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Abstract— Primary frequency response is provided by syn-
chronized generators through their speed-droop governor char-
acteristic in response to instant frequency deviations that exceed
a certain threshold, also known as the governor dead zone. This
paper presents an Optimal Power Flow (OPF) formulation that
explicitly models i) the primary frequency response constraints
using a nonlinear speed-droop governor characteristic with a
dead zone and ii) chance constraints on power outputs of con-
ventional generators and line flows imposed by the uncertainty
of renewable generation resources. The proposed formulation is
evaluated and compared to the standard CCOPF formulation
on a modified 118-bus IEEE Reliability Test System.

I. INTRODUCTION

As a result of policy initiatives and incentives, renewable

generation resources have already exceeded 10% penetration

levels, in terms of annual electricity produced, in some

interconnections; even higher targets are expected to be

reached in the forthcoming years [1]. Integrating renewable

generation resources increases reserve requirements needed

to deal with their uncertainty and variability and, at the same

time, tends to replace conventional generation resources that

are most suitable for the efficient reserve provision, [2].

Among these reserve requirements, the ability to provide

sufficient primary frequency response, i.e. the automatic

governor-operated response of synchronized generators in-

tended to compensate a sudden power mismatch based on

local frequency measurements, is the least studied [3]. The

impacts of renewable generation resources on the secondary

and tertiary reserve requirements are reviewed in [4], [5].

Data-driven studies in [6] and [7] manifestly reveal that

the primary frequency response in major US interconnections

has drastically reduced over the past decades and attribute

this effect to increased penetrations of renewable genera-

tion resources. Primary frequency response constraints are

modeled in [8] and [9]. These studies consider a nonlinear

speed-droop governor characteristic with an intentional dead

zone that makes it possible to preserve the primary frequency

response for reacting to relatively large frequency deviations

caused by sudden generation and demand failures [10].

However, the formulations in [8] and [9] ignore transmis-

sion constraints and the uncertainty of renewable generation

resources that may lead to overload and capacity scarcity

events when the primary frequency response is deployed.

To deal with the stochastic nature of renewable generation

resources and their impacts on the secondary and tertiary

reserve requirements, the standard optimal power flow (OPF)

formulations have been enhanced using chance constrained

programming [11], scenario-based stochastic programming

[12] and robust optimization [13]. The formulation in [11]

postulates that the uncertainty and variability of wind power

generation resources follow a given Gaussian distribution

that makes it possible to convert the Chance Constrained

OPF (CCOPF) into a second-order cone program, which is

then solved using a cutting-plane-based procedure. Relative

to [11], the formulation in [12] is more computationally

demanding since it requires computationally expensive sce-

nario sampling, [14]. Unlike [11] and [12], the formulation

in [13] disregards the likelihood of individual scenarios

within a given uncertainty range and tends to yield overly

conservative solutions. Based on the CCOPF formulation in

[11], several extensions have been developed. Thus, [15]

implements a distributionally robust CCOPF formulation that

internalizes parameter uncertainty on the Gaussian distribu-

tion characterizing wind power forecast errors as explained

in [16]. In [17], the CCOPF formulation is extended to

accommodate corrective control actions. The formulation in

[18] describes the CCOPF formulation that uses wind curtail-

ments for self-reserve to reduce the secondary and tertiary

reserve provision by conventional generation resources. In

[19], the chance constraints are modified to selectively treat

large and small wind power perturbations using weighting

functions. Notably, the convexity of the original formulation

in [11] is preserved in [15], [17]–[19].

The formulations in [11], [15], [17]–[19] have been proven

to reliably and cost-efficiently deal with the uncertainty and

variability imposed by renewable generation resources at a

computational acceptable cost, even for realistically large

networks [11], [15]. However, these formulations neglect to

account for nonlinear primary frequency response policies,

i.e. the dead zone of the speed-droop governor character-

istic. From the reliability perspective, this may result in

the inability to timely arrest a frequency decay caused by

credible contingencies, [6], [10], [20]. Furthermore, ignoring

nonlinear primary frequency response policies may lead to

suboptimal dispatch decisions and cause unnecessary out-of-
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market corrections that would eventually increase the overall

operating cost, [21]. This paper proposes a CCOPF formu-

lation with a nonlinear primary frequency response policy

that seeks the least-cost dispatch and primary frequency

response provision among available conventional generation

resources. The main contributions of this paper are:

1) The proposed CCOPF-Primary Frequency Rresponse

(PFR) formulation enhances the CCOPF formulation

in [11] by explicitly considering primary frequency

response constraints of conventional generators.

2) As in [8] and [9], the primary frequency response

is modeled using a nonlinear speed-droop governor

characteristic with an intentional dead zone, i.e. the

primary frequency response does not react to frequency

fluctuations below a given threshold.

3) The weighted chance constraints from [19] are used

to reformulate the proposed CCOPF-PFR formulation

into a convex program that can be solved using off-the-

shelf solvers. The CCOPF-PFR and CCOPF formula-

tions are compared using a modification of the 118-bus

IEEE Reliability Test System [22].

The rest of this paper is organized as follows. Section II

describes the proposed CCOPF-PFR on the standard CCOPF

from [11]. Section III describes the solution technique. Sec-

tion IV compares the CCOPF-PFR and CCOPF formulations

quantitatively. Section V summarizes the key findings.

II. CCOPF-PFR FORMULATION

This section derives the CCOPF-PFR formulation. Section

II-A reviews the CCOPF formulation from [11]. Next, Sec-

tion II-B details a generic affine frequency control policy,

which is generalized in Section II-C to include a given dead

zone. Section II-D applies the weighted chance constraints

from [19] to obtain the final CCOPF-PFR formulation.

A. Standard CCOPF

As customarily done in the analysis of transmission grids,

the deterministic OPF based on the DC power flow (PF)

approximation is stated as follows:

minpg ,φ,θ

∑

i∈Vg

Ci(pi) (1)

s. t.
∑

i∈V

pi = 0 (2)

∀i ∈ Vg : pi ∈ [p
i
, pi] (3)

∀i ∈ V : pi =
∑

j:{i,j}∈E

φij (4)

∀{i, j} ∈ E : φij = βij(θi − θj) (5)

φij ∈ [−φ̄ij , φ̄ij ], (6)

where the transmission grid-graph is G = (V , E), where V
and E denote the sets of nodes (buses) and edges (transmis-

sion lines), and V is split into three subsets: conventional

generators, Vg , loads, Vl, and wind farms, Vw, i.e. V = Vg ∪
Vl∪Vw. Eq. (1) is optimized over the i) vector of power out-

puts of conventional generators, pg = (pi|i ∈ V}), ii) vector

of transmission power flows, φ = (φij = −φji|{i, j} ∈ E),
and iii) vector of voltage angles, θ = (θi|i ∈ V). The input

parameters include the minimum, p
i
, and the maximum, pi,

limits on the power output of conventional generators, the

vector of nodal loads, pl = (pi|i ∈ Vl), the vector of wind

power injections, pw = ρ = (ρi|i ∈ Vw), as well as the

vector of line impedances, (βij , ∀{i, j} ∈ E) and the vector

of the line power flow limits, (φij , ∀{i, j} ∈ E). Eq. (1)

minimizes the total operating cost using a convex, quadratic

cost function of each conventional generator, Ci(·). The

system-wide power balance is enforced by Eq. (2). Eq. (3)

limits the power output of the conventional generators. The

nodal power balance is enforced by Eq. (4) using the line

flows computed in Eq. (5) based on the DC power flow

approximation. Eq.(6) limits the line flows.

Eqs. (1)-(6) seek the least-cost solution assuming fixed

power outputs of wind farms. In fact, these outputs are

likely to vary due to the inherent wind speed uncertainty

and variability [16] that can be accounted for as follows by

using the chance constrained framework of [11], [15]:

min
p
(0)
g ,θ,ρ

∑

i∈Vg

Eρ [Ci(pi)] (7)

s. t.

∀i ∈ Vg : Probρ

[

pi ≤ p
i

]

≤ ε↓i (8)

Probρ [pi ≥ pi] ≤ ε↑i (9)

∀{i, j} ∈ E : Probρ

[

φij ≤ −φ
ij

]

≤ ε↓ij (10)

Probρ
[

φij ≥ φij

]

≤ ε↑ij . (11)

where we follow [16] to describe ρ = pw as a random

quantity represented through the exogenous statistics of

the wind power. Consistently with [16] we use the term

“uncertainty” in this paper to refer to wind power fore-

cast errors (associated with the imperfection of measure-

ment/computation/predicition tools) and the term “variabil-

ity” to refer to random fluctuations of wind power output

caused by natural atmospheric processes. This statistics is

assumed to be Gaussian

∀i ∈ Vw : E [ρi] = ρ̄i, (12)

E

[

(ρi − ρ̄i)
2
]

= Ri, (13)

where ρ̄i and Ri are the mean and covariance. In practice, the

combination of uncertainty and variability can exhibit non-

Gaussian features; however, the data-driven analysis from our

prior work, [15], [16], suggests that the Gaussian assumption

is sufficiently accurate for CCOPF computations over a large

transmission grids. One can also improve the accuracy of the

Gaussian representation by introducing uncertainty sets on its

parameters, see [15], or by using an out-of-sample analysis

of [11] to adjust parameters ε↑i , ε↓i , ε↑ij , and ε↓ij in a way

that they would match a given Gaussian distribution to a

desired non-Gaussian distribution. The optimization Eq. (7)-

(11) assumes that pl remains fixed, as in Eq. (1)-(6), while

pg depends on ρ. This dependency makes it possible for con-

ventional generators to deviate from their original set points,



p
(0)
g , to follow random wind power outputs according to a

given control policy. This policy can be affine or nonlinear

as discussed in Section II-B and Section II-C, respectively.

Eq. (8) and (11) are chance constrained equivalents of Eq. (3)

and (6), respectively. Parameters ε↑i , ε↓i , ε↑ij , ε↓ij can be

interpreted as proxies for the fraction of time (probability)

when a constraint violation can be tolerated, [11]. Relative to

[11], [15], the optimization Eq. (7)–(11) contains a number of

simplifications made for the sake of clarity. First, it assumes

compulsory participation of conventional generators in the

frequency control provision. Second, it ignores parameter

uncertainty on the probability distribution characterizing

wind power generation and correlation between distribution

parameters at different nodes.

B. Affine Frequency Control

The deterministic OPF and CCOPF formulations in Sec-

tion II-A are stated for a quasi-stationary (balanced) system

state, characterized by
∑

i∈V p
(0)
i = 0. Random fluctuations

of wind power outputs, given by
∑

i∈Vω
ρi 6= 0, forces

the system imbalance, i.e.
∑

i∈V p
(0)
i 6= 0. In other words,

since this paper focuses on the optimization over time

scales of minutes and longer, sub-minute transient processes

(evolution from pre-disturbed state to post-disturbed state)

are ignored. This simplification makes it possible to treat the

frequency and power unbalances as proportional quantities,

so that if there is no frequency control, the system equili-

brates within a few seconds at

ω =

∑

i∈Vw
ρi

∑

k∈Vg
γk

, (14)

where ω is a deviation from the nominal frequency and γk
is the (natural) damping coefficient of the generator k.

When the affine primary frequency control is activated,

the conventional generators respond as

∀i ∈ Vg : p
(0)
i → pi = p

(0)
i − α

(1)
i ωi. (15)

This response of the conventional generators force the system

to equilibrate (within the same transient time scales ranging

from a few seconds to tens of seconds) at

ω(1) =

∑

i∈Vw
ρi

∑

i∈Vg
(α

(1)
i + γi)

, (16)

where α
(1)
i is the primary droop coefficient (participation

factor) of the conventional generator i. Following the primary

frequency control, the secondary frequency control, also

called Automatic Generation Control (AGC) [10], would be

deployed within a few minutes, thus resulting in an additional

affine correction to the power output of the conventional

generators. Then, Eq. (15) is modified to account for the

secondary frequency control deployment as follows

∀i ∈ Vg : p
(0)
i → pi = p

(0)
i − α

(1)
i ω(1) − α

(2)
i ω(2), (17)

where α
(2)
i is the secondary droop coefficient (participation

factor) of the conventional generator i. Eq. (17) assumes that

the additional correction is distributed among conventional

generators according to α
(2)
i and ensures that the system

is globally balanced after both the primary and secondary

frequency responses are fully deployed. Note that Eq. (17)

ignores the inter-area correction component to simplify no-

tations. Combining Eq. (16) and Eq. (17) results in

ω(2)
∑

i∈Vg

α
(2)
i =

∑

i∈Vw

ρi − ω(1)
∑

i∈Vg

α
(1)
i = ω(1)

∑

i∈Vg

γ
(1)
i ,

(18)

It is noteworthy to note that the secondary control should be

considered as a centrally-controlled addition to the locally-

managed primary control, see [10].

Note that ω(1) and ω(2) can each be expressed in terms

of
∑

i∈Vw
ρi using Eq. (18). These expressions can then be

combined with Eq. (17) to summarize Eq. (4)–(5)

∀i ∈ V :
∑

j∼i

βij(θi−θj) =







p
(0)
i − α̃i

∑

k∈Vw
ρk, i ∈ Vg

ρi, i ∈ Vw

pi, i ∈ Vl

(19)

where α̃i stands for the renormalized droop coefficient of the

conventional generators computed according to

∀i ∈ Vg : α̃i =

α
(1)
i + α

(2)
i

∑

k∈Gg

γ
(1)
k

∑

l∈Vg

α
(2)
l

∑

m∈Vg

(α
(1)
m + γ

(1)
m )

. (20)

The renormalized droop coefficients are subject to the fol-

lowing integrality constraint:

∑

i∈Vg

α̃i = 1. (21)

C. Dead Zone in Chance-Constrained Primary Control

Eq. (17)–(19) assume that the primary control reacts to a

frequency deviation of any size. Even though this assumption

is applicable for some systems (e.g. microgrids), it does

not necessarily hold for large systems, where the primary

frequency control is routinely kept untarnished during normal

operations and is used only for quick and relatively rare

response to large disturbances, e.g. contingencies. In such

systems, α
(1)
i depends on the size of the frequency deviation,

ω(1), and can be formalized as:

∀i ∈ Vg : α
(1)
i → α

(1)
i

{

0, |ω(1)| ≤ Ω̄
1, otherwise

, (22)

where parameter Ω is a frequency threshold (dead zone) for

the primary frequency response. The value of this threshold

can be manually chosen as it suits the needs of a particular

system, [20]. Note that the dead zone makes the frequency

control policy given by Eq. (22) nonlinear; hence, one

generally anticipates that ignoring the nonlinearity and using

the affine policy would cause some inaccuracy.

To account for the dead zone in Eq. (22), we suggest the

following modification of (8)–(9):



∀i ∈ Vg : Eρ

[

θ(p
i
− pi)θ(Ω̄− |ω(1)|)

]

≤ ε
(↓,−)
i ,(23)

Eρ

[

θ(p
i
− pi)θ(|ω

(1)| − Ω̄)
]

≤ ε
(↓,+)
i ,(24)

Eρ

[

θ(pi − pi)θ(Ω̄− |ω(1)|)
]

≤ ε
(↑,−)
i ,(25)

Eρ

[

θ(pi − pi)θ(|ω
(1)| − Ω̄)

]

≤ ε
(↑,+)
i ,(26)

where θ(x) is the unit step function (also known as the

Heaviside step function) such that θ(x) = 1, if x > 0,

and θ(x) = 0 otherwise. Eqs. (23)–(26) incorporate both the

nonlinear primary frequency response and the wind power

generation statistics described by ρ, as given in Eq. (12)-

(13). Note that the parameters ε
(↓,−)
i , ε

(↓,+)
i , ε

(↑,−)
i ,ε

(↑,+)
i

are defined similarly to parameters ε↑i and ε↓i in Eq. (8)-(9).

Section III shows how Eq. (23)–(24) can be represented

in a computationally tractable form as one-dimensional

integrals (with erf-functions in the integrands). The same

transformation is applicable for Eq. (25)–(26).

D. Weighted CCOPF

Following the method of [19] we introduce weighted

chance constraints imposed at the conventional generators:

∀i ∈ Vg : Eρ

[

exp

(

−
pi
p
i

)

θ
(

Ω̄− |ω(1)|
)

]

≤ε
(↓,−)
i ,(27)

Eρ

[

exp

(

−
pi
p
i

)

θ
(

|ω(1)| − Ω̄
)

]

≤ε
(↓,+)
i ,(28)

Eρ

[

exp

(

pi
pi

)

θ
(

Ω̄− |ω(1)|
)

]

≤ε
(↑,−)
i , (29)

Eρ

[

exp

(

pi
pi

)

θ
(

|ω(1)| − Ω̄
)

]

≤ε
(↑,+)
i . (30)

The weighted chance constraints are advantageous for the

following three reasons. First, this form allows the freedom

in differentiating effects of small and large violations [19].

Second, the resulting constraints are convex regardless of

the input statistics (Gaussian or not) [19]. Third, it offers

a computational advantage as the expectations on the left-

hand side of Eqs. (27)-(30) are stated explicitly in terms of

the (well tabulated) erf-functions.

Then our CCOPF-PFR formulation with the weighted

chance constraints is as follows:

min
p
(0)
g

∑

i∈Vg

Eρ [Ci(pi)] (31)

∀i ∈ Vg : Eqs. (27)–(30) (32)

∀{i, j} ∈ E :Eρ

[

exp

(

−
φij

φ
ij

)

θ
(

Ω̄−|ω(1)|
)

]

≤ε
(↓,−)
ij ,(33)

Eρ

[

exp

(

−
φij

φ
ij

)

θ
(

|ω(1)|−Ω̄
)

]

≤ε
(↓,+)
ij ,(34)

Eρ

[

exp

(

φij

φij

)

θ
(

Ω̄− |ω(1)|
)

]

≤ ε
(↑,−)
ij , (35)

Eρ

[

exp

(

φij

φij

)

θ
(

|ω(1)| − Ω̄
)

]

≤ ε
(↑,+)
ij . (36)

Note that parameters ε
(↓,−)
ij , ε

(↓,+)
ij , ε

(↑,−)
ij ,ε

(↑,+)
ij are de-

fined similarly to parameters ε↑i and ε↓i in Eqs. (8)-(9).

III. SOLUTION APPROACH

This Section describes how the weighted chance con-

straints (32)-(36) can be computed efficiently. The process

is illustrated on Eqs. (27)-(28) and can be extended to other

chance constraints. The left-hand sides of Eq. (27)–(28)

depend on ρi and Ω attaining non-zero values if Ω̄ > |ω(1)|
and Ω̄ < |ω(1)|, respectively. Thus, the left-hand sides can

be restated as expectations over two distinct Gaussian distri-

butions defined by the following means and covariances:

E

[

ω(1)
]

σ

.
= Ωσ =

∑

i∈Vw
ρ̄i

∑

k∈Vg
(σα

(1)
k + γk)

, (37)

E

[

(

ω(1) − Ωσ

)2
]

σ

.
= Θ(ω,ω)

σ

=

∑

i∈Vw
Ri

(
∑

k∈Vg
(σα

(1)
k + γk))2

, (38)

∀i ∈ Vg :

E [pi]σ
.
= Pσ;i = p

(0)
i − α̃i;σ

∑

j∈Vw

ρ̄j , (39)

E

[

(pi − Pσ;i)
(

ω(1) − Ωσ

)]

σ

.
= Θ(pi,ω)

σ

= −
α̃i;σ

∑

j∈Vw
Rj

∑

k∈Vg
(σα

(1)
k + γk)

(40)

E

[

(pi − Pσ;i)
2
]

σ

.
= Θ(pi,pi)

σ = (α̃i;σ)
2
∑

j∈Vw

Rj ,(41)

where σ = {0, 1} distinguish the case “ω(1)-in-range” and

the case “ω(1)-off-range”. If σ = 0, α̃i;σ = α̃i. If σ = 1,

α̃i is derived from (20) using the replacement α(1) = 0. It

is also useful to introduce the so-called precision matrices

defined as the inverse (2 × 2) matrices of the covariance

matrices

∀i ∈ Vg : Φσ;i =

(

Φ
(pi,pi)
σ Φ

(pi,ω)
σ

Φ
(pi,ω)
σ Φ

(ω,ω)
σ

)

.
= (Θσ;i)

−1

=

(

Θ
(ω,ω)
σ −Θ

(pi,ω)
σ

−Θ
(pi,ω)
σ Θ

(pi,pi)
σ

)

Θ
(pi,pi)
σ Θ

(ω,ω)
σ − (Θ

(pi,ω)
σ )2

. (42)

Next, Eqs. (27) can be simplified as:

+∞
∫

−∞

dx

(

exp

(

x

p
i
− P0;i

)

− 1

)

× (43)



×

Ω̄−Ω0
∫

−Ω̄−Ω0

dy

√

det(Φ0;i) exp

(

− 1
2 (x, y)Φ0;i

(

x
y

))

2π
.

Eq. (43) is convex with respect to the set points of the con-

ventional generators. Note that chance constraints (28)–(30),

(33)–(36) can be converted to similar convex expressions.

IV. CASE STUDY

The proposed CCOPF-PFR is compared to the standard

CCOPF over a modification of the 118-bus Reliability Test

System [22]. The test system includes 54 conventional gener-

ation resources and 186 transmission lines. Additionally, this

system includes 9 wind farms with the forecasted total power

output of 1,053 MW as itemized in Table I. The mean and

standard deviation of the wind power outputs are set to 0%

and 10% of the power forecast at each wind farm. The power

flow limit of each transmission line is reduced by 25% of its

rated value and the active power demand is increased by 10%

at each bus. The droop coefficients (participation factors)

of each conventional generator for each regulation interval

are set to 1/Ng, where Ng is the number of conventional

generators, i.e. α
(1)
i = α

(2)
i = 1/Ng, ∀i ∈ Vg. The value

of the dead zone for the primary frequency response is 100

MW and the likelihood of the constraint violations is set to

ε↓i = ε↑i = ε, ∀i ∈ Vg, and ε↑ij = ε↓ij = ε, ∀ {i, j} ∈ E . Both

the CCOPF and CCOPF-PFR formulations are implemented

in Julia [23] using the JumpChance package resolved using

a 1.6 Ghz Intel Core i5 processor with 8GB of RAM.

TABLE I. WIND POWER FORECAST AT WIND FARMS (ω, MW)

bus # 3 8 11 20 24 38 43 49 50
ω 70 147 102 105 113 250 118 76 72

A. Comparison of the CCOPF and CCOPF-PFR solution

First, the CCOPF and CCOPF-PFR formulations are solved

for different values of ε. Table II compares the objective

functions of these formulations and their CPU times. In gen-

eral, the CCOPF-PFR consistently yields a more expensive

solution since it has a more constrained feasible region due

to the active PFR constraints. As the value of parameter ε
reduces so does the relative difference between the objective

function of the CCOPF and CCOPF-PFR formulations. This

observation suggests that a nonlinear primary frequency

response policy comes at a lower cost for risk-averse OPF

solutions. At the same time, the computing times reported in

Table II suggest that a higher level of modeling accuracy in

TABLE II. OBJECTIVE FUNCTION VALUES AND CPU TIMES FOR THE

CCOPF AND CCOPF-PFR FORMULATIONS

ε
Objective function, $ CPU time, s

CCOPF CCOPF-PFR CCOPF CCOPF-PFR

10
−1 91,504.8 94,757.3 (+3.55%)∗ 10.4 17.3

10
−2 92,984.6 94,861.5 (+2.02%)∗ 11.9 18.1

10
−3 94658.7 96,045.3 (+1.46%)∗ 12.1 19.4

10
−4 97,615.1 98,101.4 (+0.49%)∗ 21.7 18.9

∗ – the percentage values are relative to the CCOPF formulation.

0.1 0.01 0.001 0.0001
ε

5

7.5

10

C
os
t,
$

×104

CCOPF CCOPF-PFR

Fig. 1: Comparison of the CCOPF and CCOPF-PFR formulations
in terms of the expected costs (vertical bars) and standard deviations
(error bars) for different values of parameter ε.
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Fig. 2: Empirical violations of chance constraints on conventional
generators, ε̂, for different values of parameter ε. Label SW
(system-wide) denotes the fraction of realizations that lead to a
violation of at least one chance constraint in the entire transmission
system. Labels G30, G12 and G38 denote the fraction of realizations
that lead to violations of chance constraints for the maximum power
output at conventional generators G30 (p

i
= 805.2 MW), G12 (p

i

= 413.9 MW) and G38 (p
i

=104.0 MW)

the CCOPF-PFR formulation comes at a minimal increase

in the computation time.

Second, the CCOPF and CCOPF-PFR solutions presented

in Table II are tested over a set of 10,000 random realizations

of wind power forecast errors, where each random realization

is sampled using the multivariate Gaussian distribution. In

each test, the decisions produced by the CCOPF and CCOPF-

PFR are fixed and the constraint violations are calculated.

Fig. 1 displays the excepted operating cost and its stan-

dard deviation observed over 10,000 tests for the CCOPF

and CCOPF-PFR formulations. For both formulations the

expected operating cost and its standard deviation mono-

tonically change with the value of parameter ε. Thus, the

expected operating cost under both formulations gradually

increases for higher values of parameter ε, while the standard

deviation reduces. Notably, in all instances displayed in

Fig. 1 the expected cost of the CCOPF-PFR formulation is

greater than the expected cost of the CCOPF formulation.

As in the cost results presented in Table II, the gap between

the expected costs of both formulations reduces for higher

values of parameter ε. On the other hand, the CCOPF-PFR

formulation leads to a lower standard deviation in all in-

stances, which suggests that the CCOPF-PFR formulation is



more robust and cost-efficient for accommodating relatively

large wind power forecast errors. A more expensive and

conservative CCOPF-PFR solution leads to less violations

of chance constraints on conventional generators as shown in

Fig. 2. The number of violations reduces for the entire system

and for individual generators of different sizes. Therefore,

the CCOPF-PFR formulation is more effective in accommo-

dating deviations from the forecasted values. Furthermore,

there is no noticeable difference in violations of the chance

constraints over line flows between the CCOPF and CCOPF-

PFR formulation. This observation suggests that the main

effect of CCOPF-PFR is in improving compliance on the

supply side with the operating limits.

V. CONCLUSION

In this paper, the CCOPF formulation from [11] has been

enhanced to explicitly model constraints associated with the

primary frequency response based on a nonlinear speed-

droop governor characteristic of conventional generators. The

proposed CCOPF-PFR formulation has been compared to

the original CCOPF formulation on a modification of the

118-bus IEEE Reliability Test System [22]. This comparison

indicates that modeling a nonlinear speed-droop governor

characteristic leads to only a rather modest increase of

the expected operating cost, while improving adaptability

of the dispatch solutions to relative large deviations from

the forecast. The increased adaptability of the CCOPF-PFR

formulation is observed in reduction of the chance constraints

violations on the conventional generators and it is also seen

in lower standard deviations of the operating cost. We have

also observed that the proposed CCOPF-PFR and standard

CCOPF formulations are comparable in terms of required

computational resources.

This work can be extended in several ways:

• The PFR constraints assume that generators instantly

react to a power imbalance, i.e. there is no time delay,

which can be observed in practice [10]. Modeling this

delay is a possible extension of the proposed work

aimed at improving the accuracy.

• PFR constraints can be generalized to explicitly account

for instant power flow fluctuations over transmission

lines adjusted to the generator. This can be without

additional communication constraints by using local

measurements.

• The proposed CCOPF-PFR model can be enhanced to

include an endogenous contingency reserve assessment,

e.g. a probabilistic security-constrained framework [24].

The proposed primary frequency response constraints

can be used to accurately estimate the minimum re-

sponse requirement and its allocation instead of using

the deterministic heuristics [20].

• The proposed CCOPF-PFR model relies on lossless DC

power flows, which needs to and seemingly can be

extended to account for power losses, reactive power

flows, and voltage fluctuations via linear or quadratic

AC power flow approximations.
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