.

Proposition 1 guarantees that the eigenbasis V can be
recovered by performing an eigendecomposition of SM
for large enough M . While in most practical instances of
network inference M will not be unbounded, Proposition 1



nevertheless can be used as the basis for an inference
algorithm even if only a finite number of observations are
available; see Section IV-C.

We remark that the validity of (12) does not imply that
limM→∞ SM exists. Indeed, our weak assumptions on Tk
and α

(k)
t – which translate into mild conditions on Hk –

could result in an SM that does not converge for increasing
M . However, even if SM does not converge to a specific
matrix, we may interpret (12) at stating that SM converges
to the set of matrices diagonalized by V.

B. Inferring the eigenvalues

As will be shown in Proposition 2, SM also provides
insights about the eigenvalues λ of the unknown Laplacian
L. In proving this, we make use of the following lemma,
whose proof is omitted for being analogous to that of
Lemma 1.

Lemma 2: Let x ∼ N (0, σ2), then the random variable
z = x2 is sub-exponential with parameters (2σ2, 4σ2) and
E(z) = var(x) = σ2.

Proposition 2: For every δ > 0 there exists a large enough
number of observations Mδ such that, for all i < j,

B
(M)
ii > B

(M)
jj , (18)

with probability at least 1− δ for every M ≥Mδ .
Proof: Beginning from (13), it follows that

B
(M)
ii =

1

M

M∑
k=1

([wk]i)
2, (19)

where [wk]i ∼ N (0, σ2[Λ2
k]ii). Invoking Lemma 2, we have

that ([wk]i)
2 is a sub-exponential random variable with pa-

rameters (vik, b
i
k) := (2σ2[Λ2

k]ii, 4σ
2[Λ2

k]ii). Thus, B(M)
ii is

equal to the average of M independent sub-exponential ran-
dom variables, each of which has mean σ2[Λ2

k]ii (Lemma 2).
Define the global parameters v2∗i and b∗i for each i as

v2∗i :=
1

M

M∑
k=1

(vik)2, b∗i := max
k=1,...,M

bik, (20)

and the expected value

ei := E(B
(M)
ii ) =

σ2

M

M∑
k=1

[Λ2
k]ii (21)

Then, we can again leverage the sub-exponential tail bounds
in (5) to obtain

P
(∣∣∣B(M)

ii − ei
∣∣∣≥ l)≤2 exp

(
−Ml2

2v2∗i

)
≤2 exp

(
−Ml2

8σ4

)
,

(22)
for 0 ≤ l ≤ v2∗i/b∗i. The last inequality follows from the
fact that Λk is upper bounded by 1 for all k, which results
in the bound v2∗i ≤ 4σ4. A direct application of the union
bound on (22) yields

P

(
N⋃
i=1

∣∣∣B(M)
ii − ei

∣∣∣ ≥ l) ≤ 2N exp

(
−Ml2

8σ4

)
, (23)

for 0 ≤ l ≤ v2∗/b∗ := mini(v
2
∗i/b∗i), from which it

immediately follows that

P

(
N⋂
i=1

∣∣∣B(M)
ii − ei

∣∣∣ < l

)
≥ 1−2N exp

(
−Ml2

8σ4

)
≥ 1− δ,

(24)
where we fixed a desired probability level at 1 − δ. Our
goal now is to choose l small enough to ensure that (18)
is satisfied and then solve for the corresponding number of
observations Mδ in (24) using such an l. To do this, first
recall that the eigenvalues of the Laplacian in Λ satisfy the
ordering 0 = Λ11 < . . . < ΛNN . Hence, we know that
the diagonal entries of Λk will be inversely sorted [cf. (7)],
i.e., 1 = [Λk]11 > . . . > [Λk]NN . We further assume that
[Λk]ii > [Λk]jj + τ when i < j for some τ > 0, where
τ does not depend on M . It then follows from (21) that
ei > ej + σ2τ2 for i < j. Consider a deviation from the
mean l∗ := σ2τ2/β where β ≥ 2 is large enough to ensure
that l∗ ≤ v2∗/b∗. By specializing (24) to l = l∗ and solving
for M as a function of δ, we have that for all M such that

M ≥Mδ :=
8β2

τ4
log

(
2N

δ

)
, (25)

every random variable B(M)
ii is at most at a distance l∗ from

its mean with probability at least 1− δ. Since by definition
l∗ < (ei − ej)/2 for i < j, this means that the variables
B

(M)
ii are sorted in the same order as their means with high

probability, i.e., B(M)
ii > B

(M)
jj for i < j with probability at

least 1− δ, as we wanted to show.

In Section IV-A we discussed that SM need not con-
verge for large M . Nevertheless, (18) is stating that, even
in the diverging case, the diagonal elements of B(M) =
V>SMV follow a specific order with high probability. This
observation, in combination with Proposition 1, is leveraged
in Section IV-C to develop a network topology inference
algorithm for finite M .

C. Recovering the optimal Laplacian matrix
As discussed earlier, selecting a Laplacian L that is

consistent with the observations {yk} is in general an under-
determined problem. Even when fixing the eigenbasis V and
the ordering of the eigenvalues, there is freedom in choosing
the exact eigenvalues as long as the order is preserved.
Consequently, we seek to recover an optimal L among
all those consistent with the observed data. Our notion of
optimality is based on sparsity, but other features might be
selected as well.

Denoting by SM = ṼΛ̃Ṽ> the eigendecomposition of
SM where the eigenvalues are sorted in increasing order,
our inferred Laplacian L∗ can be found as the solution of
the following convex optimization problem.

{L∗, L̃∗,λ∗} := argmin
{J,K,β}

‖J‖1 (26a)

subject to Jij = Jji ≤ 0 for i 6= j, J1 = 0, (26b)

K = Ṽdiag(β)Ṽ>, ‖J−K‖F ≤ ε1, (26c)
βi ≥ βi+η + ε2 for i = 1, . . . , N − η. (26d)



Since the elementwise `1 norm ‖J‖1 :=
∑
ij |Jij | is simply

a convex relaxation of the `0 (pseudo-)norm, the objective
(26a) promotes sparsity in L∗, i.e., the optimal choice for
J. Alternatively, the `1 norm can be replaced by its iterative
reweighted counterpart [12], which has shown to perform
better in practice. The constraints in (26b) force the output to
be a valid Laplacian, namely, L∗ must have non-positive off-
diagonal elements and each row must sum up to zero. Notice
that these two requirements enforce diagonal dominance of
L∗ which, in turn, ensures positive semi-definiteness. The
constraints in (26c) impose that L∗ must be close to being
diagonalized by Ṽ. It was shown in Section IV-A that Ṽ
coincides with V for arbitrarily large number of observations
M . However, for all practical implementations, M is finite
and thus, we do not require L∗ to be diagonalized by Ṽ
directly. Rather, we require our output L∗ to be close (as
measured by the Frobenius norm) to another matrix L̃∗ (the
optimal K) that is diagonalized by Ṽ. Note that in practise
the matrix variable K does not need to be constructed, but
Ṽdiag(β)Ṽ> can be directedly substituted into the norm.
We remark further that, we could replace the Froebenius
norm here by the maximum, thereby reducing the problem
to a linear program. Lastly, (26d) incorporates the fact that
the eigenvalues of SM and the true Laplacian are inversely
ordered by forcing this inverse order to L̃∗. Here η is a
positive integer that we can choose. Notice that when η = 1
we impose a strict order on the eigenvalues whereas for
η > 1 we impose a laxer order for the cases in which
M is not large enough. Finally, the constant ε2 > 0 can
be chosen freely, since it will only vary the scale of the
recovered Laplacian L∗. Notice that this scale ambiguity is
unsurmountable given that in (6) a common factor across all
(unknown) α(k)

t can be absorbed into the unknown L.
In a nutshell, given a series of observations {yk}Mk=1

following model (6), we propose to recover (a scaled version
of) L by first constructing SM as in (8) to extract its
eigenbasis Ṽ, and then solving problem (26). In the next
section we assess the practical performance of this approach.

V. NUMERICAL EXPERIMENTS
We present two test cases, where our goal is to recover

synthetic and real-world networks, respectively.
Erdős-Rényi networks. To validate our method, we test
its performance when the eigenbasis V is perfectly known.
Intuitively, this situation will arise when an infinite number
of observations M is available (cf. Proposition 1). Clearly,
a high recovery rate under this setting is a necessary
condition for acceptable recovery in the finite M regime.
Hence, we consider Erdős-Rényi (ER) random graphs [26]
of varying sizes N ∈ {10, . . . , 50} and edge probabilities
p ∈ {0.1, . . . , 0.5}. For each combination of N and p we
generate 20 networks, compute their associated Laplacian
L = VΛV>, and then try to recover it by solving (26)
for Ṽ = V, η = 1, and ε1 = 0. Recall that the choice of
ε2 only affects the scale of the recovered Laplacian and,
thus, is inconsequential to the recovery performance. For
every network generated, we consider the recovery to be
successful if the error ‖L∗−L‖F/‖L‖F is less than 2×10−2.

Fig. 1a portrays the recovery rates (averaged across the 20
realizations) as a function of N and p.

We first observe that the recovery rates are high. The
overall recovery rate is 0.85 and, if we increase the threshold
for success recovery to 5 × 10−2, this rate becomes 0.97.
Secondly, we note that as N increases, recovery becomes
almost certain. The reason for this is that, after assuming
perfect knowledge of V, having two sparse Laplacians that
share identical sets of eigenvectors becomes less probable
for larger N . Finally, we see a decay in performance for
increasing p, which can be attributed to the fact that we
are imposing sparsity on the recovered Laplacian even for
relatively large values of p.

Real-world social networks. Consider four social networks
defined on a common set of N = 32 nodes, which represent
students from the University of Ljubljana1. Edges in each of
the networks represent different types of interactions among
the students, and were constructed by asking each student
to select a group of preferred college mates for different
situations, e.g., to discuss a personal issue or to invite to
a birthday party. The considered networks are unweighted
and symmetric, and the edge between nodes i and j exists if
either student i picked j in the questionnaire or vice versa.

For each of the four networks, our goal is to recover
the true Laplacian L from the observation of M synthetic
consensus dynamics by solving (26), where we vary M
from 10 to 104; see Fig. 1b. We consider the same metric
for recovery error as in the previous experiment, averaged
over 20 realizations of a synthetic dynamics. This synthetic
dynamics was generated by drawing the input x from a
standard multivariate Gaussian distribution, selecting Tk uni-
formly at random in {3, 4, 5} and each rate α(k)

t uniformly
at random in (0, 1/λmax(L)). In solving (26) we set ε1 equal
to the smallest possible value (found via iterative search) that
guarantees feasibility of (26) and η = 5, although recovery
was robust to the specific value chosen for η.

As displayed in Fig. 1b, we observe a monotonous de-
crease of the recovery error with increasing M for all
networks. This is not surprising since we know that for
larger M , the sample eigenbasis Ṽ becomes closer to the
real eigenbasis V and thereby facilitates recovery. In Fig. 1c
we show specific instances of L∗ corresponding to Network
1 for different number of observations M . To facilitate
interpretation, the matrices shown in the figure are split
along the diagonal: the upper triangular portion of each
matrix (excluding the diagonal) corresponds to the absolute
values of the entries of the recovered L∗, whereas the
lower triangular portion and the diagonal correspond to the
difference with the true Laplacian, i.e. entries of |L − L∗|.
As expected, the discrepancy with the real Laplacian (lower
triangle) decreases with increasing M . Moreover, note that
we here consider a weighted network recovery. If we are
only interested in recovering the support of the graph, then
we can do better even with only M = 100 samples by post-
processing our results. More precisely, if we only keep the

1Access to the data and additional details are available at http://vladowiki.
fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students

http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
http://vladowiki.fmf.uni-lj.si/doku.php?id=pajek:data:pajek:students
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Fig. 1: (a) Rate of recovery for Erdős-Rényi graphs as a function of the number of nodes N and the probability of edge appearance p.
(b) Error in recovering four social networks as a function of the number of opinion profiles M observed. (c) Examples of the recovered
Laplacians for M ∈ {10, 102, 103, 104}. Upper triangular parts of matrices show the recovered edges and lower triangular parts (and
diagonals) show discrepancy with true Laplacian.

155 (true number of edges in L) strongest links in L∗, 118
of them coincide with the edges present in L. This overlap
increases to 149 and 155 for M = 103 and M = 104,
respectively. Notice that even for this last case the error in
Fig. 1b is not 0, due to small differences in the actual weights
of the recovered edges.

VI. CONCLUSION

We have proposed a novel technique for the identification
of a network based on observing snapshots of a number of
independent consensus processes of unknown duration. To
achieve this, we formulated a convex optimization problem
that outputs a sparse, valid Laplacian which is provably
consistent with the spectral information obtained from the
consensus observations.

Our results pave the way for several interesting avenues
of future work including: (i) investigation of the trade-off
between specific network topologies and the required sample
size M to achieve a desired level of recovery performance;
(ii) consideration of a richer class of dynamical models,
including non-deterministic processes such as switched sys-
tems; and (iii) extensions of the proposed algorithm that
incorporate generative random network models as priors in
the network inference problem.
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