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Abstract— Cyclic pursuit frameworks provide an efficient
way to create useful global behaviors out of pairwise inter-
actions in a collective of autonomous robots. Earlier work
studied cyclic pursuit with a constant bearing (CB) pursuit law,
and has demonstrated the existence of a variety of interesting
behaviors for the corresponding dynamics. In this work, by
attaching multiple branches to a single cycle, we introduce a
modified version of this framework which allows us to consider
any weakly connected pursuit graph where each node has
an outdegree of 1. This provides a further generalization of
the cyclic pursuit setting. Then, after showing existence of
relative equilibria (rectilinear or circling motion), pure shape
equilibria (spiraling motion) and periodic orbits, we also derive
necessary conditions for stability of a 3-agent collective. By
paving a way for individual agents to join or leave a collective
without perturbing the motion of others, our approach leads
to improved reliability of the overall system.

Index Terms— Multi-agent systems; Decentralized control;
Pursuit problems; Autonomous mobile robots

I. BACKGROUND

Previous research [1]–[3] has demonstrated the relevance
and scope of pursuit interactions as a building block for
collective behavior. In particular, cyclic pursuit (wherein
agents pursue each other over a cycle graph) can be used to
synthesize rectilinear, circling, and spiraling motions [4]–[8],
which provide effective tools for a variety of missions, such
as search-and-rescue and environmental sensing. A modified
version of cyclic pursuit can also be employed in a beacon-
referenced setting, wherein the beacon represents a target of
interest for an unmanned vehicle or an attractive food source
in a biological context [9]–[12].

If each agent pursues exactly one other agent in a col-
lective, and the pursuit graph is weakly connected, then the
graph will contain a single cycle [7]. While previous work
such as [4]–[8] dealt with pursuit graphs which were only
single cycles, in this current work we consider a more general
case wherein the cycle may have branches connected to it.
We demonstrate that many of the same collective behaviors
can be achieved (i.e. rectilinear and circling motions, as well
as shape-preserving spirals), with several added benefits.

One benefit of our proposed framework is that it pro-
vides a straightforward method for independent agents to
join (or leave) an existing collective without disturbing the
other agents. This also makes the collective more robust
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to unexpected agent losses, as compared to a collective
composed of a single cycle, since branch agents can be lost
without affecting the trajectories of other agents. Similarly,
our approach provides a method for agents to select and
adjust their station within the collective, simply by adjusting
the CB control parameter. This also provides a method for
a small number of “informed agents” to establish an orbit
or search pattern at a particular location, and a number
of “uninformed agents” (e.g. no GPS) can be deployed
to augment the coverage. Lastly, system stability can be
analyzed in a tiered fashion, since agents in the branches
are only influenced by other agents which are “higher” on
the pursuit graph (in the sense of being closer to the cycle).

The cycle-with-branches pursuit graph is the fundamental
unit necessary to describe behavior in a population of agents
which each pursue one other agent, since the pursuit graph
of such a population can be represented by the union of a set
of cycle-with-branches pursuit graphs which are each weakly
connected. This pursuit graph can also be used to describe
the behavior of “remora” agents which attach themselves
to a collective, possibly for the purpose of identifying the
states and control parameters employed by the agents in the
collective, in the spirit of the work presented in [13].

II. MODELING PURSUIT INTERACTIONS

A. Agents as Self-steering Particles

As described in [1], we view autonomous agents as self-
steering particles moving on a plane. By letting ri ∈ R2

denote the position and a unit vector xi denote the normal-
ized velocity of agent i, its dynamics can be expressed as

ṙi = xi, ẋi = uiyi, and ẏi = −uixi, (1)

where yi = x⊥i is obtained by rotating xi by π/2 in the
counter-clockwise direction and ui ∈ R denotes its steering
(curvature) control. Here we have assumed that the agents
travel at a common nonzero speed at any given point of time.

We consider a directed graph, i.e. the pursuit graph
(alternatively known as the attention graph), G = (N ,A)
with node set N = {1, 2, ..., n} and arc set A, where
the nodes correspond to the individual agents and the arcs
(i, j) ∈ A imply that agent i is paying attention to agent j.
The analysis in [7] demonstrated a symmetry reduction to
shape space, which removes the reference to an absolute
coordinate frame and instead describes only the relative
positions and velocities of the agents. The same work also
introduced a polar parametrization which is particularly
useful for describing the interactions between agents, which
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Fig. 1: Illustration of scalar shape variables κij , θji, ρij .

we review here. Letting R(β) denote the 2×2 rotation matrix

R(β) =

[
cosβ − sinβ
sinβ cosβ

]
, (2)

we define the shape variables κij , θji, and ρij by

R(κij)xi ·
rj − ri
|rj − ri|

= 1, R(θji)xj ·
ri − rj
|ri − rj |

= 1,

ρji = |rj − ri|,
(3)

for (i, j) ∈ A, provided ri 6= rj (see Fig 1). Using this
parameterization, the shape dynamics can be expressed as

κ̇ij = −ui +
1

ρij
(sinκij + sin θji),

θ̇ji = −uj +
1

ρij
(sinκij + sin θji),

ρ̇ij = − cosκij − cos θji,

(4)

provided ρij > 0. The requirement that ρij be strictly
positive is a result of the polar singularity and is necessary
to ensure that particular control laws we will define in
follow-on sections are well-defined. Note however that the
dynamics do not necessarily enforce this constraint. We note
also that cyclic interactions incur an additional cycle closure
constraint, which will be made explicit in what follows.

B. Constant Bearing Pursuit

In the current work we consider the constant bearing
(CB) pursuit strategy, which specifies that the pursuer should
maneuver to maintain a specified angle α between its velocity
vector and the line-of-sight to the pursuee. For a pursuer i
pursuing agent j, we can specify the CB pursuit strategy in
terms of shape variables by defining

Λi = − cos(κij − αi), (5)

so that the CB pursuit strategy is attained if and only if
Λi = −1. A feedback control law to achieve CB pursuit
(originally developed in [14]) is given by

uCB(αi) = µi sin(κij − αi) +
1

ρij
(sinκij + sin θji) , (6)

where µi > 0 is a control gain. If every agent i in a given
system pursues exactly one other agent j with the CB pursuit
law (6) (with CB parameter αi), then we have the closed-
loop shape dynamics

κ̇ij = −µi sin(κij − αi),

θ̇ji = −µj sin(κjk − αj)−
1

ρjk
(sinκjk + sin θkj)

+
1

ρij
(sinκij + sin θji),

ρ̇ij = − cosκij − cos θji,

(7)

for i = 1, 2, ..., n, where (i, j), (j, k) ∈ A.
The dynamics (7) possess the interesting characteristic

of rendering a certain manifold invariant and attractive, in
the following sense. If we define the CB pursuit manifold
MCB(α)α)α) as the set of all states for which each agent has
attained the specified CB pursuit strategy (i.e. Λi = −1),
trajectories which start on MCB(α)α)α) will remain on the
manifold for all future time, and under certain assumptions
(see [7] for more details) system trajectories which begin in
a large subset of the shape space asymptotically approach
MCB(α)α)α) as t → ∞. Thus we find it useful to consider the
dynamics (7) restricted to MCB(α)α)α), which are given by

θ̇ji = − 1

ρjk
(sinαj + sin θkj) +

1

ρij
(sinαi + sin θji),

ρ̇ij = − cosαi − cos θji.

(8)

III. CYCLIC PURSUIT WITH A SINGLE BRANCH

In this section we consider a pursuit graph which consists
of a cycle with a single “branch”. More plainly, we consider
the case in which agents 1 through n−1 are engaged in cyclic
CB pursuit, and agent n (the branch) employs CB pursuit
with regards to one of the agents on the cycle. (Without loss
of generality, we assume that agent n pursues agent 1). This
leads us to consider the dynamics for an n-agent system in
which each agent employs the CB pursuit feedback law, and
the arc set is given by

A = Acycle ∪ {(n, 1)} , (9)

where Acycle = {(1, 2), (2, 3), . . . , (n− 1, 1)}. Note that
agent n is influenced by the behavior of agents in the cycle
but does not exert any influence on them.

A. Shape dynamics and relative equilibria

We consider the shape dynamics restricted to MCB(α)α)α), i.e.
our shape dynamics are given by (8) for i = 1, 2, . . . , n− 1,
with the branch dynamics given by

θ̇1n = − 1

ρ12
(sinα1 + sin θ21) +

1

ρn1
(sinαn + sin θ1n) ,

ρ̇n1 = − cosαn − cos θ1n. (10)

Note that the branch dynamics (10) are not subject to any
additional constraints (aside from the requirement ρn1 > 0),
but the agents in the cycle are subject to a cycle closure
constraint on the initial conditions (see [7]), given by1

R

(
n∑
i=1

(π + αi − θi,i−1)

)
= 1,

n∑
i=1

ρi,i+1R

 i∑
j=1

(π + αj − θj,j−1)

 = 0, i = 1, 2, . . . , n.

Equilibria for the shape dynamics (8,10) correspond to
relative equilibria for the closed-loop version of the full
dynamics (1). For a system consisting of a single cycle (with-
out branches), Proposition 6.1 from [7] provided conditions

1Note that addition in the indices should be interpreted modulo n−1 for
agents whose arcs are in Acycle.



for existence of rectilinear and circling relative equilibria,
along with the equilibrium values for the shape variables. In
particular, it was demonstrated that equilibrium values for
θi,i−1 for agents on the cycle are given by
• Rectilinear Equilibrium: θi,i−1 = π + αi−1, and
• Circling Equilibrium: θi,i−1 = π − αi−1.
If the cycle agents are in a rectilinear equilibrium state

(and therefore θ21 = π+α1), it follows from (10) that θ̇1n =
ρ̇n1 = 0 if and only if θ1n = π+αn. If the cycle agents are
in a circling equilibrium state (and therefore θ21 = π−α1),
it follows from (10) that θ̇1n = ρ̇n1 = 0 if and only if
θ1n = π − αn 6= 0 and ρn1

ρ12
= sinαn

sinα1
> 0.

Proposition 3.1: Consider an n-agent CB pursuit system
with arc set (9) evolving on MCB(α)α)α) obeying (8,10).

1) A rectilinear relative equilibrium exists if and only if

αi = π + αi−1, i = 1, 2, . . . , n− 1, (11)

in which case the corresponding equilibrium side
lengths ρij are arbitrary (i.e., determined by initial
conditions) and the equilibrium θji values are given by

θi,i−1 = π + αi−1, i = 1, 2, . . . , n− 1,

θ1n = π + αn. (12)

2) A circling relative equilibrium exists if and only if

i. sin(αn) sin(α1) > 0,

sin(αi) sin(αi+1) > 0, i = 1, 2, . . . , n− 2 (13)

ii.
n−1∑
i=1

(αi) = 0, (14)

in which case the corresponding equilibrium angles θji
are given by

θi,i−1 = π − αi−1, i = 1, 2, . . . , n− 1,

θ1n = π − αn,
(15)

and equilibrium side lengths ρij satisfy

ρi,i+1

ρi+1,i+2
=

sinαi
sinαi+1

, i = 1, 2, . . . , n− 1,

ρn1
ρ12

=
sinαn
sinα1

.

(16)

Proof: The conditions and equilibrium values for the
agents on the cycle (i.e. agents 1 through n − 1) are stated
in Proposition 6.1 in [7]. For the branch agent, it follows
from the discussion immediately preceding the proposition
statement that the value for θ1n given in (12) will also set
the branch dynamics (10) to zero. From (3) one can show
(see [7]) that on MCB(α)α)α) we have

xn · x1 = cos(π + αn − θ1n), (17)

and therefore substitution of the value for θ1n given in (12)
results in xn · x1 = 1, i.e. the tangent vectors are aligned in
a rectilinear equilibrium.

For the second case where the cycle agents orbit on a
circling equilibrium (per Proposition 6.1 of [7]), the dis-
cussion preceding the proposition statement establishes that

the values for θ1n and ρ1n given in (13) and (14) result
in setting the branch dynamics (10) to zero. It remains to
establish that the branch agent will orbit on the same circling
equilibrium as agents 1 through n − 1. As demonstrated in
[7], that circling equilibrium has radius given by ρ12

2 sinα1
and

circumcenter located at r1+ ρ12
2 sinα1

x⊥1 , so it suffices to show
that rn + ρ12

2 sinα1
x⊥n = r1 + ρ12

2 sinα1
x⊥1 . From (3), we have

x1 = R(−θ1n)

(
rn − r1
‖rn − r1‖

)
=

1

ρn1
R(αn − π)(rn − r1),

xn = −R(−αn)

(
rn − r1
‖rn − r1‖

)
= − 1

ρn1
R(−αn)(rn − r1).

Then, following the calculations in [7] we can show that(
rn +

ρ12
2 sinα1

x⊥n

)
−
(
r1 +

ρ12
2 sinα1

x⊥1

)
=

[
1− 1

2 sinαn
2 cos

(π
2
− αn

)
1

]
(rn − r1)

which equals 0, establishing the claim.
Remark 3.2: Note that the only condition in Proposition

3.1 which depends on the CB parameter for the branch agent
(i.e. αn) is (13), which essentially requires that all the agents
follow the same direction of rotation around the circling equi-
librium (i.e. clockwise vs. counter-clockwise). In particular,
we note that αn is not required to satisfy the more stringent
requirement given by (14), which means a branch agent
can join or leave a circling equilibrium without disturbing
(or coordinating with) the other agents. The branch agent’s
relative position on the circling equilibrium can be modified
independently by adjusting the value of αn.

Examples of relative equilibria are depicted in Fig 2a and
Fig 2b. Note that in both cases agents 1, 2 and 3 engage
in cyclic pursuit on a three-agent relative equilibrium, and
agent 4 essentially joins the relative equilibrium, with the
value of α4 determining agent 4’s equilibrium position with
respect to the other agents.

B. Pure shape equilibria

As demonstrated in [7], we can separate the shape dy-
namics (8,10) into two parts by using an appropriate re-
parametrization of MCB(α)α)α) and a subsequent rescaling of
the time variable. After this separation, one part describes
evolution of the size/scale of the system, and the other one
describes the pure shape (i.e. the formation shape up to
geometric similarity). Towards this objective we first define
the following change of variables

λ , ln(ρ12), and ρ̃ij , ρij/ρ12 = ρije
−λ

for every (i, j) ∈ A from (9). Then, by introducing a time-
rescaling defined as

τ =

∫ t

0

e−λ(σ)dσ, (18)

the shape dynamics (8,10) can be expressed as

λ
′

= − (cosα1 + cos θ21) (19)



θ
′

1n =
1

ρ̃n1
(sinαn + sin θ1n)− (sinα1 + sin θ21) (20)

ρ̃
′

n1 = ρ̃n1 (cosα1 + cos θ21)− (cosαn + cos θ1n) (21)

θ
′

i,i−1 =
1

ρ̃i−1,i
(sinαi−1 + sin θi,i−1)

− 1

ρ̃i,i+1
(sinαi + sin θi+1,i) (22)

ρ̃
′

i,i+1 = ρ̃i,i+1 (cosα1 + cos θ21)

− (cosαi + cos θi+1,i) (23)

for i = 1, . . . , n − 1, where the prime notation denotes
differentiation with respect to the rescaled time τ . It is worth
noting here that (19) describes the evolution of size of the
system, while the dynamics (20)-(23) are now self-contained
and describe the evolution of pure shape. Equilibria for the
dynamics (20)-(23) are known as pure shape equilibria, and
correspond to system trajectories which preserve the pure
shape of the system while (possibly) evolving in size (e.g.
the spiral motion shown in Fig 2c).

Proposition 3.3: Consider an n-agent CB pursuit system
with arc set (9) evolving on MCB(α)α)α) according to the shape
dynamics (19)-(23). Pure shape equilibria exist if and only
if the conditions of Proposition 3.1 are met, or there exists
an integer k ∈ {0, 1, . . . , n− 2} such that

sin(αn − τk) sin(α1 − τk) > 0,

sin(αi − τk) sin(αi+1 − τk) > 0, i = 1, 2, . . . , n− 2,

for τk ,
(∑n−1

i=1 (αi/(n− 1))
)
− kπ/(n− 1), with equilib-

(a): Rectilinear Equilibrium (b): Circling Equilibrium

(c): Shape Preserving Spiral (d): Periodic Orbit

Fig. 2: This figure illustrates MATLAB simulations for a 4-agent
collective, wherein agent 1, 2 and 3 are engaged in a cyclic pursuit,
and agent 4 pursues agent 1. Depending on parameter choices the
outcome can be different: (a) rectilinear equilibrium (α1 = α2 −
π = α3 = π/3, α4 = π/6); (b) circling equilibrium (α1 = π/3,
α2 = π/4, α3 = 5π/12, α4 = π/6); (c) shape preserving spirals
(α1 = α2 = α3 = 2π/3, α4 = 2π/5); or (d) periodic motion
paths (α1 = π/3, α2 = 7π/12, α3 = π/12, α4 = π/2).

rium values for the branch agent given by

θ1n = π − αn + 2τk, and, ρ̃n1 =
sin(αn − τk)

sin(α1 − τk)
. (24)

Proof: A pure shape equilibrium corresponds to trajec-
tories for which (20)-(23) are zero. If cosαi+cos θi,i+1 = 0
for any i, then setting (20)-(23) to zero requires cosα1 +
cos θ21 = 0, which corresponds to a relative equilibrium
(already covered by Proposition 3.1). Therefore we proceed
by assuming cosαi + cos θi,i+1 6= 0 for any i.

For the agents in the cycle (i.e. agents 1 through n − 1),
Proposition 6.3 of [7] provides necessary and sufficient
conditions for the existence of pure shape equilibria which
are not relative equilibria, which are represented by the
second condition in our current proposition. The referenced
proposition from [7] also allows us to express the equilibrium
values for pure shape equilibria on MCB(α)α)α), and in particular
we have

θ21 = π − α1 + 2τk. (25)

By substitution into (21), we have ρ̃
′

n1 = 0 if and only if

ρ̃n1 =
cosαn + cos θ1n
cosα1 + cos θ21

=
cosαn + cos θ1n

−2 sin(τk) sin(α1 − τk)
. (26)

If we further assume that sinαi + sin θi+1,i 6= 0 for every i,
from (20) we observe that θ

′

1n = 0 if and only if

ρ̃n1 =
sinαn + sin θ1n
sinα1 + sin θ21

=
sinαn + sin θ1n

2 cos(τk) sin(α1 − τk)
. (27)

Equating (26) with (27) and employing appropriate trigono-
metric identities, we have the equilibrium values for the
branch shape dynamics given by (24), with the requirement
that sin(αn − τk) sin(α1 − τk) > 0.

Lastly, we address the case where sinαi + sin θi+1,i = 0
for every i. (Note that setting (22) to zero precludes the
situation where sinαi + sin θi+1,i = 0 for only some i.)
Since cosαi + cos θi,i+1 6= 0, the only possibility is that
θi+1,i = −αi, for every i. This situation is addressed in the
supplementary material of [7], where it is shown that this is
a particular case of (24) for which τk = ±π/2.

C. A Special Case: Periodic Orbits in the Pure Shape Space

Now we focus on a special case, and show existence of
interesting behavior (as shown in Fig 2d) on the pure shape
space. If the conditions (13)-(14) hold true, i.e. a circling
equilibrium exists, and αn = π/2, we note that the dynamics
(20)-(21) simplify to

θ
′

1n =
1

ρ̃n1
(1 + sin θ1n)− 2 sinα1,

ρ̃
′

n1 = − cos θ1n,

(28)

defined on the set {(θ1n, ρ̃n1) : −π < θ1n ≤ π, ρ̃n1 > 0}.
Whenever sinα1 > 0, this dynamics (28) has a unique
equilibrium point at (θ1n, ρ̃n1) = (π/2, 1/ sinα1), and
one can easily show that the eigenvalues of the linearized
dynamics are given by λ = ±j

√
2 sin(α1). This suggests

the possibility of periodic orbits, and in what follows, we



will demonstrate that the system does in fact admit periodic
orbits, even when sinα1 < 0.

Then, by adopting an approach similar to ([15], [16]), we
show that the solutions of (28) constitute periodic orbits
in the underlying state space. Towards this objective, we
first introduce some relevant definitions and the following
theorem due to G. D. Birkhoff [17].

Definition 3.4 (Involution): A diffeomorphism F :M→
M defined on a manifold M is an involution if F 6= idM,
the identity diffeomorphism, and F

(
F (m)

)
= m, ∀m ∈M.

Definition 3.5 (F-reversibility): A vector field X defined
on a manifold M is said to be F -reversible if there exists
an involution F such that its pushforward F∗X = −X.

Theorem 3.6 (G. D. Birkhoff [17]): Let X be a F -
reversible vector field on M and ΣF denote the fixed-point
set of the reverser F . If an orbit of X through a point of
ΣF intersects ΣF at another point, then it is periodic.

Lemma 3.7: The vector field defined by (28) is F -
reversible, with the reverser F (θ1n, ρ̃n1) = (π − θ1n, ρ̃n1).

Proof: It is straightforward to show that the diffeomor-
phism F (θ1n, ρ̃n1) = (π− θ1n, ρ̃n1) is indeed an involution.
The associated pushforward maps the vector field X defined
by (28) into the vector field:

F∗X(θ1n, ρ̃n1)

= (DF )F−1(θ1n,ρ̃n1) · X
(
F−1(θ1n, ρ̃n1)

)
=

[
−1 0

0 1

] [ 1
ρ̃n1

(1 + sin(π − θ1n))− 2 sinα1

− cos(π − θ1n)

]
= −X(θ1n, ρ̃n1).

Hence the vector field defined by (28) is F -reversible.
Now we state our main result.
Theorem 3.8: Every solution trajectory of (28):
(a) has a conserved quantity:

E(θ1n, ρ̃n1) , ρ̃n1(1 + sin θ1n)− ρ̃2n1 sinα1, (29)

(b) is a periodic orbit.
Proof: Our proof follows the line of thinking from [15],

[16], as follows.
(a) A direct calculation of the derivative with respect to

the rescaled time τ would yield

dE

dτ
=

∂E

∂θ1n
· θ
′

1n +
∂E

∂ρ̃n1
· ρ̃
′

n1 = 0,

and hence E(θ1n, ρ̃n1) is conserved along the trajectories.
(b) As {π/2,−π/2} ×R+ constitutes the fixed-point set

ΣF of the reverser F , we can complete the proof by showing
that any solution trajectory of (28) through a point on the
θ1n = ±π/2 line hits the θ1n = ±π/2 line again.

First we consider the case when α1 ∈ (−π, 0), i.e.
sinα1 < 0. Then θ

′

1n is always positive, which in turn
ensures that any trajectory originating from the θ1n = ±π/2
line will travel counter-clockwise until it intersects the θ1n =
∓π/2 line again, when θ1n has been incremented by angle
π (as shown in Fig 3a).

(a) α1 = −π/3 (b) α1 = π/3

Fig. 3: Phase portrait of the (θ1n, ρ̃n1) dynamics for the scenario
where (13)-(14) hold true and αn = π/2.

Fig. 4: Nullclines of
(θ1n, ρ̃n1) dynamics with
α1 = π/3.

Next we consider the case
when α1 ∈ (0, π), i.e.
sinα1 > 0. In this case we
have an equilibrium point at
(π/2, 1/ sinα1), and the null-
clines (as shown in Fig 4) are
given by ρ̃n1 = 1+sin θ1n

2 sinα1
(for

θ
′

1n = 0) and the θ1n = ±π/2
line (for ρ̃

′

n1 = 0). Then we
partition the state-space into 4
regions R1 (where θ

′

1n > 0
and ρ̃

′

n1 > 0), R2 (where θ
′

1n > 0 and ρ̃
′

n1 < 0), R3 (where
θ
′

1n < 0 and ρ̃
′

n1 > 0) and R4 (where θ
′

1n < 0 and ρ̃
′

n1 < 0).
Clearly any trajectory originating on the boundary between

R1 and R2 will enter the partition R1 because θ
′

1n < 0 and
ρ̃
′

n1 = 0 on the boundary. Then it is straightforward to show
that these trajectories will later enter into R3 as ρ̃

′

n1 > 0
and θ

′

1n = 0 on the boundary between R2 and R3. This also
implies that trajectories cannot enter into into R2 from R3.
On the other hand, as θ

′

1n < 0 withinR3 it can be shown that
trajectories can leave this partition through the intersection
of the θ1n = π/2 line and the boundary between R3 and
R4. This allows us to conclude that any solution trajectory
of (28) crosses the θ1n = ±π/2 line twice.

IV. STABILITY ANALYSIS FOR A 3-AGENT SYSTEM

Now we narrow our focus to a special case (i.e.,
n = 3), wherein the pursuit graph is defined as G =
({1, 2, 3}, {(1, 2), (2, 1), (3, 1)}), i.e. agent 1 and 2 are en-
gaged in a mutual pursuit and agent 3 pursues agent 1. As
demonstrated in [7], the dynamics for mutual pursuit on
the CB manifold simplify to ρ̇12 = − cos(α1) − cos(α2).
Therefore, we can assess the stability of the special solutions
described in Proposition 3.1 and Proposition 3.3 completely
in terms of the branch dynamics. We proceed by linearization
of the dynamics (20)-(21).

By defining x , (θ13, ρ̃31)T and letting f(x) denote the
dynamics (20)-(21), it is straightforward to show that the
Jacobian for these dynamics is given by

∂f

∂x
=

(
cos θ13
ρ̃31

− sinα3+sin θ13
ρ̃231

sin θ13 cos(α1) + cos(α2)

)
. (30)

Proposition 4.1: Consider a 3-agent system wherein
agents 1 and 2 are engaged in a mutual pursuit, and agent
3 pursues agent 1 with CB bearing angle α3. The following



provides a necessary and sufficient condition for local sta-
bility of the circling and pure shape equilibria:

(a) The circling equilibria of Proposition 3.1 are stable if
cosα3 > 0 and unstable if cosα3 < 0.

(b) The pure shape equilibria of Proposition 3.3 are stable
if 2 cos(α1 + α2 − α3) + cos(α3) < 0 and unstable if
2 cos(α1 + α2 − α3) + cos(α3) > 0.

Proof: For mutual pursuit pure shape equilibria, it can
be shown that τk from Proposition 3.3 must be τk = α1+α2

2 −
π
2 . Thus from (24), we have equilibrium values for the branch
agent given by

θ∗13 = α1 + α2 − α3, ρ̃∗31 =
cos
(
α3 − α1+α2

2

)
cos
(
α1 − α1+α2

2

) . (31)

Then letting β , α1+α2

2 and substituting (31) into (30), we
can express the Jacobian ∂f

∂x

∣∣∣
PS

as(
cos(2β−α3) cos(α1−β)

cos(α3−β) − cos2(α1−β)[sinα3+sin(2β−α3)]
cos2(α3−β)

sin(2β − α3) 2 cos(β) cos(α1 − β)

)
,

and the associated determinant is

det

(
∂f

∂x

∣∣∣
PS

)
= 2 cos2(α1 − β), (32)

which is strictly positive since Proposition 3.3 requires
cos(α1 − β) 6= 0. Since the eigenvalues are given (in terms
of the trace and determinant) by

λ =
1

2

(
tr
(
∂f

∂x

∣∣∣
PS

)
±

√
tr2
(
∂f

∂x

∣∣∣
PS

)
− 4det

(
∂f

∂x

∣∣∣
PS

))
,

and the determinant is strictly positive, it holds that the real
part of the eigenvalues has the same sign as the trace, i.e.

sgn(Re(λ)) = sgn
(

2 cos(α1 +α2−α3) + cos(α3)
)
, (33)

where we have used the fact that Proposition 3.3 requires
cos (α1 − β) cos (α3 − β) > 0. Note that in terms of the
equilibrium values given in (31), we can also express (33)
as sgn(Re(λ)) = sgn (2 cos θ∗13 + cosα3).

Finally, note that circling equlibria can be viewed as a
special case of pure shape equilibria for which τk = 0
or π (i.e. β = ±π2 ). Therefore (33) applies, and since we
have α2 = π − α1 on a circling equilibrium, it follows that
2 cos(α1 + α2 − α3) + cos(α3) = − cosα3.

Remark 4.2: If we evaluate (30) at the rectilinear equilib-
rium from Proposition 3.1, the Jacobian can be expressed
as

∂f

∂x

∣∣∣
rect

=

(
− cosα3

ρ̃∗31
0

− sinα3 0

)
. (34)

From this it follows that the corresponding eigenvalues are
given by λ = − cosα3

ρ̃∗31
and a zero eigenvalue resulting

from the fact that there exists not a single equilibrium point
but a whole continuum of equilibria. Numerical simulations
and phase portrait analysis suggest that the continuum of
rectilinear equilibria is attractive for cosα3 > 0, a conjecture
which we intend to explore further in future work.

V. FUTURE WORK

There are two immediate extensions of our proposed
framework which we intend to analyze more completely in
future work. The first extension considers multiple agents
pursuing agent 1 using a CB pursuit law, i.e. multiple
branches off one cycle agent. Clearly the branch dynamics
will be independent of one another, and it follows that the
results of Propositions 3.1, 3.3, and 4.1 could be extended
to this multiple branch case. The other extension involves
a single open chain of agents in CB pursuit with its head
pursuing agent 1, i.e. a multi-tiered branch attached to a
single cycle agent. In this case, branch agents are influenced
both by the cycle agents and by any other branch agent which
is closer to the cycle. As will be demonstrated in future work,
it follows that results analogous to those in Propositions 3.1,
3.3, and 4.1 can be extended to this case.

REFERENCES

[1] E. W. Justh and P. S. Krishnaprasad, “Equilibria and steering laws for
planar formations,” Systems & Control Letters, vol. 52, no. 1, pp. 25
– 38, 2004.

[2] J. L. Ramirez, M. Pavone, E. Frazzoli, and D. Miller, “Distributed
control of spacecraft formation via cyclic pursuit: Theory and exper-
iments,” in Proceedings of the American Control Conference (ACC),
2009, pp. 4811 – 4817.

[3] P. Romanczuk, I. D. Couzin, and L. Schimansky-Geier, “Collective
motion due to individual escape and pursuit response,” Physical
Review Letters, vol. 102, no. 1, p. 010602, 2009.

[4] J. A. Marshall, M. E. Broucke, and B. A. Francis, “Formations of
vehicles in cyclic pursuit,” IEEE Transactions on Automatic Control,
vol. 49, no. 11, pp. 1963–1974, 2004.

[5] ——, “Pursuit formations of unicycles,” Automatica, vol. 42, no. 1,
pp. 3 – 12, 2006.

[6] A. Sinha and D. Ghose, “Generalization of nonlinear cyclic pursuit,”
Automatica, vol. 43, no. 11, pp. 1954 – 1960, 2007.

[7] K. S. Galloway, E. W. Justh, P. S. Krishnaprasad, and P. R. S. A,
“Symmetry and reduction in collectives : cyclic pursuit strategies,”
Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 469, no. 2158, pp. 1–23, 2013.

[8] ——, “Symmetry and reduction in collectives : low-dimensional cyclic
pursuit,” Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 472, pp. 1–21, 2016.

[9] K. S. Galloway and B. Dey, “Station keeping through beacon-
referenced cyclic pursuit,” in Proceedings of the American Control
Conference (ACC), 2015, pp. 4765–4770.

[10] ——, “Stability and pure shape equilibria for beacon-referenced cyclic
pursuit,” in Proceedings of the American Control Conference (ACC),
2016, pp. 161–166.

[11] G. R. Mallik, S. Daingade, and A. Sinha, “Consensus based deviated
cyclic pursuit for target tracking applications,” in Proceedings of the
European Control Conference (ECC), 2015, pp. 1718 – 1723.

[12] S. Daingade, A. Sinha, A. Vivek Borkar, and H. Arya, “A variant of
cyclic pursuit for target tracking applications: theory and implemen-
tation,” Autonomous Robots, vol. 40, pp. 669–686, 2016.

[13] K. Galloway and L. DeVries, “State observation and parameter estima-
tion in cyclic pursuit systems,” in Proceedings of the IEEE Conference
on Decision and Control (CDC), 2016, pp. 1781–1786.

[14] E. Wei, E. W. Justh, and P. S. Krishnaprasad, “Pursuit and an evo-
lutionary game,” Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 465, no. 2105, pp. 1539–1559,
2009.

[15] M. Mischiati and P. S. Krishnaprasad, “The dynamics of mutual
motion camouflage,” Systems & Control Letters, vol. 61, no. 9, pp.
894 – 903, 2012.

[16] U. Halder, B. Schlotfeldt, and P. S. Krishnaprasad, “Steering for
beacon pursuit under limited sensing,” in Proceedings of the 55th
Conference on Decision and Control (CDC), 2016, pp. 3848–3855.

[17] G. D. Birkhoff, “The restricted problem of three bodies,” Rendiconti
del Circolo Matematico di Palermo, vol. 39, no. 1, pp. 265–334, 1915.


	I Background
	II Modeling Pursuit Interactions
	II-A Agents as Self-steering Particles
	II-B Constant Bearing Pursuit

	III Cyclic pursuit with a single branch
	III-A Shape dynamics and relative equilibria
	III-B Pure shape equilibria
	III-C A Special Case: Periodic Orbits in the Pure Shape Space

	IV Stability Analysis for A 3-Agent System
	V Future work
	References

