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Abstract— We consider the situation in which a continuous-
time vector Gauss–Markov process is observed through a vector
Gaussian channel (sensor) and estimated by the Kalman–Bucy
filter. Unlike in standard filtering problems where a sensor
model is given a priori, we are concerned with the optimal
sensor design by which (i) the mutual information between
the source random process and the reproduction (estimation)
process is minimized, and (ii) the minimum mean-square
estimation error meets a given distortion constraint. We show
that such a sensor design problem is tractable by semidefinite
programming. The connection to zero-delay source-coding is
also discussed.

I. INTRODUCTION

In this paper, we consider a situation in which a
continuous-time vector Gauss–Markov process (the source
random process) is estimated by the Kalman–Bucy filter
based on the output of a memoryless vector Gaussian channel
(the sensor). We study this estimation mechanism from the
perspectives of (i) the mean-square error (MSE) between
the source and the estimate, and (ii) the mutual information
rate between the source and the estimate. From standard
rate–distortion theory, it is intuitively clear that an accurate
sensing mechanism should lead to a small MSE and a
large mutual information, while a noisy sensing mechanism
implies a large MSE and a small mutual information. In this
paper, we make this intuition explicit by deriving a trade-off
curve between these two metrics by constructing trade-off
achieving sensor gain matrices. In particular, we show that
trade-off achieving sensor gain matrices are easily computed
by semidefinite programming, and consequently the trade-off
curve admits a convenient semidefinite representation.

There is a simple and explicit relationship (often called the
I-MMSE relationship in the literature) between the mutual
information (I) and the minimum mean-square error (MMSE)
when a random variable is observed through a Gaussian
channel. Guo et al. [1] showed that the derivative of the
mutual information with respect to the channel SNR (signal-
to-noise ratio) is equal to half the MMSE. They also consid-
ered causal estimation of random processes through Gaus-
sian channels and provided a remarkably simple connection
between causal and non-causal MMSE. For continuous-
time source processes observed through Gaussian channels,
Duncan [2] already derived a relevant result, stating that
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“twice the mutual information is merely the integration
of the trace of the optimal mean square filtering error.”
Kadota et al. [3] considered estimation of continuous-time
source over Gaussian channel with feedback (the source is
causally affected by channel output). Weissman et al. [4]
further studied the cases with feedback, where a fundamental
relationship between directed information and MMSE is
derived.

In parallel with the I-MMSE formulas for Gaussian obser-
vations, there exists a line of research for random processes
observed through Poisson channels. Guo et al. [5] studied a
relationship between mutual information and the estimation
error, measured by the mean value of the logarithm of the
ratio of the channel input plus dark current and its mean
estimate. Remarkably, the same formula as the I-MMSE
relationship for Gaussian case is recovered for Poisson cases
as well, provided that MMSE is replaced by a suitable loss
function for Poisson channels [6]. Estimation of continuous-
time processes through Poisson channels with feedback is
studied by [4], [7]. Recently, an overarching theory unifying
the I-MMSE relationship for Gaussian channels and the
similar relationship for Poisson channels is proposed [8].

Applications of the I-MMSE formula can be found in
channel coding problems. Palomar and Verdú [9] extended
the result by [1] to vector Gaussian channels, where an
explicit formula relating gradients of mutual information
with respect to channel parameters and estimate covariance
matrices is obtained. Based on this result, they proposed a
gradient ascent algorithm for channel precoder design where
input-output mutual information is maximized subject to
input power constraints.

In this paper, we apply Duncan’s I-MMSE formula for the
aforementioned trade-off study. Our study is motivated by the
zero-delay source coding problem. Derpich and Østergaard
[10] showed that minimum the data-rate achievable by zero-
delay source coding of a Gaussian source subject to a
quadratic distortion constraint is closely approximated by
the zero-delay rate-distortion function (also called sequential-
or non-anticipative rate-distortion function in the literature).
For Gauss–Markov sources with mean-square distortion cri-
teria, computation of zero-delay rate-distortion functions
and construction of optimal test channels are addressed by
recent literature [11], [12]. Stavrou et al. [11] showed that
the optimal test channel can be realized by a memoryless
Gaussian channel (sensor) with feedback and a Kalman filter.
Tanaka et al. [12] presented a different realization of the
test channel, using a memoryless Gaussian channel without
feedback and a Kalman filter. The latter observation implies
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that the zero-delay rate-distortion function can be computed
by considering the I-MMSE trade-off with respect to the
Gaussian channel gain (sensor gain matrix) [12]. The I-
MMSE trade-off in the present paper can be viewed as a
continuous-time counterpart of a similar trade-off considered
in discrete-time [12]. From analogous discrete-time results,
it is conjectured that results in this paper provide funda-
mental performance limitations of zero-delay source coding
schemes for continuous-time sources, although zero-delay
source coding problems for continuous-time sources are not
fully explored in the literature.

This paper is organized as follows. Problem formulation
is presented in Section II. Section III summarizes the main
result. A connection to zero-delay source coding problem is
discussed in Section IV. Section V summarizes the paper
and discuss future work.

Notation: Let (Ω,F ,P) be a probability space and let X
be a random variable in a measurable space (X ,A). The
probability distribution µX of X is defined by

µX(A) = P{ω : X(ω) ∈ A} ∀A ∈ A.

If X and Y are random variables in the same measurable
space with distributions µX and µY , the relative entropy from
Y to X is defined by

D(µX‖µY ) =

∫
log

dµX
dµY

dµX

if the Radon-Nikodym derivative dµX
dµY

exists. If random
variables X and Y have a joint probability distribution µXY ,
the mutual information between X and Y is defined by

I(X;Y ) = D(µXY ‖µX ⊗ µY )

where µX ⊗ µY is the product measure defined by the
marginal distributions. If µX is discrete, the entropy of X is
defined by

H(X) = −
∑
x∈X

µX(x) logµX(x).

II. PROBLEM FORMULATION

Let (Ω,F ,P) be a complete probability space and Ft ⊂
F be a non-decreasing family of σ-algebras. Let (Wt,Ft)
and (Vt,Ft) be n-dimensional independent standard Wiener
processes with respect to P . Assume that the source random
process is an n-dimensional Gauss–Markov process of the
form

dXt = AXtdt+BdWt, t ∈ [0,∞) (1)

with X0 = 0. The source process is observed through an
n-dimensional Gaussian channel (or sensor):

dYt = CXtdt+ dVt, t ∈ [0,∞) (2)

with Y0 = 0. We assume that (A,B) is a controllable pair.

A. Minimum mean-square error (MMSE) estimate

Let FYt ⊂ F be the σ-algebra generated by Ys, 0 ≤ s ≤ t.
Denote by X̂t , E(Xt|FYt ) the causal MMSE estimate of
the process (1) via the observation (2), calculated by the
Kalman–Bucy filter

dX̂t = AX̂tdt+ PtC
>(dYt − CX̂tdt), t ∈ [0,∞) (3)

with X̂0 = 0. In (3), Pt is the unique solution to the matrix
Riccati differential equation

dPt
dt

= APt +PtA
>−PtC>CPt +BB>, t ∈ [0,∞) (4)

with P0 = 0.
For notational simplicity, we denote by XT

0 , Y T0 , X̂T
0 the

random processes Xt, Yt, X̂t over the horizon 0 ≤ t ≤ T as
defined above. The MMSE performance over the considered
horizon is denoted by

ρ(XT
0 , X̂

T
0 ) ,

∫ T

0

E‖Xt − X̂t‖2dt =

∫ T

0

Tr(Pt) dt.

B. Mutual information

We are also interested in the mutual information
I(XT

0 ; X̂T
0 ) between XT

0 and X̂T
0 .

Theorem 1: Let the random processes XT
0 and X̂T

0 be
defined as above. Then

I(XT
0 ; X̂T

0 ) =
1

2

∫ T

0

E‖C(Xt − X̂t)‖2dt.

Proof: Set Zt = CXt. The following identity is well-
known (e.g., Duncan [2]):

I(Y T0 ;ZT0 ) =
1

2

∫ T

0

E‖C(Xt − X̂t)‖2dt. (5)

For completeness, a proof of (5) is given in Appendix A. We
also have an identity

I(Y T0 ;ZT0 ) = I(Y T0 ;XT
0 ), (6)

whose proof is provided in Appendix B.
Due to the property of the Kalman–Bucy filter, X̂T

0 is a
sufficient statistic of XT

0 for Y T0 . Thus

I(XT
0 ;Y T0 ) = I(XT

0 ; X̂T
0 ). (7)

The claim follows from (5)–(7).

It is immediate from Theorem 1 that the mutual information
of interest can be written in terms of the solution Pt to the
Riccati equation (4) as

I(XT
0 ; X̂T

0 ) =
1

2

∫ T

0

Tr(CPtC>)dt.



C. I-MMSE trade-off via observation channel design

In this paper, we construct the optimal observation gain
C ∈ Rn×n in the observation channel (2) that minimizes
the average mutual information while the average MMSE
is smaller than a given constant D. Formally, we seek an
optimal solution to the problem

R(D) , inf
C∈C

lim sup
T→+∞

1

T
I(XT

0 ; X̂T
0 ) (8a)

s.t. lim sup
T→+∞

1

T
ρ(XT

0 , X̂
T
0 ) ≤ D. (8b)

In (8), the underlying linear system model (1) is given. The
domain of optimization C ⊂ Rn×n is the set of matrices C
such that (A,C) is a detectable pair, i.e., A+LC is Hurwitz
stable for some matrix L. Below, we show that there exists
an optimal solution and thus “inf” can be replaced by “min.”

III. MAIN RESULT

We first assume that a precoder matrix C ∈ C is given.
Since we assume (A,B) is controllable and (A,C) is de-
tectable, the algebraic Riccati equation

AP + PA> − PC>CP +BB> = 0 (9)

admits a unique positive definite solution P [13, Theorem
13.7, Corollary 13.8]. Under the same assumption, the solu-
tion Pt to the Riccati differential equation (4) with P0 = 0
satisfies Pt → P as t → +∞ (e.g., [14, Theorem 10.10]),
where P is the unique positive definite solution to (9). Thus,
it follows from the convergence of Cesàro mean that

1

T
I(Y T0 ;ZT0 ) =

1

2T

∫ T

0

Tr(CPtC>)dt→ 1

2
Tr(CPC>)

1

T
ρ(XT

0 , X̂
T
0 ) =

1

T

∫ T

0

Tr(Pt)dt→ Tr(P ) as T → +∞.

Hence, the right hand side of (8) can be written as

inf
C∈C,P�0

1

2
Tr(CPC>) (10a)

s.t. AP + PA> − PC>CP +BB> = 0 (10b)
Tr(P ) ≤ D. (10c)

Now we show that the optimization problem (10) is
reformulated as a semidefinite programming problem. First,
under the equality constraint (10b), the objective function
can be written as

1

2
Tr(CPC>) =

1

2
Tr(PC>CPP−1) (11a)

= Tr(A) +
1

2
Tr(B>P−1B) (11b)

= min
Q

Tr(A) +
1

2
Tr(Q) (11c)

s.t. B>P−1B � Q

= min
Q

Tr(A) +
1

2
Tr(Q) (11d)

s.t.
[
Q B>

B P

]
� 0.

The equality constraint (10b) is used to obtain (11b) from
(11a). Equality (11c) holds since the unique solution to the
minimization problem in (11c) is Q = B>P−1B. We have
applied the Schur complement formula in (11d).

The next lemma allows us to replace the nonlinear equality
constraint (10b) with a linear inequality constraint.

Lemma 1: If (A,B) is controllable, then the following
conditions are equivalent.
(i) ∃C ∈ C, P � 0 s.t. AP +PA>−PC>CP +BB> = 0.

(ii) ∃P � 0 s.t. AP + PA> +BB> � 0.
Proof: The direction (i)⇒(ii) is trivial. To show

(ii)⇒(i), notice that if condition (ii) holds, then clearly there
exists a matrix C such that

AP + PA> − PC>CP +BB> = 0. (12)

To complete the proof, we show that for every C satisfying
(12), (A,C) is a detectable pair. It is sufficient to show that
A− PC>C is stable. To this end, rewrite (12) as

(A−PC>C)P+P (A−PC>C)>+PC>CP+BB>=0 (13)

and suppose that (A − PC>C)> is not stable. Let λ be an
unstable eigenvalue and x be the corresponding eigenvector:

(A> − C>CP )x = λx. (14)

Pre- and post-multiplying (13) by x∗ and x, we have

(λ+ λ̄)x∗Px+ x∗(PC>CP +BB>)x = 0.

Since Re(λ) ≥ 0 and P � 0, this implies CPx = 0
and B>x = 0. Thus, from (14), we obtain A>x = λx
and B>x = 0. This contradicts the Popov-Belevitch-Hautus
(PBH) test for controllability of (A,B).

Applying (11) and Lemma 1 to (10), we obtain the following
result,

R(D) = inf
P�0,Q

Tr(A) +
1

2
Tr(Q) (15a)

s.t. AP + PA> +BB> � 0 (15b)[
Q B>

B P

]
� 0 (15c)

Tr(P ) ≤ D. (15d)

The main result of this paper is given by the next theorem.
Theorem 2: Suppose (A,B) is controllable. The optimal

value R(D) of (8) admits a semidefinite representation

R(D) = min
P�0,Q

Tr(A) +
1

2
Tr(Q)

s.t. AP + PA> +BB> � 0[
Q B>

B P

]
� 0

Tr(P ) ≤ D.

In particular, there exists an optimal solution P � 0, Q � 0
attaining the optimal value. Moreover, any matrix C ∈ C
satisfying

AP + PA> − PC>CP +BB> = 0,



which always exists, is an optimal solution to (8).
Proof: Since we have (15), it is left to show that

the optimal value is attained. By continuity, infP�0,Q in
(15) can be replaced with infP�0,Q without changing the
optimal value. After this replacement, the existence of an
optimal solution is guaranteed by Weierstrass’ theorem [15,
Proposition A.8], since the feasible domain for (P,Q) is
closed and the objective function is coercive. Thus infP�0,Q
can be written as minP�0,Q:

R(D) = min
P�0,Q

Tr(A) +
1

2
Tr(Q) (16a)

s.t. AP + PA> +BB> � 0 (16b)[
Q B>

B P

]
� 0 (16c)

Tr(P ) ≤ D. (16d)

Now, we show that if (P,Q) is an optimal solution to (16),
then P is nonsingular. To show this by contradiction, assume
P � 0 is singular. Without loss of generality, assume

P =

[
P1 0
0 0

]
with P1 � 0.

Also, consider a corresponding partitioning of A and B:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
.

First, if (P,Q) is a feasible solution to (16), then it must be
that Im(B) ⊆ Im(P ). To see this by contradiction, suppose
there exists a matrix N such that NB 6= 0 and NP =
0. Then, pre- and post-multiplying (16c) by diag(I,N) and
diag(I,N>), we obtain[

Q B>N>

NB 0

]
� 0.

However, this is a contradiction because a matrix of this
structure with non-zero off-diagonal entries must be indefi-
nite. Thus, we conclude that Im(B) ⊆ Im(P ) and B2 = 0.

Next, it must be that A21 6= 0 since otherwise

dim(Im[ B AB A2B ... An−1B ]) < n

which contradicts the controllability of (A,B).
Finally, with the above observations, (16a) becomes[

A11P1 + P1A
>
11 +B1B

>
1 P1A

>
21

A21P1 0

]
� 0

which is again a contradiction since off-diagonal matrices
are non-zero. Thus, we conclude that if (P,Q) is an optimal
solution to (16), then P is nonsingular.

IV. APPLICATION

In this section, we consider an application of the opti-
mization problem (8) to a zero-delay source coding scenario
depicted in Fig. 1.

Let Xt be a continuous-time source random process (e.g.,
video). The source process is encoded with sampling period
τ = T

K , and a sequence of codewords mk = ek(Xkτ
0 ), k =

Causal message generation

Causal estimation

𝑡 = 𝑇

𝑡 = 𝑇

𝑘 = 𝐾

𝑘 = 0,1,2, …

Source 
𝑋

Message 
𝑀

Reproduction 
𝑋

𝑡 = 0

𝑘 = 0

𝑡 = 0

Fig. 1. Zero delay source coding of continuous-time signal.

1, 2, ...,K is generated. We assume m0 = 0. For each k =
1, 2, ...,K, we assume that ek is a Zn-valued map whose
domain is the space of sample paths Xt, 0 ≤ t ≤ kτ . A
simple example is n parallel scalar quantizers with uniform
quantizer step sizes ∆ = (∆1, ...,∆n):

(mk)i = b∆i(Xkτ )ic,∀i = 1, 2, ..., n.

Introduce a continuous-time process Mt = mb tτ c as the zero-
order hold of mk, and its time integral

Yt = Y0 +

∫ t

0

Msds. (17)

At t = kτ , k = 1, 2, ...,K, the codeword mk is transmitted
to the destination. At the destination, the decoder estimates
Xt in continuous-time based on the received information:

X̂t = E(Xt|M t
0) = E(Xt|Y t0 ).

A function ρ(X, X̂) =
∫ T
0
E‖Xt − X̂t‖2dt is introduced as

a distortion measure.
The above zero-delay source coding scheme is denoted

by ZDSC(τ, e). (Notice that we are free to choose sampling
period τ and encoding functions e1, ..., eK .) Assuming that
the source process is given by (1), we are interested in
the fundamental trade-off between the rate

∑K
k=1H(mk)

and the distortion ρ(XT
0 , X̂

T
0 ) achievable by ZDSC(τ, e).

Here, we are interested in the entropy H(mk) because it
is related to the minimum expected codeword length if mk

is represented by variable-length binary strings.
To analyze the fundamental performance limitation of

ZDSC(τ, e), we also consider a class of general causal
reproduction processes, denoted by GCR, described below.
Let (Ω,F ,P) be a complete probability space and let Ft ⊂
F be a non-decreasing family of σ-algebras. Let (Wt,Ft)
and (Vt,Ft) be mutually independent n-dimensional Wiener



processes. Let the source process Xt be defined by (1).
Consider a random process Yt that can be represented by
a stochastic integral

Yt = Y0 +

∫ t

0

Ms(X)ds+

∫ t

0

Ns(X)dVs (18)

where for each 0 ≤ t ≤ T , functions Mt and Nt are FXt -
measurable. The source process is reproduced by

X̂t = E(Xt|Y t0 ).

Notice that ZDSC(τ, e) is a special case of GCR where (18)
has a special form (17).

Notice that the following chain of inequalities holds.

min
ZDSC(τ,e):ρ(XT0 ,X̂

T
0 )≤D

T∑
k=1

H(mk) (19a)

≥ min
ZDSC(τ,e):ρ(XT0 ,X̂

T
0 )≤D

H(m1, ...,mK) (19b)

= min
ZDSC(τ,e):ρ(XT0 ,X̂

T
0 )≤D

H(Y T0 ) (19c)

= min
ZDSC(τ,e):ρ(XT0 ,X̂

T
0 )≤D

I(XT
0 ;Y T0 ) (19d)

≥ min
ZDSC(τ,e):ρ(XT0 ,X̂

T
0 )≤D

I(XT
0 ; X̂T

0 ) (19e)

≥ min
GCR:ρ(XT0 ,X̂

T
0 )≤D

I(XT
0 ; X̂T

0 ) (19f)

Equality (19d) holds because H(Y T0 ) = I(XT
0 ;Y T0 ) +

H(Y T0 |XT
0 ), and the second term is zero since under

ZDSC(τ, e) the map from XT
0 to Y T0 is deterministic. (19e)

is the data-processing inequality. The last inequality (19f)
holds since ZDSC(τ, e) is a special case of GCR.

Therefore, the smallest data rate that the zero delay source
code can attain in average over the infinite horizon:

RZDSC(D) , min
ZDSC(τ,e)

lim sup
K→+∞

1

Kτ

K∑
k=1

H(mk)

s.t. lim sup
K→+∞

1

Kτ
ρ(XKτ

0 , X̂Kτ
0 ) ≤ D

is lower bounded by

R∗(D) , min
GCR

lim sup
T→+∞

1

T
I(XT

0 ; X̂T
0 ) (20a)

s.t. lim sup
T→+∞

1

T
ρ(XT

0 , X̂
T
0 ) ≤ D. (20b)

Thus, we are interested in computing the function R∗(D)
since it provides a fundamental performance limitation for
zero-delay source coding schemes.

Now, notice that the linear observation process (2) is
a special case of (18). Consequently, the functions R(D)
defined by (8) and R∗(D) defined by (20) must satisfy

R∗(D) ≤ R(D), ∀D > 0. (21)

Since R(D) is semidefinite representable (Theorem 2), com-
puting R(D) is straightforward. Unfortunately, the inequality
(21) is not of great use because it only shows that R(D) is

an upper bound of a lower bound R∗(D) of the smallest
achievable data rate RZDSC(D). Nevertheless, guided by the
analogy with the corresponding discrete-time results in [12],
[16], we conjecture that the inequality in (22) is actually the
exact equality:

Conjecture 1: R∗(D) = R(D), ∀D > 0.

To establish Conjecture 1, one essentially needs to prove that
the optimal observation process (18) is linear in X , and has
the form (2).

V. CONCLUSION

We considered a continuous-time vector Gauss–Markov
process being estimated by the Kalman–Bucy filter based on
the observation through a vector Gaussian channel (sensor).
The trade-off between the mutual information rate between
the source process and the estimation process and the
MMSE, as well as trade-off achieving sensor gain matri-
ces, are studied by means of semidefinite programming. A
connection to the zero-delay rate-distortion problem is also
discussed. In this paper, we restricted ourselves to observa-
tion through Gaussian channels. However, in the future, it is
worth pursuing further whether or not the I-MMSE trade-off
can be improved by considering non-Gaussian and nonlinear
sensor mechanisms (Conjecture 1). Zero-delay source coding
schemes that (approximately) attain the obtained trade-off
function should also be considered in the future.

APPENDIX

A. Proof of equation (5).

Let Cn = (C([0, T ],Rn),B(C([0, T ],Rn))) be the mea-
surable space of continuous functions x = (xt, t ∈ [0, T ]),
x : [0, T ] → Rn with x0 = 0, equipped with the Borel
σ-algebra BCn = B(C([0, T ],Rn)). Consider two stochastic
processes Y = (Yt, t ∈ [0, T ]) and Z = (Zt, t ∈ [0, T ]) in a
probability space (Ω,F , P ) related by

dYt = Ztdt+ dVt, Y0 = 0 (22)

where V = (Vt, t ∈ [0, T ]) is the n-dimensional standard
Brownian motion independent of Z. Assume that Z satisfies

E
∫ T

0

‖Zt‖2dt <∞ (23)

and Z0 = 0. Let µY , µV and µZ be probability measures on
Cn defined by

µY (BY ) = P{ω : Y (ω) ∈ BY }, BY ∈ BCn
µV (BV ) = P{ω : V (ω) ∈ BV }, BV ∈ BCn
µZ(BZ) = P{ω : Z(ω) ∈ BZ}, BZ ∈ BCn .

In particular, µV is the Wiener measure. When µY � µV ,
denote by

dµY
dµV

: C[0, T ]→ [0,∞)

the Radon-Nikodym derivative.



Let µY Z and µV Z be joint measures on Cn × Cn defined
by the extensions of

µY Z(BY ×BZ) = P{ω : Y (ω) ∈ BY , Z(ω) ∈ BZ},
µV Z(BV ×BZ) = P{ω : V (ω) ∈ BV , Z(ω) ∈ BZ},

for BY , BV , BZ ∈ BCn . Since V and Z are independent,
µV Z = µV ⊗ µZ where µV ⊗ µZ is the product measure.
Whenever µY Z � µV Z , denote by

µY Z
µV Z

: C[0, T ]× C[0, T ]→ [0,∞)

the Radon-Nikodym derivative.
First, we derive an explicit formula for dµY Z

µV Z
.

Theorem 3 (Girsanov Theorem): [17, Theorem 6.3]:
Let κ = (κt, t ∈ [0, T ]) be a supermartingale of the form

κt = exp
(
−
∫ t

0

Z>s dVs −
1

2

∫ t

0

‖Zs‖2ds
)

where P (
∫ T
0
‖Zt‖2dt < ∞) = 1. If EκT = 1, then the

process Y defined by (22) is a Wiener process with respect
to a probability measure P̃ such that dP̃

dP = κT .
Proof: See [17, Theorem 6.3].

Note that condition (23) implies P (
∫ T
0
‖Zt‖2dt < ∞) =

1. To see this, consider

P

(∫ T

0

‖Zt‖2dt <∞

)
≥ sup
R>0

P

(∫ T

0

‖Zt‖2dt ≤ R

)

≥ sup
R>0

(
1−

E
∫ T
0
‖Zt‖2dt
R2

)
= 1

where the Chebyshev inequality is used in the second in-
equality. Moreover, since Z and V are independent, it follows
that EκT = 1 [17, Section 6.2, Example 4]. Thus, premises
of Theorem 3 are satisfied. Condition (23) also implies
P (|

∫ T
0
Z>t dVt| <∞) = 1. This can be verified as

P

(∣∣∣∣∣
∫ T

0

Z>t dVt

∣∣∣∣∣ <∞
)

= P

∣∣∣∣∣
∫ T

0

Z>t dVt

∣∣∣∣∣
2

<∞


≥ sup
R>0

P

∣∣∣∣∣
∫ T

0

Z>t dVt

∣∣∣∣∣
2

≤ R


≥ sup
R>0

(
1−

E|
∫ T
0
Z>t dVt|2

R2

)

= sup
R>0

(
1−

E
∫ T
0
‖Zt‖2dt
R2

)
= 1

where the Itô isometry [18, Corollary 3.1.7] is used in the
fourth line. Hence P (κT = 0) = 0. Thus, by Theorem 3,
together with [17, Lemma 6.8], we also have P � P̃ and

dP
dP̃

= κ−1T . Now,

µY Z(BY ×BZ) =

∫
{ω:Y (ω)∈BY ,Z(ω)∈BZ}

dP (ω)

=

∫
{ω:Y (ω)∈BY ,Z(ω)∈BZ}

κ−1T dP̃ (ω) (24)

On the other hand, since Y is a Wiener process under P̃ ,
the joint probability distribution of Y and Z under P̃ is the
same as the joint probability distribution of V and Z under
P . Therefore,

dµY Z
dµV Z

(Y (ω), Z(ω)) = κ−1T (ω)

= exp

(∫ T

0

Z>t dVt +
1

2

∫ T

0

‖Zt‖2dt

)

= exp

(∫ T

0

Z>t dYt −
1

2

∫ T

0

‖Zt‖2dt

)
. (25)

Next, we derive an explicit formula for dµY
dµV

.
Theorem 4: [17, Theorem 7.13]: Let κ = (κt, t ∈ [0, T ])

be a supermartingale of the form

κt = exp
(
−
∫ t

0

Z>s dVs −
1

2

∫ t

0

‖Zs‖2ds
)

where
∫ T
0
E‖Zt‖dt < ∞ and P (

∫ T
0
‖Zt‖2dt < ∞) = 1. If

EκT = 1, then µY � µV , µV � µY , and

dµY
dµV

(Y (ω)) = exp

(∫ T

0

ẐtdYt −
1

2

∫ T

0

‖Ẑt‖2dt

)

where Ẑt = E(Zt|FYt ), 0 ≤ t ≤ T .
Proof: See [17, Theorem 7.13].

Note that condition (23), together with Jensen’s inequality(
1

T

∫ T

0

E‖Zt‖dt

)2

≤ 1

T

∫ T

0

E‖Zt‖2dt

implies
∫ T
0
E‖Zt‖dt < ∞. Thus, Theorem 4 is applicable,

and

dµV
dµY

(Y (ω)) = exp

(
−
∫ T

0

Ẑ>t dYt +
1

2

∫ T

0

‖Ẑt‖2dt

)
.

(26)
Finally, we derive an explicit formula for the mutual

information

I(Y ;Z) ,
∫
Cn×Cn

log
dµY Z

d(µY ⊗ µZ)
dµY Z .

Using the definition of Radon-Nikodym derivative, one can
verify the chain rule

dµY Z
d(µV ⊗ µZ)

dµV
dµY

=
dµY Z

d(µY ⊗ µZ)
.



Thus

log
dµY Z

d(µY ⊗ µZ)

= log
dµY Z
dµV Z

+ log
dµV
dµY

=

∫ T

0

(Zt − Ẑt)>dYt −
1

2

∫ T

0

(‖Zt‖2 − ‖Ẑt‖2)dt (27)

=

∫ T

0

(Zt − Ẑt)>dVt +
1

2

∫ T

0

‖Zt − Ẑt‖2dt. (28)

Equations (25) and (26) are used in (27). Taking the expec-
tation, the first term in (28) vanishes [18, Theorem 3.2.1].
Thus,

I(Y ;Z) = E log
dµY Z

d(µY ⊗ µZ)
=

1

2

∫ T

0

E‖Zt − Ẑt‖2dt.

B. Proof of equation (6)

Let (Cn,BCn) be the measurable space of continuous
functions as defined in Appendix A. Consider stochastic
processes X = (Xt, t ∈ [0, T ]) and Y = (Yt, t ∈ [0, T ])
defined in (1), (2) and Zt = CXt. Since X is an Ito process,
its trajectory is a.s. continuous, and so are trajectories of Y
and Z. This allows us to define measures µX , µY , µZ on
Cn by

µX(BX) = P{ω : XT
0 (ω) ∈ BX}

µY (BY ) = P{ω : Y T0 (ω) ∈ BY }
µZ(BZ) = P{ω : ZT0 (ω) ∈ BZ} = P{ω : CXT

0 (ω) ∈ BZ}

where BX , BY , BZ ∈ BCn . Consider a mapping c : Cn →
Cn defined by z = Cx. For each BZ ∈ BCn , define
c−1(BZ) ∈ BCn by c−1(BZ) , {x ∈ Cn : Cx ∈ BZ}.

Claim 1: µZ(BZ) = µX(c−1BZ) ∀BZ ∈ BCn .
Proof: Let ω be such that XT

0 (ω) ∈ c−1(BZ), then
we have that CXT

0 (ω) ∈ BZ . Therefore, {ω : XT
0 (ω) ∈

c−1(BZ)} ⊆ {ω : CXT
0 (ω) ∈ BZ} and µX(c−1(BZ)) ≤

µZ(BZ). On the other hand, since XT
0 is an Ito process,

it is a.s. continuous [17], therefore P{ω : XT
0 (ω) 6∈

C([0, T ],Rn)} = 0. This allows us to conclude that

µZ(BZ)

= P{ω : CXT
0 (ω) ∈ BZ}

= P{ω : CXT
0 (ω) ∈ BZ , XT

0 (ω) ∈ C([0, T ],Rn)}
+ P{ω : CXT

0 (ω) ∈ BZ , XT
0 (ω) 6∈ C([0, T ],Rn)}

≤ P{ω : CXT
0 (ω) ∈ BZ , XT

0 (ω) ∈ C([0, T ],Rn)}
+ P{ω : XT

0 (ω) 6∈ C([0, T ],Rn)}
= P{ω : CXT

0 (ω) ∈ BZ , XT
0 (ω) ∈ C([0, T ],Rn)}

= µX(c−1(BZ))

Thus the claim holds.

Claim 2: For any measurable function f ,∫
Cn
f(z)µZ(dz) =

∫
Cn
f(Cx)µX(dx).

Proof: Notice that∫
Cn
f(z)µZ(dz) =

∫
c−1(Cn)

f(Cx)µX(dx)

=

∫
Cn
f(Cx)µX(dx)

The first equality is a consequence of Claim 1. The second
equality holds since c−1(Cn) = Cn. To see this, notice
by definition c−1(Cn) , {x ∈ Cn : Cx ∈ Cn} ⊆ Cn.
Conversely, Cn ⊆ c−1(Cn) since Cx is continuous for any
continuous function x.

Now we prove equation (6).
Lemma 2: I(Y T0 ;ZT0 ) = I(Y T0 ;XT

0 ).
Proof: In addition to µX , µY , µZ , consider the mea-

sures µY X and µY Z on the product space Cn × Cn defined
by the extensions of

µY X(BY ×BX) = P{ω : Y T0 (ω) ∈ BY , XT
0 (ω) ∈ BX}

µY Z(BY ×BZ) = P{ω : Y T0 (ω) ∈ BY , ZT0 (ω) ∈ BZ}.

where BX , BY , BZ ∈ BCn . Since Cn is a Borel space [19,
Definition 7.7], by [20, Theorem 5.1.9 and Exercise 5.1.16]
there exists a Borel-measurable stochastic kernel µY |X on
Cn given Cn, such that µY |X(BY |XT

0 (ω)) is a version of
P ({ω : Y T0 (ω) ∈ BY }|BX

T
0 ); here BXT0 denotes the σ-

algebra of events generated by XT
0 . That is, the regular

conditional probability distribution given BXT0 exists and

µY X(BY ×BX) = P{ω : Y T0 (ω) ∈ BY , XT
0 (ω) ∈ BX}

=

∫
{ω:XT0 (ω)∈BX}

P (Y T0 ∈ BY |BX
T
0 )P (dω)

=

∫
BX

P

(∫ (·)

0

Cxsds+ V ∈ BY

)
P (ω : XT

0 ∈ dx)

=

∫
BX

µY |X(BY |x)µX(dx). (29)

The identity in the second line follows from the existence of
the regular conditional probability distribution given BXT0 ,
and the identity in the third line is due to the change of
variables. Here we have used the notation

∫ (·)
0
Cxsds+V to

stress that we consider the entire path of the random process
Fx,t =

∫ t
0
Cxsds+Vt parameterized by x ∈ Cn. The last line

in (29) holds due to the uniqueness of the Radon-Nikodym
derivative. This leads us to conclude, that for almost all x ∈
Cn,

µY |X(BY |x) = P
(
ω : FTx,0 ∈ BY

)
∀BY ∈ BCn .

In a similar fashion, it follows that there exists a Borel-
measurable stochastic kernel µY |Z on Cn given Cn, such
that µY |Z(BY |ZT0 (ω)) is a version of P ({ω : Y T0 (ω) ∈
BY }|BZ

T
0 ) and for almost all z ∈ Cn,

µY |Z(BY |z) = P
(
ω : GTz,0 ∈ BY

)
∀BY ∈ BCn ,

where Gz,t =
∫ t
0
zsds + Vt. It is also clear from these

expressions that

µY |X(BY |x) = µY |Z(BY |Cx). (30)



We are now in a position to complete the proof. By
definition of the mutual information,

I(Y T0 ;XT
0 ) = D(µY X‖µY ⊗ µX),

I(Y T0 ;ZT0 ) = D(µY Z‖µY ⊗ µZ).

Thus, the result follows from the chain of equalities:

D(µY Z‖µY ⊗ µZ)

=

∫
Z
D(µY |Z(·|z)‖µY (·))µZ(dz) (31a)

=

∫
X
D(µY |Z(·|Cx)‖µY (·))µX(dx) (31b)

=

∫
X
D(µY |X(·|x)‖µY (·))µX(dx) (31c)

= D(µY X‖µY ⊗ µX). (31d)

Equalities (31a) and (31d) follow from the chain rule of rel-
ative entropy [21, Lemma 1.4.3(f)]. Equation (31b) follows
from Claim 2, and (31c) follows from (30).
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tional mean estimation in Poisson channels,” IEEE Transactions on
Information Theory, vol. 54, no. 5, pp. 1837–1849, 2008.

[6] R. Atar and T. Weissman, “Mutual information, relative entropy, and
estimation in the Poisson channel,” IEEE Transactions on Information
theory, vol. 58, no. 3, pp. 1302–1318, 2012.

[7] Y. M. Kabanov, “The capacity of a channel of the Poisson type,”
Theory of Probability & Its Applications, vol. 23, no. 1, pp. 143–147,
1978.

[8] J. Jiao, K. Venkat, and T. Weissman, “Mutual information, relative
entropy and estimation error in semi-martingale channels,” Information
Theory (ISIT), 2016 IEEE International Symposium on, pp. 2794–
2798, 2016.
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