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On a frame theoretic measure of quality of LTI

systems

Mohammed Rayyan Sheriff, Debasish Chatterjee

Abstract—It is of practical significance to define the notion
of a measure of quality of a control system, i.e., a quantitative
extension of the classical notion of controllability. In this article
we demonstrate that the three standard measures of quality
involving the trace, minimum eigenvalue, and the determinant of
the controllability grammian achieve their optimum values when
the columns of the controllability matrix from a tight frame.
Motivated by this, and in view of some recent developments in
frame theoretic signal processing, we provide a measure of quality
for LTI systems based on a measure of tightness of the columns
of the reachability matrix .

I. INTRODUCTION

Let us consider a linear time invariant controlled system

x(t+ 1) = Ax(t) +Bu(t) for t = 1, 2, . . . , (1)

where A ∈ R
n×n and B ∈ R

n×m, with n and m some

positive integers 1. For T ∈ N, let R
n×Tm ∋ C(A,B,T ) ≔

(

B AB · · · AT−1B
)

. Then the reachable space R(A,B)

and the reachability index τ of the LTI system (1) are defined

by

R(A,B) ≔ image
(

C(A,B,n)

)

,

τ ≔ min
{

t ∈ N| image
(

C(A,B,t)

)

= R(A,B)

}

.

We say that the control system (1) is controllable in the classi-

cal sense if it admits a control sequence
(

u(0), . . . , u(T − 1)
)

that can transfer the states of the system (1) from x(0) = x0 to

x(T ) = xT for preassigned values of x0, xT whenever T ≥ τ .

It is common knowledge that the LTI system (1) is controllable

if and only if the matrix C(A,B,τ) is of rank n.

However, in most of the practical scenarios, information

about the system behavior provided by the classical notion

of controllability is limited. In particular, no assessment of

“how controllable” is a given LTI system is provided by the

classical ideas. Naturally, together with knowing whether a

control system is controllable or not, one would also like to

know how controllable or how good is the control system. In

other words, there is a clear need to quantify the notion of

controllability.

For instance, let us consider two second order LTI systems

described by the pairs (A,B) and (A′, B′) such that for T = 3
the columns of the matrices C(A,B,T ), C(A′,B′,T ) are as shown

in the following figure.

1The set of n×n real symmetric positive definite and positive semi definite

matrices are denoted by R
n×n

++
and R

n×n

+
respectively, image(M) is the

column space of the matrix M , tr(M) is the trace of the matrix M , x⊤ is
the transpose of the vector x, ‖x‖

2
is the ℓ2-norm of the vector x.

B
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Figure 1: Comparison of the orientation of the columns of

C(A,B,T ) and C(A′,B′,T )

We see that for the system (A′, B′), since the vectors

B′, A′B′, A′2B′ form small angles with each other, intuitively,

the transfer of the system state to final states xT that is

in approximately orthogonal directions to these vectors will

demand control with higher magnitudes. In contrast, for the

system (A,B) the vectors are spread out in space and will in

general require lower control magnitude. Such a collection of

vectors are called as tight frames. It turns out that tight frames

have many practical advantages over generic collection of

vectors [1], [2], [3], [4], [5] from signal processing perspective.

In this article we shall establish that if the columns of C(A,B,T )

constitute a tight frame, one also gets several control theoretic

advantages.

In particular, we provide a notion of quantitative control-

lability, which we shall refer to as the Measure Of Quality

(MOQ) of a control system. Intuitively speaking, any measure

of quality should relate to some important characteristics of

the system like average control energy / control effort required,

robustness to input / noise, ability to control the systems with

sparse controls etc We shall see below that such intuitive ideas

are indeed justified.

Let us define the control effort J : RmT −→ R of a control

sequence
(

u(0), . . . , u(T − 1)
)

, defined by

J
(

u(0), . . . , u(T − 1)
)

≔

T−1
∑

t=0

‖u(t)‖22 ,

is a quantity of practical significance. For example, the value

of the control effort in an electronic circuit system would

involve information of the amount of power drawn to control

the system. One of the primary objectives in controlling a

dynamical system efficiently could be to minimize the required

control effort. Therefore, let us consider the following optimal

control problem:

minimize
u(t)

J
(

u(0), . . . , u(T − 1)
)

subject to x(0) = 0, x(T ) = x,

x(t) evolves according to (1).

(2)

http://arxiv.org/abs/1703.07539v1


Let the grammian G(A,B,T ) be defined by

G(A,B,T ) ≔

T−1
∑

t=0

AtBB⊤(A⊤)t = C(A,B,T )C⊤

(A,B,T ).

We know that the optimal control problem (2) admits an

unique optimal control sequence
(

u∗(0), . . . , u∗(T − 1)
)

with

the optimum control effort J(A,B, x) given by:

(

u∗(T − 1)
⊤ · · · u∗(0)

⊤
)⊤
≔ C+

(A,B,T )x,

J(A,B, x) ≔ J
(

u∗(0), . . . , u∗(T − 1)
)

= x⊤G−1
(A,B,T )x.

(3)

We briefly review some of the most well known MOQ’s

studied in the literature [6], [7], [8]; they capture someinfor-

mation pertaining to optimum control effort needed to control

the system:

(i) tr
(

G−1
(A,B,T )

)

: This is proportional to the average op-

timal control effort needed to transfer the system state

from origin (i.e., x0 = 0,) to a random point that is

uniformly distributed on the unit sphere.

(ii) λ−1
min

(

G(A,B,T )

)

: This gives the maximum control effort

needed to transfer the system state from origin to any

point on the unit sphere.

(iii) det
(

G(A,B,T )

)

: This proportional to the volume of the

ellipsoid containing points to which the system state

can be transferred to from the origin using at most unit

control effort.

A finite value of the MOQ in (i) and (ii), and a nonzero

value in (iii), implies that the system (1) is controllable in the

classical sense. In addition, since these quantities also contain

some information about the optimal control effort, they can be

considered as valid candidates for an MOQ. However, these

MOQ’s are increasingly difficult to compute as the size of

the system becomes larger, and since they arise primarily in

the context of the optimal control problem (2), they do not

provide meaningful insights about properties such as immunity

to noise, robustness, ability to generate sparse controls etc.

For the dynamical system (1), we shall motivate the notion

of an MOQ from the perspective of the orientation of the

columns of the matrix C(A,B,T ). We shall prove in this article

that the three MOQ’s discussed above achieve their optimum

value when the columns of the matrix C(A,B,T ) constitute

a tight frame. We provide an MOQ for the system (1) as

a measure of the tightness of the columns of C(A,B,T ), and

provide a sufficient condition for the classical controllability

of the system (1) in terms of the proposed MOQ.

II. REVIEW OF TIGHT FRAMES

Definition 1. For an n dimensional Hilbert space Hn with an

inner product 〈·, ·〉, a sequence of vectors (v1, . . . , vK) ⊂ Hn

is said to be a frame of Hn if it spans Hn; a frame is said

to be tight, if there exists a number a > 0 such that for every

v ∈ Hn, the equality a ‖v‖2 =
∑K

i=1|〈v, vi〉|
2

holds.

A classical example of a tight frame is an orthonormal basis

of Hn that satisfies the definition with a = 1 and K = n. Some

other examples of the tight frames of R2 are shown in figure

below.

(a) (b) (c)

Figure 2: Tight frames of R2.

The collection of vectors pointing towards the corners

of platonic solids also constitute tight frames; several other

examples may be found in [9].

The study of frames was started by Duffin and Schaeffer

[10] and improvised greatly by work of Daubechies et al.

in [11]. Recent work on characterization of tight frames as

minimizers of a certain potential function was done in [9]

and [12]. The growing interest in developing the theory of

tight frames is mainly because, tight frames possess several

desirable properties. For example, the representation of signals

using tight frames exhibits better resilience to noise and

quantization [2], [3]. Tight frames are also considered to

be good for representing signals sparsely, and are the ℓ2-

optimal dictionaries for representing vectors that are uniformly

distributed over spheres [1, Proposition 2.13, p. 10]. These

are just a few among the plethora of useful properties of

tight frames that make them relevant and important for many

applications.

We now formally discuss the concept of tight frames, their

properties, and their characterization.

Definition 2. The fame operator G(v1,...,vK) : Hn −→ Hn of

a sequence (v1, . . . , vK) of vectors is defined by

G(v1,...,vK)(v) ≔

K
∑

i=1

〈v, vm〉vm.

The following result provides the necessary and sufficient

conditions for tightness of a frame.

Theorem 3. [12, Proposition 1, p. 2, ] [9, Theorem 2.1, p. 4]

A sequence of vectors (v1, . . . , vK) ⊂ Hn is a tight frame to

Hn with some constant a > 0, if and only if

• The lengths ‖vi‖ of the frame vectors satisfy

max
i=1,...,K

‖vi‖2 ≤ a ≔
1

n

K
∑

i=1

‖vi‖2 .

• The frame operator satisfies G(v1,...,vK) = aIn, where In
is the identity operator on Hn.

A. Characterization of Tight Frames

We observe that the definition of a tight frame does not give

a direct method to compute them. One of the ways to compute

tight frames is by minimizing a certain potential function that



is motivated from physical examples briefly outlined in [9],

[12]. The following definitions are relevant for this article:

Definition 4. The frame force FF : Hn × Hn −→ Hn

experienced by a point u ∈ Hn due to another point v ∈ Hn

is defined by

FF (u, v) ≔ 2 〈u, v〉 (u − v).

Definition 5. The frame potential function FP : HK
n −→ R

of a sequence of vectors (v1, . . . , vK) is defined by

FP(v1, . . . , vK) ≔
K
∑

i=1

K
∑

j=1

|〈vj , vi〉|2.

Observe that the frame force between any two points in

Hn pushes them towards orthogonality. In this sense we can

say that a tight frame is the “most orthogonal” collection of

vectors in Hn; alternatively, a tight frame is a collection of

vectors that are maximally spread out in the space. It was

established in [12], [9] that finite tight frames for Hn are in an

equilibrium configuration under the frame force, and hence are

the local minimizers of the associated frame potential. Thus,

tight frames are characterized as the minimizers of the frame

potential, and can be computed by variational techniques. This

particular fact is the assertion of the following theorem.

Theorem 6. [12, Proposition 4, p. 8] For any sequence of

vectors (v1, . . . , vK) ⊂ Hn, the following holds

1

n

( K
∑

i=1

‖vi‖2
)2

≤ FP(v1, . . . , vK).

The preceding inequality is satisfied with equality if and only

if (v1, . . . , vK) is a tight frame of Hn.

From Theorem 6 we conclude that tight frames are not only

local, but are global minimizers of the frame potential, subject

to the constraint that the length of each vector in the sequence

is fixed. Thus, we can say that the frame potential of a given

sequence (v1, . . . , vK) gives us a measure of its tightness.

However, the lower bound of the frame potential given by

Theorem 6 depends on the sequence itself. This restricts the

use of the frame potential of a sequence as a measure of its

tightness when comparing two generic frames. For example,

let us consider the frames F1 ≔
(

(1, 0)⊤, (1, 1)⊤
)

and

F2 ≔
(

(10, 0)⊤, (−5,−5
√
3)⊤, (−5, 5

√
3)⊤

)

of R
2. From

Definition 5, the frame potential of the frames F1 and F2

are 7 and 45000 respectively. Even though 7 < 45000, from

the second assertion of Theorem 3 we see that the frame F1 is

not tight, where as F2 is a tight frame. To address this issue,

we normalize the frame potential by appropriately scaling the

vectors so that the frame potential calculated this way is a

constant for every tight frame.

Let (v1, . . . , vK) ⊂ Hn be any sequence of vectors, we de-

fine the Normalized Frame Potential ( NFP ) of the sequence

(v1, . . . , vK) using its frame operator as

NFP(v1, . . . , vK) ≔
trG2

(v1,...,vK)
(

trG(v1,...,vK)

)2 . (4)

We get the following analogue of Theorem 6.

Proposition 7. For any sequence of vectors (v1, . . . , vK) ⊂
Hn, we have

NFP(v1, . . . , vK) ≥ 1

n
.

The preceding inequality is satisfied with the equality if and

only if (v1, . . . , vK) is a tight frame of Hn.

Proof. From [13, Lemma 1, p. 7]

trG2
(v1,...,vK) = FP(v1, . . . , vK) and it also follows that,

trG(v1,...,vK) =
K
∑

i=1

‖vi‖2 .

Then

NFP(v1, . . . , vK) =
FP(v1, . . . , vK)
(

∑K

i=1 ‖vi‖
2
)2 ,

and the assertion follows immediately from Theorem 6.

The NFP of the frames F1 and F2 are 7/9 and 1/2
respectively, which clearly indicates that the frame F2 is tighter

than the frame F1. Our NFP (4) allows us to compare the

tightness of any two arbitrary sequences of vectors in Hn and

therefore can be regarded as a valid measure of tightness of

the given sequence of vectors.

III. MAIN RESULTS

We would like to find the optimal orientations of the

columns of the matrix C(A,B,T ), that optimize the three mea-

sure of qualities discussed in Section I, namely, tr
(

G−1
(A,B,T )

)

,

λ−1
min(G(A,B,T )) and det(G(A,B,T )). Let us consider a generic

sequence (v1, . . . , vK) ⊂ R
n of vectors. Then the three

MOQ’s stated above evaluated for the generic sequence

(v1, . . . , vK) are given in terms of the corresponding frame

operator G(v1,...,vK) by tr
(

G−1
(v1,...,vK)

)

, λ−1
min

(

G(v1,...,vK)

)

and det
(

G(v1,...,vK)

)

respectively. Let
(

α1, . . . , αK

)

be a

non increasing sequence of positive real numbers such that

α1 ≤ 1
n

∑K
i=1 αi.

In order to find the optimal orientation of the vectors,

we optimize the three objective functions tr
(

G−1
(v1,...,vK)

)

,

λ−1
min

(

G(v1,...,vK)

)

and det
(

G(v1,...,vK)

)

, subject to the con-

straint that the lengths of the vectors are fixed, i.e., 〈vi, vi〉 =
αi for all i = 1, . . . ,K . Thus, we have the following three

optimization problems:

minimize
vi

tr
(

G−1
(v1,...,vK)

)

subject to 〈vi, vi〉 = αi for all i = 1, . . . ,K,

span(v1, . . . , vK) = R
n.

(5)

minimize
vi

λ−1
min

(

G(v1,...,vK)

)

subject to 〈vi, vi〉 = αi for all i = 1, . . . ,K,

span(v1, . . . , vK) = R
n.

(6)



maximize
vi

det
(

G(v1,...,vK)

)

subject to 〈vi, vi〉 = αi for all i = 1, . . . ,K,

span(v1, . . . , vK) = R
n.

(7)

Note that the optimization problems (5), (6) and (7) are

optimization problems over sequences of vectors. The next

Theorem characterizes and provides solutions of (5), (6) and

(7); in its proof we get equivalent optimization problems with

non negative definite matrices as variables.

Theorem 8. A sequence of vectors (v1, . . . , vK), that is

feasible for the optimization problems (5), (6) and (7) is an

optimal solution if and only if it is a tight frame of Rn .

Proof. For the non increasing finite sequences λ ≔

(λ1, . . . , λn), and α ≔ (α1, . . . , αK) of positive real numbers

we define the relation λ ≻ α if the following two conditions

hold:
m
∑

i=1

λi ≥
m
∑

i=1

αi for all m = 1, . . . , n− 1, and

n
∑

i=1

λi =
K
∑

i=1

αi.

(8)

The conditions of (8) are analogue of the standard majorization

conditions [14, Chapter 1].

For a symmetric non negative definite matrix G ∈ R
n×n
+ ,

we define λ(G) ≔
(

λ1(G), . . . , λn(G)
)

to be the non in-

creasing sequence of the eigenvalues of the matrix G. Let

a ≔
(

1
n

∑K

i=1 αi

)

.

We will use the following result related to the decomposition

of non-negative definite matrices.

Lemma 9. [15, Theorem 4.6] [13, Theorem 2.8, p. 4] For

any given sequence of positive real numbers α and a non

negative definite matrix G ∈ R
n×n
++ with K ≥ n, the following

statements are equivalent:

• There exists a sequence of vectors (v1, . . . , vK) ⊂ R
n

such that G = G(v1,...,vK) and 〈vi, vi〉 = αi for all i =
1, 2, . . . ,K .

• λ(G) ≻ α.

On the one hand, for any sequence of vectors (v1, . . . , vK)
that are feasible for the optimization problems (5), (6) and (7),

from Lemma 9 it follows that G(v1,...,vK) ∈ R
n×n
++ and λ(G) ≻

α. On the other hand, for any symmetric positive definite

matrix G such that λ(G) ≻ α, we conclude again from Lemma

9 that there exists a sequence of vectors (v1, . . . , vK) ⊂ R
n

such that G = G(v1,...,vK), span(v1, . . . , vK) = R
n, and

〈vi, vi〉 = αi for all i = 1, . . . ,K . Therefore, under the

mapping

R
n×K ∋ (v1, . . . , vK) 7−→ G(v1,...,vK) ∈ R

n×n
+ , (9)

the optimization problems:

minimize
G ∈ R

n×n

++

tr(G−1)

subject to λ(G) ≻ α,
(10)

minimize
G ∈ R

n×n

++

λ−1
min(G)

subject to λ(G) ≻ α,
(11)

maximize
G ∈ R

n×n

++

det(G)

subject to λ(G) ≻ α,
(12)

are equivalent to (5), (6) and (7) respectively.

Claim 10. G∗
≔ aIn is the unique (corresponding to a given

α) optimal solution of the optimization problem (10).

Proof. Let us consider the following optimization problem:

minimize
G ∈ R

n×n

++

tr(G−1)

subject to tr(G) = na.
(13)

The optimization problem (13) is the same as (22) in [1, p. 17]

with ΣV = In, whose solution is given in (25) of the same

article. Therefore, from [1] we conclude that G∗
≔ aIn is the

unique optimal solution to the problem (13).

It is easy to see that for a symmetric non negative definite

matrix G, the condition that λ(G) ≻ α is sufficient for the

equality tr(G) = na to hold. Therefore, the optimum value

tr(G∗−1) in the optimization problem (13) is a lower bound

of the optimal value (if it exists) of the problem (10).

However, it can be easily verified that λ(G∗) ≻ α; thus, G∗

is feasible for the optimization problem (10), and the objective

function evaluated at G = G∗ is equal to tr(G∗−1), which is

a lower bound of the optimal value of (10). Therefore, the

optimization problem (10) admits an optimal solution. Since

G∗ is the unique solution to (13), we conclude that G∗ is the

unique optimal solution to (10) as well.

Claim 11. G∗
≔ aIn is the unique (corresponding to a given

α) optimal solution of the optimization problem (11).

Proof. The objective function and the constraint in problem

(11) can be explicitly characterized in terms of the eigenvalues

of the variable matrix G. Then under the map

R
n×n
++ ∋ G 7−→ λ(G), (14)

we get the following optimization problem equivalent to (11).

minimize
λi>0

(

min{λ1, . . . , λn}
)−1

subject to λ ≻ α.
(15)

For every sequence (λ1, . . . , λn) that is feasible for the opti-

mization problem (15), we see that
∑n

i=1 λi =
∑K

i=1 αi = na.

Therefore,

min{λ1, . . . , λn} ≤ a, leading to,
(

min{λ1, . . . , λn}
)−1 ≥ a−1.

Therefore, the value a−1 is a lower bound of the optimal

value (if it exists) of the optimization problem (15). Let us



define λ∗
i ≔ a for all i = 1, 2, . . . , n. It can be easily verified

that
(λ∗

1, . . . , λ
∗
n) ≻ α and

(

min{λ∗
1, . . . , λ

∗
n}

)−1
= a−1.

(16)

From (16) it follows that the sequence (λ∗
1, . . . , λ

∗
n) is

feasible for the optimization problem (15), and that the

objective function evaluated at (λ∗
1, . . . , λ

∗
n) is equal to the

lower bound a−1. Therefore, we conclude that the optimization

problem (15) admits an optimal solution, and that the sequence

(λ∗
1, . . . , λ

∗
n) is an optimal solution. It should also be noted that

(λ∗
1, . . . , λ

∗
n) is the unique sequence of positive real numbers

that satisfies (16). Therefore, the sequence (λ∗
1, . . . , λ

∗
n) is the

unique optimal solution of the problem (15).

Due to the equivalence of the optimization problems (11)

and (15), we conclude that the optimization problem (11) also

admits an optimal solution. A non negative definite symmetric

matrix G∗ is an optimal solution of the problem (11) if and

only if it satisfies

λi(G
∗) = a for all i = 1, 2, . . . , n, (17)

and we know for a fact that aIn is the only matrix that satisfies

(17) that is also feasible for the problem (11). Thus, G∗ = aIn
is the unique optimal solution of the problem (11).

Claim 12. G∗
≔ aIn is the unique (corresponding to a given

α) optimal solution to the optimization problem (12).

Proof. Writing the objective function and the constraints of the

optimization problem (12) in terms of the eigenvalues λ(G)
of the matrix G, we get the following optimization problem

equivalent to (12).

maximize
λi>0

n
∏

i=1

λi

subject to λ ≻ α.

(18)

For every sequence (λ1, . . . , λn) that is feasible for the prob-

lem (18), it follows that

n
∏

i=1

λi ≤
( 1

n

n
∑

i=1

λi

)n

=
( 1

n

K
∑

i=1

αi

)n

= an. (19)

Therefore, the value an is an upper bound to the optimal value

(if it exists) of the optimization problem (18). Let us define

λ∗
i ≔ a for all i = 1, 2, . . . , n, it follows that

(λ∗
1, . . . , λ

∗
n) ≻ α, and

n
∏

i=1

λ∗
i = an.

(20)

It should also be noted that (λ∗
1, . . . , λ

∗
n) is the unique se-

quence of positive real numbers that satisfies (20). Therefore,

the optimization problem (18) admits an unique optimal solu-

tion and the sequence (λ∗
1, . . . , λ

∗
n) is the unique optimizer.

Equivalently, as we have seen in the proof of Claim 11,

G∗
≔ aIn is the unique optimal solution to the optimization

problem (12).

Due to the equivalence of the optimization problem pairs

(5)-(10), (6)-(11) and (7)-(12), we conclude from the Claims

10, 11, and 12 that a sequence (v1, . . . , vK) of vectors is an

optimal solution if and only if its frame operator satisfies

G(v1,...,vK) = aIn, which in turn is true if and only if

(v1, . . . , vK) is a tight frame (from Theorem 3).

In addition to the fact that tight frames are optimal solu-

tions of the optimization problems (5), (6) and (7), we have

previously listed some desirable properties of tight frames

for representation of generic vectors in Section II. Most of

the reachability(both ballistic and servomechanism [16, p. 74-

75]) control problems arising in practice, involve solving the

following linear equation for various values of x0 and xT :

xT −ATx0 =

T−1
∑

i=0

AiB u(T − 1− i) (21)

either directly or indirectly. This is equivalent to expressing the

vector xT −ATx0 as a linear combination of the columns of

C(A,B,T ). We would like to have the the columns of C(A,B,T )

to be oriented as tightly as possible in order to inherit those

advantages. Thus, a measure of quality of the LTI system (1)

should be the measure of tightness of the columns of the matrix

C(A,B,T ); this is a key proposal of this article.

Definition 13. We define a measure of quality η(A,B, T ) for

the LTI system (1) as a measure of the tightness of the columns

of C(A,B,T ); defined by

η(A,B, T ) ≔
trG2

(A,B,T )
(

trG(A,B,T )

)2 . (22)

From Proposition 7, for any LTI system given by the pair

(A,B) ∈ (Rn×n × R
n×m) and N ∋ T ≥ τ , we have

η(A,B, T ) ≥ 1/n, (23)

and equality holds only when the columns of matrix C(A,B,T )

constitute a tight frame for R
n. A direct application of the

Proposition 7 gives us the following sufficient condition for

the controllability of the LTI system in terms of the MOQ

η(A,B, T ).

Proposition 14. For the LTI system (1), if η(A,B, T ) < 1
n−1

for some T ∈ N, then the LTI system is controllable in the

classical sense.

Proof. Suppose not, i.e., the system (A,B) is not controllable

but satisfies η(A,B, T ) < 1
n−1 for some T ∈ N. Let vi be the

ith column of the matrix C(A,B,T ) for i = 1, . . . ,mT . Then

span(v1, . . . , vmT ) is a d dimensional subspace of Rn, where

d ≤ n − 1. In particular, each vi belongs to this subspace,

which is a Hilbert space in its own right. From Proposition 7

we conclude that

η(A,B, T ) = NFP(v1, . . . , vmT ) ≥
1

d
≥ 1

n− 1
,

which is a contradiction. The assertion follows.
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