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Abstract— Observer design typically requires the observabil-
ity of the underlying system, which may be hard to verify for
nonlinear systems, while guaranteeing asymptotic convergence
of errors, which may be insufficient in order to satisfy perfor-
mance conditions in finite time. This paper develops a method to
design Luenberger-type observers for nonlinear systems which
guarantee the largest possible domain of attraction for the
state estimation error regardless of the initialization of the
system. The observer design procedure is posed as a two step
problem. In the the first step, the error dynamics are abstractly
represented as a linear equation on the space of Radon
measures. Thereafter, the problem of identifying the largest set
of initial errors that can be driven to within the user-specified
error target set in finite-time for all possible initial states, and
the corresponding observer gains, is formulated as an infinite-
dimensional linear program on measures. This optimization
problem is solved, using Lasserre’s relaxations via a sequence
of semidefinite programs with vanishing conservatism. By post-
processing the solution of step one, the set of gains that
maximize the size of tolerable initial errors is identified in step
two. To demonstrate the feasibility of the presented approach
two examples are presented.

I. INTRODUCTION

Estimating the state of a system is critical to a variety of
control related tasks including feedback design, diagnostics,
and monitoring. Unfortunately, measuring the states of a sys-
tem can involve considerable engineering effort and cost, and
sometimes may be impossible. Observers serve to provide a
means to achieve this objective and their design has been an
active area of interest within the controls community.

The observers considered in the literature usually satisfy
several requirements. First, they are typically designed to
guarantee asymptotically stable error dynamics though finite-
time convergence of the estimation error may be more useful
in certain applications [1]–[4]. This has inspired several
recent papers that have, inspired by the ideas proposed
by Luenberger, proposed observers for linear and nonlinear
systems [1], [5]–[7].

Second, the systems for which observers are designed are
usually presumed to satisfy some observability condition. In
the case of nonlinear systems, this often requires assuming
that the system is transformable to the observer canonical
form and sometimes even requires that the system be ob-
servable along the solution trajectory, or at the origin [8]–
[10]. This condition can be difficult to check in practice and
thus results in an ad hoc application of the observer design
technique.
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Third, observers are typically designed to have globally
convergent error dynamics. Though this is an attractive
property, construncting such observers may not be possible
for every system. In practice, an observer that is locally
convergent is generally sufficient as long as one can explicitly
describe the neighborhood of initial observer states that
converge to the true state of the system regardless of its
true initial state.

The primary contribution of this paper is the development
of an automated tool to design observers for nonlinear
systems that rely on static output injection to reject dis-
turbances and uncertainty. These numerically synthesized
observers satisfy the following characteristics: (1) they do
not presume the observability of the system or the existence
of a transformation that renders the system observable; (2)
they guarantee the finite-time behavior of the error dynamics;
and, (3) they find the largest possible domain of attraction for
the error dynamics. In addition to specifying the dynamics of
the system, to utilize the approach presented in this paper, a
user must specify the state space of the system, the time for
which the system will evolve, and the error state that they
wish the dynamics to converge to within the pre-specified
time. The result of the technique presented in this paper is
a static output injection gain and the largest set of initial
observer states that are provably able to converge to the user
specified error state in the specified time for all states of the
system initialized in the user-specified state space.

The presented approach relies on dividing the observer
design problem into two sub-problems. The first sub-problem
identifies the largest set of static gains for output injection
and associated initial states for the observer that are able to
be driven to a user specified error in finite time for all initial
states in the state space. The second sub-problem utilizes
this result to identify a single (or a set) static gain with the
largest set of initial observer states that are convergent.

To tractably solve each sub-problem, this paper first trans-
forms the dynamics of the nonlinear system and observer into
a linear system over the space of measures [11]. As a result,
each sub-problem can be posed as an infinite dimensional
linear program over the space of measures. In the instance of
polynomial or rational dynamics, the solution to this infinite
dimensional linear program can be found with vanishing
conservatism using a hierarchy of semidefinite programs.
This solution methodology is inspired by several recent
papers [12]–[14].

The remainder of the paper is organized as follows:
Section II introduces the notation used in the remainder
of the paper. Section III formulates the first sub-problem
as an infinite-dimensional linear program on measures and
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describes a sequence of the semidefinite programs with
vanishing conservatism to solve the first sub-problem; Sec-
tion IV presents a method to solve the second sub-problem;
Section V demonstrates the performance of the presented
approach on examples; and Section VI concludes the paper.

II. PRELIMINARIES

This section describes the class of systems under consid-
eration, form of the observer that is constructed, and outlines
the problem of interest.

A. Notation

The following notation is adopted in the remainder of the
text. Sets are italicized and capitalized. The set of continuous
functions on a compact set K are denoted by C(K). The ring
of polynomials in x is denoted by R[x], and the degree of a
polynomial is equal to the degree of its largest multinomial;
the degree of the multinomial xα, α ∈ Nn≥0 is ∣α∣ = ∥α∥1;
and Rd[x] is the set of polynomials in x with maximum
degree d. The dual to C(K) is the set of Radon measures on
K, denoted as M(K), and the pairing of µ ∈M(K) and
v ∈ C(K) is denoted:

⟨µ, v⟩ = ∫
K
v(x)dµ(x). (1)

We denote the non-negative Radon measures by M+(K).
The space of Radon probability measures on K is denoted
by P(K). If a measure ν ∈M+(A×B) can be represented as
a product measure of η ∈M+(A) and ζ ∈M+(B), we write
ν = η ⊗ ζ. The Lebesgue measure on a set A is denoted by
λA. The support of a measure, µ, is identified as spt(µ).
For convenience, the interval [0, T ] is denoted by T , when
necessary.

B. Problem Formulation

We next formally describe the problem of interest. In this
paper we consider drift systems with observations of the
following form:

ẋ(t) = f(t, x(t))

y(t) = h(x(t))
(2)

where x(t) ∈ X ⊂ Rn are the states of the system and C ∶

Rn → Y describes a linear transformation from the state to
the output, y ∈ Y ⊂ Rm. Note that though the dynamics of
this system may be known, usually the initial condition of
this system is unknown and may start anywhere in X . As a
result, we construct an observer of the form:

˙̂x(t) = f(t, x̂(t)) + l(y(t) − ŷ(t)) ∶= f̃(t, x(t), x̂(t), l)

ŷ(t) =h(x̂(t)),
(3)

where x̂(t) ∈ X̂ ⊂ Rn and l ∈ L ⊂ Rn×m is a constant gain
that we design. The objective of this paper is to find a gain l
in (3) that results in the largest possible set of initial observer
states converging satisfactorily close to the true state of the
system in a finite amount of time, T , regardless of the true
initial state of the system.

To describe this objective explicitly, we first define the
state estimation error, e(t) ∶= x(t) − x̂(t) ∈ E, dynamics as:

ė(t) =f(t, x(t)) − f̃(t, x(t), x(t) − e(t), l)

∶=g(t, x(t), e(t), l).
(4)

Next, we define the augmented system as follows:

[
ẋ(t)
ė(t)

] = [
f(t, x(t))

g(t, x(t), e(t), l)
] . (5)

With z(t) ∶= [x(t) e(t)]
′
∈ Z where Z ∶=X ×E, the above

equation can be written as:

ż(t) = φ(t, z(t), l). (6)

In addition, let ET ⊂ Rn correspond to a target state that
the user wishes to drive the estimation error into by time T
and let ZT ∶= X × ET be the target set in the augmented
state space. To formally state the objective of this paper, we
next define the set of gains and associated initial error states
that can be driven to ET by time T under the augmented
dynamics for all possible initial states of the system in
Equation (2):

X = {(e0, l) ∈ E ×L ∣ ∀x0 ∈X ∃z ∶ [0, T ]→X ×E

s.t ż(t) = φ(t, z(t), l) a.e. t ∈ [0, T ]

z(0) = (x0, e0), z(T ) ∈ ZT}. (7)

We refer to this set as the backwards reachable set of ET .
Given this definition, the objective of this paper is to compute
a gain as:

sup
l∈L

λE({e0 ∣ (e0, l) ∈ X}) (8)

In words, this optimization problem seeks to find the gain
which drives the largest set of initial error states to the
desired error target set for all possible initial states of the
system in Equation (2).

Our approach to solving this problem mirrors our prob-
lem formulation. That is, we first compute the backwards
reachable set of ET and then solve the optimization problem
in Equation (8) to find an optimal gain. To ensure that the
problem is well-posed, we make the following assumptions:

Assumption 1. f is Lipschitz in x and piecewise continuous
in t.

Assumption 2. X , E, ET , and L are compact subsets.

C. Occupation Measures

This section describes how to compute the backwards
reachable set by transforming the nonlinear dynamics of
the system into the space of measures. The result of this
transformation is a linear description of the dynamics. To
formulate this transformation, this section introduces occu-
pation measure (refer to [12], [15] for more details).

Given an initial condition for the system in Equation (6),
z0, the occupation measure quantifies the amount of time



spent by an evaluated trajectory in any subset of the space.
The occupation measure µ(⋅ ∣ z0, l) is defined as:

µ(A ×B ×C ∣ z0, l) = ∫
T

0
IA×B×C(t, z, l ∣ z0, l)dt, (9)

for all Borel Sets A×B ×C ⊂ T ×Z ×L where IK(y) is the
indicator function on the set K that returns one if y ∈K and
zero otherwise. With the above definition of the occupation
measure, one can show:

⟨µ(⋅ ∣ z0, l), v⟩ = ⟨λT , v(t, z(t ∣ z0, l), l)⟩, (10)

for all v ∈ C(T ×Z ×L).
The occupation measure completely characterizes the so-

lution trajectory of the system resulting from an initial con-
dition. Since we are interested in the collective behavior of
a set of initial conditions, we define the average occupation
measure as:

µ(A ×B ×C) = ∫
Z×L

µ(A ×B ×C ∣ z0, l)dµ̄0, (11)

where µ̄0 ∈ M+(Z × L) is the un-normalized probability
distribution of initial conditions. The average occupation
measure of a set in T × Z × L is equal to the cumulative
time spent by all solution trajectories that begin in spt(µ̄0).

By applying the Fundamental Theorem of Calculus, one
can evaluate a test function v ∈ C1(T ×Z ×L) at time t = T
along a solution to Equation (6) as:

v(T, z(T ∣ z0, l), l) = v(0, z0, l) +∫
T

0
Lφv(t, z(t ∣ z0, l), l)dt,

(12)

where Lφ ∶ C1(T ×Z ×L)→ C(T ×Z ×L) is defined as:

Lφv ∶=
∂v

∂z
⋅ φ +

∂v

∂t
, (13)

Using Equation (10), Equation (12) can be re-written as:

v(T, z(T ∣ z0, l), l) = v(0, z0, l)+

+ ∫

Z×L

Lφv dµ(t, z, l ∣ z0, l).
(14)

Integrating Equation (14) with respect to µ̄0 and defining a
new measure µT ∈M+(ZT ×L), as:

µT (A ×B) = ∫

Z×L

IA×B(x(T ∣ z0, l), l)dµ̄0, (15)

produces the following equality:

⟨δT ⊗ µT , v⟩ = ⟨δ0 ⊗ µ̄0, v⟩ + ⟨µ,Lφv⟩, (16)

where, with a slight abuse of notations, δt is used to denote
a Dirac measure situated at time t. Using adjoint notation,
Equation (16) can be written as:

δT ⊗ µT = δ0 ⊗ µ̄0 +L
′
φµ. (17)

Equation (17) is a version of Liouville’s Equation, holds for
all test function v ∈ C1(T × Z × L), and summarizes the
visitation information of all trajectories that emanate from
spt(µ̄0) and terminate in spt(µT ).

III. COMPUTING FEASIBLE OBSERVER GAINS

This section describes how to formulate and solve for
the backwards reachable set defined in Equation (7) using
the occupation measures defined in the previous section. In
particular, our approach relies upon describing the evolution
of the augmented system in Equation (6) using a family
of measures (µ̄0, µT , µ) which satisfy Equation (16) while
optimizing for the µ̄0 with the largest possible support. As
we describe below this translates into an infinite dimensional
linear program over measures.

Recall that computing the backwards reachable set defined
in Equation (7) requires finding observer gains and associated
initializations for the observer state that ensure all possible
initial states of the system are satisfactorily estimated (i.e. the
estimation error converges to ET by time T ). In particular,
note that the choice of the gain and the initial state of the
observer cannot depend on the true state of the system since
that is not known a priori. This implies that the initial values
of the error and gain state should be independent of the
values of the initial system state. That is, µ̄0 is expressible
as a product measure of the form µ̄0 = µ0 ⊗ λX , where
µ0 ∈M+(E ×L).

A. Convex Computation of Feasible Gains

The computation of X can be be posed as the solution to
an infinite dimensional Linear Program (LP) on measures:

sup
Λ

⟨µ0,1E×L⟩ (P )

st. λX ⊗ µ0 +L
′
φµ = µT , (18)

µ0 + µ̂0 = λE×L, (19)

where Λ ∶= (µ0, µ̂0, µ, µT ) ∈ M+(E × L) ×M+(E × L) ×
M+(T ×Z×L)×M+(ZT×L) and 1E×L denotes the function
that takes value 1 everywhere on E×L. The following prop-
erty of (P ) can be derived using [12, Lemma 1, Theorem 1]:

Lemma 3. Let p∗ be the optimal value of (P ), then p∗ =

λE×L(X ). Moreover, the supremum is attained with the µ0-
component of the optimal solution equal to the restriction of
the Lebesgue measure to the backwards reachable set X .

The dual problem to (P ) is [16]:

inf
Ξ

⟨λel,w⟩ (D)

st. Lφv(t, z, l) ≤ 0 ∀(t, z, l) ∈ T ×Z ×L

w(e, l) ≥ 0 ∀(e, l) ∈ E ×L

w − ⟨λX , v(0, z, l)⟩ − 1 ≥ 0 ∀(e, l) ∈ E ×L

v(T, z, l) ≥ 0 ∀(z, l) ∈ ZT ×L

where Ξ ∶= (v,w) ∈ C1(T ×Z ×L) × C(E ×L). We use this
dual representation of the problem to identify the support
of the µ0-component of the optimal solution of (P ). To do
this, we first establish the equivalence between (P ) and (D)

using [12, Theorem 2]:

Lemma 4. There is no duality gap between problems (P )

and (D).



Feasible pairs to (D) have an interesting interpretation:
v is similar to a Lyapunov function for the system, and w
resembles an indicator function on spt(µ0), which follows
from the Fundamental Theorem of Calculus and the con-
straints of (D):

Lemma 5. Let (v,w) be a pair of feasible functions to (D).
The 1-super level set of w contains spt(µ0).

As a result, the 1-super level set of the w-component of
any feasible pair of functions to D is an outer approximation
to X . In fact, one can prove that the solution to to (D)

coincides with X by using [12, Theorem 3]

Theorem 6. There is a sequence of feasible solutions to (D)

whose w component converges uniformly in the L1 norm to
the indicator function on X .

B. Solving (P ) via Semidefinite Programming

Problem (P ) is an infinite dimensional linear program
on measures, which is usually impossible to solve exactly.
This section introduces a convex relaxation hierarchy whose
solutions converge with vanishing conservatism to the true
solution to (P ). This sequence of relaxations is constructed
by characterizing each measure using a sequence of mo-
ments1 and assuming the following:

Assumption 7. f is a polynomial function and X,E,ET ,
and L are semi-algebraic sets.

We also make the following assumption on the semi-
algebraic sets to ensure that we can construct a Semidefinite
Programming (SDP) hierarchy (refer to [17, Theorem 2.15]):

Assumption 8. Each of the semi-algebraic sets X,E,ET ,
and L has at least one defining polynomial of the form R −

∥x∥2
2 for some constant R ≥ 0.

This assumption is made without loss of generality since
X,E,ET , and L is bounded and therefore this redundant
constraint can be added for a sufficiently large constant.

Under these assumption, given any finite d-degree trun-
cation of the moment sequence of all measures in (P ),
a relaxation, (Pd), can be formulated over the moments
of measures to construct a SDP. The dual to (Pd), (Dd),
can be expressed as a Sums-of-Squares (SOS) program by
considering d-degree polynomials in place of the continuous
variables in D. In the interest of brevity of presentation, only
(Dd) is presented below. This decision is motivated by the
fact that solution to (Dd) can be used to identify the spt(µ0).

To formalize this dual program, first note that a polynomial
p ∈ R[x] is SOS or p ∈ SOS if it can be written as p(x) =
∑
m
i=1 q

2
i (x) for a set of polynomials {qi}

m
i=1 ⊂ R[x]. Note

that efficient tools exist to check whether a finite dimensional
polynomial is SOS using SDPs [18]. To formulate this
problem, we make a few additional definitions. Suppose we
are given a semi-algebraic set A = {x ∈ Rn ∣ hi(x) ≥ 0, hi ∈
R[x],∀i ∈ Nm}, then define the d-degree quadratic module

1The nth moment of a measure µ is yµ,n = ⟨µ,xn⟩.

of A as:

Qd(A) = {q ∈ Rd[x] ∣∃{sk}k∈{0,1,...,m}∪{0} ⊂ SOS s.t.

q = s0 + ∑
k∈{1,...,m}

hksk}

(20)

With this definition, the d-degree relaxation of the dual,
Dd, can be written as:

inf
Ξd
∫
E×L

wd(e, l)d(λel) (Dd)

st. wd ∈ Qd(E ×L) (21)
vd(T, z, l) ∈ Qd(ZT ×L) (22)
−Lφvd(t, z, l) ∈ Qd(T ×Z ×L) (23)
wd − ⟨λx, vd(0, z, l)⟩ − 1 ∈ Qd(E ×L) (24)

where Ξd = {(vd,wd) ∈ Rd[t, z, l] ×Rd[e, l]}. The solution
to this SDP can be used to generate an outer approximation to
X which converges to X as the relaxation degree increases:

Lemma 9. [12, Theorem 6] Let wd denote the w-
component of the solution to (Dd), then Xd = {(e0, l) ∈

E × L ∣ wd(e, l) ≥ 1} is an outer approximation of X and
limd→∞ λE×L(Xd/X ) = 0.

Remark 1. The method described in this section generates
an outer approximation of X . In fact a similar approach can
be used to derive an inner approximation of X [19].

IV. CHOOSING THE OPTIMAL GAIN

This section presents a pair of methods to address the
problem presented in Equation (8) once X is computed using
the methods presented in the previous section. As a result of
Theorem 6, one can use the optimal w-component of the
solution to (D) to rewrite Equation (8) as:

l∗ ∈ arg max
l∈L
∫
E
w∗

(e, l)de (25)

However, (D) cannot be solved directly. In this section, we
describe a method to utilize the w-component of (Dd) to
identify the set of optimal gains.

The first step in using the d-degree optimal solution, w∗
d ,

in Equation (25) is to recognize that for each l ∈ L:

∫

E

wd(e, l)de ≥∫
{e∣wd(e,l)≥1}

wd(e, l)de ≥ ∫
E

w∗
(e, l)de. (26)

As a result of Lemma 9, one can prove that the above
inequalities turn into equalities as d → ∞. For finite d,
however, it is necessary to approximate the last term in the
above equation, as tightly from above or below, as possible.
In this section, we present a state-space discretization to
evaluate the set-integration as defined by the second term
in Equation (26) efficiently, and also approximately solve
the resulting version of the problem in Equation (25).

Define β ∶ L→ R≥0 as:

β(l) =
⎛

⎝

n

∏
j

∆ej
⎞

⎠

N1

∑
i1=1

⋯
Nn

∑
in=1

(min{1,wd(eI , l)})
k (27)



where eI ∶= ei1,...,in is a point in the n-cuboid discretization
in each dimension, k ≫ 0, and ∆ej is the width of the
uniform grid in the jth coordinate. As proven next, the
function β converges uniformly to the evaluation of the
cost of the optimization problem in Equation (25), with w∗

replaced with wd:

Lemma 10. For each l ∈ L, β converges uniformly from
above to ∫E w

∗(e, l)de as d→∞.

Proof. The proof is similar to that of [13, Lemma 12].

To choose the optimal gain, we fix a degree relaxation
and discretize the space of gains L and evaluate β for each
discretization. By maximizing β, one can select the optimal
gain.

V. EXAMPLES

This section provides three 2D numerical experiments.
Each SDP is prepared using a custom software toolbox and
the modeling tool YALMIP [20]. The programs are run with
the commercial solver MOSEK on a machine with 144 64-
bit 2.40GHz Intel Xeon CPUs and 1 Terabyte memory. The
end time in each example is set as T = 1, and the observer
gain l is restricted to L ∶= {l ∈ R2 ∣ 10−∥L∥2 ≥ 0}. The error
space is assumed to be E ∶= {e ∈ R2 ∣ 1 − ∥e∥2 ≥ 0}, and the
target error set is ET ∶= {e ∈ R2 ∣ 0.05− ∥e∥2 ≥ 0}. A degree
6 relaxation is used to solve the examples. For simplicity, we
say an observer gain l is admissible given initial condition
e0, if the estimation error is driven into ET at t = T by l for
all the initial condition x0 ∈X . Similarly an initial condition
e0 is feasible given observer gain l, if the estimation error
is driven into ET at t = T by l for all the initial condition
x0 ∈ X . While computing β as described in Equation (27),
k is set equal to 1000.

A. 2D Linear System

To validate the performance of our numerical method, we
begin by considering a two dimensional linear system:

ẋ1 = −x1 − 3x2 (28)
ẋ2 = −2x1 − 6x2 (29)
y = x1 (30)

where x ∈X ∶= {x ∈ R2 ∣ 1− ∥x∥2 ≥ 0}. wd is first computed
using (Dd) and then β was computed using wd as depicted
in Figure 1. The optimal gains according to the method
proposed in this paper are all points belonging to the gray
region in Figure 1.

To verify the correctness of this computed region, the gain
space was uniformly sampled in polar coordinates with 2601
points. If all sampled initial errors in E could be driven
to ET for all sampled initial states, then this point was
depicted in black in Figure 1. These black points are the
sampled ground truth optimal gains. Notice that the gray
region which we compute using our proposed method is an
outer approximation to the set of ground truth optimal gains.

Fig. 1. An illustration of the computed optimal gains for static observer
design (the gray region) and the sampled ground truth optimal observer
gains (black dots) as described in Section V-A.

B. 2D Nonlinear System

Consider the following 2-dimensional nonlinear system:

ẋ1 = −x1 + x1x2 (31)
ẋ2 = −x2 (32)
y = x1 (33)

where x ∈ X ∶= {x ∈ R2∣1 − ∥x∥2 ≥ 0}. The ground
truth admissible l is generated by sampling the entire space
of L with 1200 points under the uniform distribution in
polar coordinates. By varying the initial condition e0, the
admissible area of observer gains changes as shown in Figure
2. This means that there does not exist an l that works for
all e0.

However, an optimal statical observer gain lopt can be
obtained from wd based on Section IV, such that lopt works
for the largest set of initial errors e0 ∈ E. Figure 3 compares
the performance of this computed optimal gain to the best
gain, lsample we could find via sampling the entire state
space with 961 points using a uniform distribution in polar
coordinates and another arbitrary gain in L. The number
of feasible e0 for our computed lopt is only two less than
the number for lsample and it is significantly better than the
arbitrary selected gain.

VI. CONCLUSION

This paper describe a convex optimization technique to
design an observer with static output injection for nonlinear
systems. By utilizing the notion of occupation measures, this
paper proposes a two-step methodology to synthesize the
gains that ensure the largest possible set of initial observer
states converge to a state estimate with a desired estimation
error in finite time regardless of the true initial state of the
system being observed. The first step optimizes over the
space of polynomials using SDPs to find an outer approxima-
tion to the set of gains and associated initial estimation errors
that have satisfactory estimation error. A similar framework



Fig. 2. An illustration of slices of the computed wd for the nonlinear system
described in Sec. V-B when e0 = [0.2; 0.2] (top) and when e0 = [0.2;−0.2]
(bottom). The gray area inside L represents the 1-super level set of wd.
Dots, which are obtained by sampling, represent the sampled ground truth
admissible l in each slice.

Fig. 3. Bar chart depicting the number of admissible initial errors in E
for each associated gain. lsample (left) was generated by sampling, and lopt
(middle) was generated by our proposed method. The last gain was chosen
arbitrarily.

can be applied to find an inner approximation to the set
of adequate gains and initial error states. The second step
utilizes this set to select a gain that can drive the largest set
of initial estimation errors to a suitable estimation error in
finite time. The proposed method is validated numerically on
several examples of varying complexities.
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