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Controllability and Data-Driven Identification of
Bipartite Consensus on Nonlinear Signed Networks

Mathias Hudoba de Badyn, Siavash Alemzadeh, and Mehran Mesbahi

Abstract— Nonlinear networked systems are of interest in
several areas of research, such as multi-agent systems and
social networks. In this paper, we examine the controllability
of several classes of nonlinear networked dynamics on which
the underlying graph admits negative weights. Such signed
networks exhibit bipartite clustering when the underlying graph
is structurally balanced. We show that structural balance is
the key ingredient inducing uncontrollability when combined
with a leader-node symmetry and a certain type of dynamical
symmetry. We then examine the problem of extracting the
bipartite structure of such graphs from data using Extended
Dynamic Mode Decomposition to approximate the correspond-
ing Koopman operator.

Index Terms—Nonlinear networks, signed networks, control-
lability, structural balance, graph symmetry, Koopman opera-
tor, extended dynamic mode decomposition

I. INTRODUCTION

Networked dynamical systems are the cornerstone of many
modern technologies, as well as the focus of scientific re-
search in many disciplines. Some pertinent examples of net-
worked systems are opinion dynamics [1], gene networks [2],
flocking dynamics [3] and autonomous coordinated flight [4].
One of the most well-studied networked dynamical systems
is the consensus protocol, which is used in many applications
including Kalman filtering [5], [6], multi-agent systems [7],
[8], [9] and robotics [10]. More recently, the controls
community has begun examining consensus on networks
admitting both cooperative and antagonistic interactions [11],
[12], [13], [14].

Previous research in this direction has examined the con-
trollability of consensus networks in both the linear case
and non-linear generalizations of consensus [15], [16], [17].
The work by Rahmani et al. has shown that symmetries
of networks characterized by graph automorphisms about
leaders in the network cause uncontrollability [18]. This sym-
metry technique was generalized by Chapman and Mesbahi,
who showed that signed fractional automorphisms provide
the necessary and sufficient conditions for characterizing
controllability of consensus networks [19]. Further work
examined methods of generating network topologies, for
either performance improvements, as in [20] and [21], or
those that are controllable for consensus, such as in [22]
and [23].
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Consensus algorithms on networks admitting antagonistic
interactions were considered by Altafini [11] and Pan et
al. [24]. The graph-theoretic property of structural balance,
used in the study of social networks, was identified as the
property inducing bipartite consensus [25], [26], [27]. More-
over, Clark et al. worked on the leader selection problem
on signed networks [28]. Roy and Abaid discussed using
antagonistic interactions to improve existing consensus-like
algorithms [17].

The generalization to nonlinear consensus algorithms has
been studied in numerous settings. Behaviour of nonlin-
ear consensus protocols was considered by Srivastava et
al. [13]. The extension of these consensus protocols to
signed networks was studied by Altafini [11]. Moreover, the
generalization of symmetry arguments for controllability was
examined by by Aguilar and Gharesifard [16].

There has been a recent interest in applying data-driven
methods to control of networks; one such approach has
utilized the Koopman operator. The Koopman operator pro-
vides a dynamical framework in which one considers the
propagation of observables of the state, rather than the state
itself. The Koopman operator is linear, even for a non-
linear dynamical system, but the trade-off is that the vector
space of observables is generally infinite-dimensional [29].
This formalism lends itself well to a data-driven approach,
allowing one to approximate the Koopman operator by
collecting data [30]. Research by Pan ef al. has looked at
identifying the bipartite structure of signed networks using
data-driven methods [31], furthering work done by Facchetti
et al. [32], and Harary and Kabell [33].

The contributions of this paper are twofold. First, we
show that the property of structural balance, when com-
bined with symmetries in the underlying graph, as well
as certain symmetries of the nonlinear dynamics, causes
uncontrollability in the context of the accessibility problem.
In particular, we consider the same network flows studied
in [13], [16], [11]; however we extend the controllability
analysis to signed dynamics. Secondly, we extend the bi-
partite identification problem considered by Pan er al. in
[31] to the case of signed nonlinear consensus networks.
In particular, we use a Koopman operator-theoretic approach
alongside Extended Dynamic Mode Decomposition (EDMD)
to extract a ‘Koopman mode’ whose sign structure reveals
the bipartite structure.

The paper is organized as follows. In §IIl we provide the
relevant background on graph theory, nonlinear control and
Koopman operator theory required for the discussion in this
paper. Then, the problems considered are outlined in §IIIl In
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§IVl we examine the controllability problem and in §V] we
consider the bipartite identification. Relevant examples are
shown in §VII and the paper is concluded in §VII

II. MATHEMATICAL PRELIMINARIES

A column vector with n elements is referred to as v € R"
where v; or [v]; both represent the ith element in v. The
square matrix N € R"*" is symmetric if N7 = N. The
identity matrix is denoted [,. For w € R" the matrix
diag(w) is an n x n matrix with w on its diagonal and
zero elsewhere. We say that A is similar to B if there is an
invertible matrix R such that R~! AR = B. The unit vector
e; is the column vector with all zero entries except [e;]; = 1.
The column vector of all ones is denoted as 1. The cardinality
of a set S is denoted as |S|. The column space of a matrix
M is denoted by R(M). We denote the Moore-Penrose
pseudoinverse of a matrix A as AT. The function h is even if
h(—xz) = h(z) and is odd if h(—zx) = —h(x). The function
f is of class C" if the derivatives f, f',..., f(") exist and
are continuous. The function ¢ € C°°, otherwise called
smooth, has derivatives of all orders. Let F' : R™ — R"™ be
a vector field and let ¢ : R” — R" be a smooth mapping.
Then, F' is y-invariant if (Dp(x))F(x) = F(p(z)) for all
x € R™ with Dp(z) the Jacobian matrix of ¢ at x. Given a
mapping v : M — M, the fixed point set of v is denoted
by Fix(y) = {z € M|y(z) = z}.

A. Consensus Dynamics on Signed Networks

We follow the standard notation and conventions for graph
theory applied to multi-agent systems and consensus, as in
[15]. Below, we introduce some mathematics relating the
ideas of symmetry and signed graphs that we will utilize in
this paper.

An automorphism of the graph G is a permutation ¢ : V —
V of its nodes such that ¢(i)¢(j) € € if and only if ij € €.
The permutation ¢ induces a mapping ¢ : R” — R"™ such
that [o(2)]; = 24(;). Let the permutation matrix .J be such
that [J];; = 1 if ¢(¢) = j and zero otherwise. Therefore, the
permutation matrix J is simply the Jacobian matrix of ¢, in
that J = De. Thus, ¢ represents the automorphism of G if
and only if JA(G) = A(G)J (see [15]).

A signed graph G, is a graph with both positive and
negative weights. We define the signed graph Lapla-
cian as Ly = Ds — As, where [As];; = £A;;, with
the degree matrix given by D 2jena Al =
> jen(i [Wijl|. Following the generalization of consensus
to signed graphs in [12], the signed consensus dynamics are
T = —Lsx, i.e., 11'71' = — Z]G/\/(z) |W1J| (.CCZ - sgn(Wij)xj),
where sgn indicates the sign function. A gauge transfor-
mation is a change of orthant order via a matrix G; €
{diag(c): o =|o1,...,04] , 0; = £1}. From the defini-
tion Gy = GT = G, 1. Let the gauge-transformed Laplacian
be given by Lg, = G4 LGy = D — Gy AsG where

Dkeniy ikl =1
(LGt)ij = REN() .
—0i0jAij J#i

In a similar way that we defined the functions ¢ and ¢ for
the graph automorphism, consider the function g : V — V
encoding the action of the gauge on the nodes.This induces
a function g : R” — R" such that [g(z)]; = oyz;. The gauge
transformation is then the Jacobian of this function, in that
Gt = Dg

B. Nonlinear Dynamical Systems

We follow the same conventions as in [16]. Consider the
controlled dynamical system

&= F(x,u) (1

where F' : R™ x R™ — R"™ is a smooth mapping. The
accessible set A(xo,T) of the system (I) from z( at time
T is the set of all end-points §(T") where 6 : [0,T] — R"™ is
a trajectory of (I)). The accessible set of from x¢ up to
T is defined as A(zo, < T) = Up<-<1A(20, 7). Then, the
nonlinear dynamical system (I)) is said to be accessible from
the initial point xq if for every T > 0 the set A(zo,< T)
contains a non-empty interior.

C. Koopman Operator

Consider the dynamical system in () without control. The
Koopman operator K acts on functions of the state space
(called observables) ¢ by the action K = 1) o F. The
function (z) is an eigenfunction of K corresponding to
the eigenvalue 11 if Kp(x) = et'p(x). For an observable
function g in the span of Koopman eigenfunctions, one
can write g(z) = > o, vkpk(x), where the vy’s are the
Koopman modes. For the case of full-state observable g(z) =
x the states can be reconstructed as, z(t) = g(z(t)) =
220:1 et (xg)vr, where we refer to {uk, @k, vk} as the
Koopman triple. A numerical approximation of Koopman
operator can be obtained by EDMD [30].

III. PROBLEM STATEMENT

In this paper, we tackle two problems regarding nonlinear
signed consensus networks. In the first section, we extend
the result in [16] to the signed networks. We examine the
necessary conditions of uncontrollability in nonlinear signed
network systems due to input and dynamics symmetry. In
particular, we will show how the additional topological
property of structural balance in signed networks plays a
key role in driving uncontrollability.

The following lemma from [11] elucidates some properties
of structural balance.

Lemma 1. (See [11]) The following statements are equiva-
lent:

1) The signed graph G is structurally balanced;

2) There exists a gauge transformation (G such that
G AsGy has only positive entries;

3) For all cycles in G, the product of the edge weights on
the cycle are positive;

4) The signed Laplacian L has a zero eigenvalue;

5) There exists a bipartition of V' such that the edge
weights on the edges within the same set are positive,
and the edges connecting the two sets are negative.



In the second section of this paper, we show that a partic-
ular Koopman mode from the EDMD approximation of the
Koopman operator contains the sign structure corresponding
to the bipartition in Lemma [1[5). This extends the work by
Pan et al. who considered the equivalent problemn for linear
signed consensus [31].

IV. NONLINEAR CONTROLLABILITY OF SIGNED
NETWORKS

In this section, we extend previous work [16] to analyze
the controllability of nonlinear consensus protocols to the
case where these protocols run on a signed network. We con-
sider three types of nonlinear consensus protocols, following
the nomenclature in [11], [13], [16]:

o Absolute Nonlinear Flow
i =— Y [f(x:) — sgn(ai) f(z;)] 2
JEN;
« Relative Nonlinear Flow

=Y flw

JEN;

—sgn(a;;)x;) 3)

o Disagreement Nonlinear Flow

Ty =—f Z x; — sgn(ai;)x; 4)

JEN;

To make the paper self-contained, we provide two main
theorems from [16] which we use later to demonstrate
uncontrollability.

Theorem 1. Let G = (V,€) and F : R® — R™ be a flow
on G. Assume ¢ is a non-identity symmetry on F'. Then, for
any leader [, the leader-follower network flow on G induced
by [ is not accessible from the origin in R”~*.

Theorem 2. Let § = (V,&) and let F : R* — R"
be the dynamics in any of @)-@). Also, assume ¢ be an
automorphism of G. Then F' is (p-invariant.

The behavior of the dynamics @)-@) clearly depends
on the choice of f : R — R. In [11], several classes
of functions were considered. First, the class of translated
positive, infinite sector nonlinearities S is defined as

= {f 1f@) — f@)@ —a") > 0 for v £ a7},

where [7. f(t)dt — oo as [z] — oo and f(0) = 0; see
[27] for properties of this class of functions. A subset
So C S of these functions that will be used later is the
untranslated positive, infinite sector nonlinearities given by
setting z* = 0 in the definition of S. The reason these
classes of functions are interesting is that when combined
with the dynamics introduced in @)-@, clustering occurs
in a structurally balanced graph. This is summarized in the
following theorem.

Theorem 3. (Theorems 3 & 4 in [11]) Consider a graph G.
Assume either the dynamics @) with f € S or the dynamics
@) with f € Sp running on G. Then, lim; o z(t) =
L (17Gx(0)) G¢1 if and only if G is structurally balanced
(with gauge transformation G).

According to this theorem, for certain classes of functions,
the dynamics will converge to two different clusters. These
clusters are exactly those corresponding to the bipartite
consensus condition in Lemma [1(5).

In the following subsections, we elaborate on the con-
trollability of the dynamics @)-@) and show that a notion
of symmetry about the input node, as well as structural
balance, lead to uncontrollability. From [11] we know if
the underlying signed graph G is structurally balanced,
then there exists a gauge transformation G, that acts as a
similarity transformation on the adjacency matrix of G in
that Gy As(G)Gy = A where A is the unsigned adjacency
matrix. We will show that G; defines a useful coordinate
transformation that allows an immediate application of the
uncontrollability test in [16].

First, we discuss the notion of symmetry in signed graphs.
Definition 1. Let ¢ be a non-identity automorphism on
graph G. Suppose that this graph is structurally balanced,
with gauge transformation G; induced by the function g :
R™ — R™ defined by [g(x)]; = o;z;. Then, we define
signed automorphism operator as ¢’ = g o ¢ o g. Moreover,
assume that J is the matrix representation of the permutation
operator ¢, in that J = Dp. Then, the analogous matrix
J' = GyJG; is the matrix representation of the signed
permutation operator ¢’, in that J' = D(go ¢ o g).

By Definition [l if ¢(x;) = .., then ¢'(z;) = o;0.x,. For
example, consider the graph in Figure [

Fig. 1: Example of a signed automorphism

The corresponding gauge transformation and automor-
phisms are defined as

1 0 0 01 0
Gi=10 -1 0| ,J=1|1 0 0
0O 0 1 0 0 1
—1 0
J =G JG, = —1 0
1
This implies that cp’(:vl,:vg,:vg) = (—x2,—x1,23). Recall

that we use ¢(i) as the action of the automorphism on the
index of a node rather than the more obscure notation (v; ).
For example, in Figure [[l we have ¢(1) =2, ¢(2) = 1. We
can now proceed to the main results of this paper, which
are established case-by-case for each of the dynamics in
Equations @)-).

1) Absolute Nonlinear Flow: In the following theorem,
we will show that for absolute nonlinear flow with odd
functions f, structural balance directly generalizes the uncon-
trollability conditions in [16]. For the case of even functions,
we need to impose additional topological structure on the
edge weights of the underlying graph.



Theorem 4. Consider a structurally balanced graph G with
gauge transformation G; and absolute nonlinear flow dy-
namics (2). Further suppose G has a non-trivial signed
automorphism ¢’. Let f : R™ — R be a smooth odd function
(for example, odd f € Sy with f smooth). Then, for any
vertex j € Fix(¢’) chosen as the leader, the leader-follower
network is not accessible from the origin in R”~1, Moreover,
the same results holds for smooth even functions f if ¢’
preserves edge signs, in that sgn(a;;) = sgn(ag()¢())-

Proof: Following Equation (), let F' denote the net-
work flow and assume the dynamics in (2)). We will first note
that for smooth odd functions f, a convenient coordinate
transformation yields unsigned dynamics. Let z = Gz,
or z; = o;x;. Then, following [12] we get the equivalent
dynamics

4i=—0; Y floiz) — sgn(ai;) f(052))

JEN;
=—0; Y oif(z) — sen(aij)o; f(2)
JEN;
== > flzi) = f(2)),
JEN;

which is an unsigned absolute nonlinear flow. Then, from
Theorems [l and [2| we conclude the system is inaccessible
from the origin.

Now, suppose f is an even function. From we have

Fi(spl(x)) = - Z floiorz,) — Sgn(aij)f(UleCCl)

lEN,

- Z far) — sgn(ai;) f(21),

LEN,.

where 7 = ¢(i) and [ = ¢(j) and the property f(o;0;x) =
f(z) of even functions is used.

On the other hand, we know from the above identity that
Fyiy(2) = Fo(w) = — e, [F(@n) — sgnlan) f(z)].
Hence, F is ¢'-invariant if sgn(a;;) = sgn(a;). [ |
The condition on even functions in Theorem [ can be
interpreted as an edge-sign symmetry of the graph, in that
edge signs remain invariant under the signed automorphism.

2) Relative Nonlinear Flow: The main result of this

section shows that structural balance and the existence of the
non-trivial signed automorphism lead to the uncontrollability
of the relative nonlinear flow.
Theorem 5. Consider a structurally balanced graph G with
gauge transformation G and relative nonlinear flow dynam-
ics. Further suppose G has a non-trivial automorphism ¢’.
Let f : R — R be a smooth odd or even function (for
example, odd f € Sy with f smooth). Then, for any vertex
j € Fix(¢') chosen as the leader, the leader-follower network
is not accessible from the origin in R" !,

Proof: Let the same notations as in proof of Theorem 4]
hold. We will show that both cases of odd and even functions
f lead to ’-invariance of the flow F' and therefore the
inaccessibility from the origin.

Let f be an odd function. Changing the coordinates by
z = Gz yields

Z.fi = —0; Z f(azzl — sgn(aij)ajzj)

JEN;
=—0i Y _ f(oi(zi — oisgn(ai;)o;z;))
JEN;
==Y flz—z)
JEN;

which is the unsigned relative nonlinear flow. Hence, F' is
¢’ -invariant and inaccessibility from the origin follows from
Theorems [I] and

For an even function f, from (3)

Fy(¢' () = = > floior@, — ojo18n(ai;)w)

lEN,
= — Z floior(zy — oroy0;058gn(ai;)xr))
lEN,
== flar—oroim) ==Y flx, —sgn(ap)a)
lEN, leN,

where the last display is equal to F.(z), and we have used
the fact that ;0 sgn(a,;;) > 0 hence o;0; = sgn(a,;) for
all 7 and j € V. [ |
3) Disagreement Nonlinear Flow:

Theorem 6. Consider a structurally balanced graph G with
gauge transformation G, and disagreement nonlinear flow
dynamics. Further suppose G has a non-trivial automorphism
¢'. Let f : R™ — R be a smooth odd or even function (for
example, odd f € Sy with f smooth). Then, for any vertex
j € Fix(¢') chosen as the leader, the leader-follower network
is not accessible from the origin in R" 7!,

Proof: The proof is identical to that of Theorem 3 W
Remark 1. The analysis of this section demonstrates that
for all of the three nonlinear flows (2)-(@) structural balance
in addition to ¢’-invariance leads to system uncontrollability
for even and odd functions f. The only exception is when the
absolute nonlinear flow f is even. In this case, an edge-sign
symmetry condition is also required.

V. BIPARTITE IDENTIFICATION WITH THE
KOOPMAN OPERATOR AND EDMD

In this section, we extend the data-driven approach by Pan
et al. in using data-driven methods to identify the bipartite
consensus for some of the nonlinear network flows consid-
ered in the preceding section. Our main result asserts that
the Koopman mode corresponding to the zero eigenvalue of
the Koopman operator contains the sign structure indicating
the bipartite consensus.

Theorem 7. Consider either the dynamics with f € §
or the dynamics (@) with f € Sy. Recall that the full-state
observable can be written in terms of the Koopman triple as

x(t) = Z et (w0)v;. 5)

j=1
If the underlying graph is structurally balanced, then the
following hold:



1) A; <0 with a unique zero eigenvalue A;.

2) The sign structure of the corresponding Koopman
mode v; displays the bipartition of nodes denoted in
Lemma [115).

Proof: By Theorem[3] if G is structurally balanced, then
we have that lim; o z(t) = n~! (]_TGtI()) G41. Hence,
A; < 0 since otherwise the RHS of Equation (3) does not
converge.

The sign structure of the vector G;1 corresponds to

bipartition of nodes denoted in Lemma [d5). Since A\; = 0
is unique, by setting a = (1/n)1T Gz we have that

= lim
t~>oo 2

lim 2(
t—o0

erit @;(x0)vj; = @1(z0)v1 = aG1.

Since both « and (xo) are constants, we can see that v; oc
G¢1, and the result follows. |

In we show an example where we use EDMD
to approximate the first mode of the Koopman operator
to obtain the sign structure corresponding to the bipartite
consensus.

VI. EXAMPLES

In this section, we show some examples that highlight
the necessity of combining @-invariance, structural balance
and leader-node symmetry for uncontrollability of signed
networks. We refer the reader to [16] for similar examples in
the unsigned case. We then show an example of using EDMD
to obtain the bipartite consensus structure of a nonlinear flow
on a structurally balanced graph.

A. Unsigned Symmetry is Not Sufficient for Uncontrollability

Here we show an example of a network flow on a signed
graph which has a leader-node symmetry. We show that in
one case, the graph is structurally balanced, and the induced
flow is hence uncontrollable. By altering the sign on a single
edge, structural balance is lost and the resulting network flow
is controllable.

(a) (b)

Fig. 2: (a) Structurally balanced graph with a leader symme-
try about node 4. (b) Structurally unbalanced graph with a
leader symmetry about node 4.

Consider the structurally balanced graph in Figure Ral and
the structurally unbalanced graph in Figure These have

the dynamics © = —L;x — 1u, with Laplacians
2 -1 0 2 -1 0
Lh=|-1 3 1|, Ly=| -1 3 -1
0o 1 2 0o -1 2

The controllability matrices of these dynamics are rank-
deficient and full-rank, respectively.

B. Identification of Bipartite Structure: Kuramoto Dynamics

In this subsection, we consider a numerical method to
identify the bipartite consensus structure of nonlinear dy-
namics on a structurally balanced graph, i.e. obtaining the
bipartition of nodes in Lemma[Il5). We do this by exploiting
Theorem [/l and numerically approximating the Koopman
mode corresponding to the zero eigenvalue.

Consider the dynamics (@) with f(-) = sin(-), correspond-
ing to the (signed) phase coupling of the Kuramoto dy-
namicd], with an underlying structurally balanced oscillator
network shown in Figure [3

Fig. 3: Underlying structurally balanced signed graph for
EDMD example. Dashed edges indicate negative edges.

We use EDMD to approximate the first Koopman mode
corresponding to the zero eigenvalue. Due to space con-
straints, we refer the reader to §2.2.3 of [30] for a detailed
explanation of the EDMD algorithm. In particular, we use
a dictionary of functions of the form 1, = H?Zl H(x;,75:)
where H(z;, j;) is the j;th order Hermite polynomial of x;.
We use all such possible 15 for Hermite polynomials up to
order 2. Simple combinatorics indicates that there are 729
such functions v, for a 6-node graph; hence N = 729 in
step (2) of §2.2.3 in [30].

o
7z

0 T L T T S S
t

Fig. 4: Evolution of Dynamics Bl with f(-) = sin(-) on the

graph in Figure 3l Left (red) shaded region corresponds to

97 and the right (blue) shaded region corresponds to 7.

The dynamics are shown in Figure [] for an initial con-
dition of 2y = (-—1.73,-0.38,—0.21,0.56, —0.65, —0.32).
The EDMD procedure was applied to three sets of data with
a time-step of 0.1, as depicted in Figure 4} the full data (from
0 < t < 10), the data in the red shaded region (0 < ¢ < 3)
and the data in the blue shaded region 2 < ¢t < 5). The
computed Koopman modes corresponding to A\; ~ 1 for

! The variable x; corresponds to the transformed phase coordinate z; =
¢i — two, where wy is the oscillator’s natural frequency. See Equation 2.2
in [34]



these regions respectively are

0.018 0.019 0.016
0.026 0.021 0.023
6% _ 0.016 , ’L_)% _ 0.015 , 1-}%’, _ 0.015 ,
-0.020 -0.018 -0.018
-0.020 -0.020 -0.016
-0.011 -0.007 -0.012

which all contain sign structure corresponding to the biparti-
tion depicted in Figure 3l Despite not using all available data,
the EDMD procedure was able to extract the bipartition well
before the dynamics converged. This begs the question how
early can we detect the bipartite structure of the underlying
dynamics? We will address this question in future works.

VII. CONCLUSION

In this paper, we examined the controllability of nonlinear
flows on signed networks. In particular, we identified that the
topological property of structural balance is the key ingredi-
ent that when combined with a leader-node symmetry and ¢-
invariance of the flow dynamics, results in uncontrollability.

We then looked at the task of identifying the bipartite
consensus of certain classes of nonlinear network flows. We
showed that the sign structure of the first Koopman mode
corresponds to this bipartite consensus, and then used EDMD
to numerically approximate this sign structure.
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