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MAX-consensus in open multi-agent systems with
gossip 1nteractions

Mahmoud Abdelrahim, Julien M. Hendrickx and W.P.M.H. Heemels

Abstract— We study the problem of distributed maximum
computation in an open multi-agent system, where agents can
leave and arrive during the execution of the algorithm. The
main challenge comes from the possibility that the agent holding
the largest value leaves the system, which changes the value to
be computed. The algorithms must as a result be endowed
with mechanisms allowing to forget outdated information. The
focus is on systems in which interactions are pairwise gossips
between randomly selected agents. We consider situations where
leaving agents can send a last message, and situations where
they cannot. For both cases, we provide algorithms able to
eventually compute the maximum of the values held by agents.

I. INTRODUCTION

Multi-agent systems involve interacting elements with
computing capabilities, also called agents or nodes, who
communicate with each other to achieve a collective control
task that is more difficult or sometimes even impossible to
be performed by an individual agent. This configuration of
multi-agent systems has a great benefit to model and solve
many problems in different fields of applications including
sensor networks [1]-[3], computer networks [4], [5] and
social science [6]-[8]. One of the common problems that has
been studied in these applications is the consensus of multi-
agent systems on aggregate functions such as, e.g., MIN,
MAX, SUM and AVERAGE. For instance, in a group of
distributed sensors, it can be required to compute the average
temperature of a specific region or to elect the sensor with
maximum power resource to preserve the communication
over a costly link or to reduce energy for a wireless sensor
network, see, e.g., [9]-[11].

Most existing results of the literature rely on the assump-
tion that the system composition is static, i.e., the set of
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agents present in the system does not change after the initial
time, see, e.g., [10], [12]-[14] and the references therein.
However, this requirement can be difficult to satisfy in some
implementation scenarios where new agents can join and/or
existing agents can leave the network at any time instant.
This phenomenon is known in the literature as “network
churn” [15], [16], “dynamic network” [17]-[19] or “open
multi-agent systems” [20]-[22]. In this case, the consensus
problem on aggregate estimates becomes more challenging to
handle compared to the case of static networks. For instance,
consider the paradigmatic problem of MAX-consensus with
distributed communications and assume that the agent with
the largest state value has left the network after all the
agents have converged to its state value. In this case, all
the existing nodes in the network will then hold outdated
information. This scenario cannot occur in static networks,
which highlights one of the inherent challenges of open
multi-agent systems.

In this paper, we investigate the problem of MAX-
consensus in open multi-agent systems with distributed com-
munications. The agents are assumed to be anonymous, do
not have global identifiers, and all run the same algorithm.
We further assume that interactions only occur via pairwise
“gossip” exchanges between randomly selected agents in the
sense that, at any (discrete) time instant, (only) two agents are
selected randomly to exchange their information, update their
MAX estimates and possibly other variables. To cope with
the dynamic nature of the network, two different solutions
are proposed depending on whether or not it is possible for
the leaving agents to announce their departures.

In the case in which announcements are made, our algo-
rithm relies on a variable that describes how ‘“‘up-to-date”
agents are with respect to recent departures, and priority
is given to information coming from the most “up-to-date”
agents. In the case where agents disappear without sending
a last message, our algorithm maintains an estimate of
the age of the information, and estimates corresponding to
information deemed too old are discarded.

We will show that our two approaches ensure that outdated
information can be forgotten, and that the consensus on the
MAX value can be achieved (with high probability) if the
system composition stops evolving.

The problem of MAX-consensus in multi-agent systems
has been studied in, e.g., [10], [11], [23], [24]. Among
existing techniques, the work of [10] has considered MAX-
consensus with random gossip interactions between agents,



on a static network. Compared to existing works of the
literature, our result is adapted to the problem of MAX-
consensus in multi-agent systems when the network is open,
which has not been considered in the previously mentioned
works. Our proposed approach encompasses the result of
pairwise gossip interaction in static networks in [10] as a
particular case.

The remainder of the paper is organized as follows.
Notations are given in Section |lI} The problem is formulated
in Section In Section we treat the case where leaving
agents send a last message, and in Section [V] we treat the
case where they do not. Numerical simulations are given
in Section [VI} Conclusions and discussions are provided in

Section [VIIl

II. NOTATION

Let R := (—00,00), Ry := [0,00), N := {0,1,2,...},
N)l = {1,2,...} and N}T = {T,T + 1,...} for T €
N. We denote by 0,, and 1,, the vectors in R"™ whose all
elements are 0 or 1, respectively. We write A7 to denote
the transpose of A, and (z,y) € R™ " to represent the
vector [z7,yT]T for x € R™ and y € R™v. The symbol I,
stands for the identity matrix of dimension n. For a random
variable R, the symbol E(R) denotes the expectation of R.

II1. PROBLEM STATEMENT

Consider a connected time-varying graph G(t) =
(V(t),E(t)), where V(t) and £(t) denote, respectively, the
set of existing agents and the set of edges in the graph
at time ¢t € N. The graph G(t) is dynamic in the sense
that new agents can join and/or existing agents can leave
at any time ¢. Hence, the cardinality of V(¢), denoted by
N (t), is not necessarily constant for all ¢ € N. The agents
communicate with each other in a pairwise randomized
gossip fashion [9]. In other words, at any time instant ¢t € N,
there are three possibilities: (i) an agent joins the system
and N(t + 1) = N(t) + 1, (ii) an agent leaves the system
and N (t + 1) = N(¢) — 1, or (iii) two randomly selected
agents i,j € V(t),i # j communicate with each other (Note
that these discrete-time instants may be interpreted as the
sampling of an asynchronous process at those times where
an event occurs). Joining agents are assumed to know that
they join the system. Leaving agents may or may not be able
to send one last message (to one other agent) before leaving,
which are two cases of interest, which will be discussed in
Section [IV] and [V] respectively.

Every agent ¢ has two special states: x; € R is its intrinsic
value, which is constant and determined arbitrarily when
joining the system, and y;(t) is its estimated answer at time
t € N for the MAX value. Our goal is to estimate the
maximum intrinsic value of all the agents present in the
system, so we would ideally want, when no more agents
are joining or leaving the network after time 7' € N, that
there is a time T* € N > T such that y;(t) = MAX(t) :=
max;ecy () 24, for all i € V(t) and for ¢t € N > T*. Agents
may then have other states that they use to reach this goal.

If the network would be static, i.e., G(¢) is time-invariant,
the estimation of the maximum could be achieved in finite
time by starting from y;(0) = x;(0) for every agent, and
setting y;(t + 1) = y; (¢t + 1) = max(y,(t),y;(t)) whenever
agents ¢ and j interact at time ¢t € N, see, e.g., [10].
The main challenge in a dynamic or open network lies
with the need for the algorithm to take new agents into
account and to eventually discard information related to
agents no longer present in the system to ensure that max; x;
is eventually recovered once the system composition stops
evolving. Classical algorithms such as that in [10] do not
guarantee this: outdated values from agents no longer in the
system may never be discarded.

Note that an alternative and maybe more natural goal
would be to have the y;(t),i € V(t) track MAX(t) =
max;cy () ¥, sufficiently accurately. This more ambitious
goal is left for future studies, see Section @] for further
discussions on this issue.

Finally, we chose to make the following assumption for
the sake of simplicity of exposition.

Assumption 1. The graph G(t) = (V(t),E(t)) is complete
forall t € N. O

This means that every pair of distinct agents in the network
can communicate directly with each other. The algorithms we
develop would actually also work on general dynamic graphs
under suitable connectivity assumptions, but the analysis
would be more complex.

IV. DEPARTURES ARE ANNOUNCED

A. Algorithm description

If leaving agents announce their departure (to one other
agent), then we can benefit from this knowledge to correct
the outdated information. For that purpose, we introduce an
auxiliary variable «;(t) € N at each agent, meant to represent
the “level of information” available to ¢ about the departures
up to time ¢ € N. It will in general not be equal to the actual
number of departures, nor converge to it. The algorithm
is designed to ensure that those with the largest value k;
have valid estimates, i.e. their y;(t) correspond to the z; of
agents present in the system. For this purpose, information
coming from agents with higher x; will be given priority
over information coming from agents with lower values, and
it will be made sure that agents with a lower value of x; will
never have influenced those with a higher value.

The algorithm is summarized as follows. Initially, every
existing agent at ¢t = 0 sets y;(0) = x; and x; = 0,7 € V(0),
as shown in Algorithm [I]

Algorithm 1 Intialization algorithm

At time ¢ = 0, every existing node ¢ € V(0) initializes its
state as

1: y; (0) =T;

2: Iil(()) =0




When a new agent n joins the group at time ¢ € N, it
initializes its counter k., (t) and its estimate y,,(t) according
to Algorithm

Algorithm 2 Joining algorithm

Assume at any time ¢t € N3¢, a new agent n wants to join,
ie., V(t+1)=V(t)U{n}. Agent n initializes its state as

1 yn(t) = zp
2: Iin(t) =0

If an agent ¢ leaves the system, it sends a last message
containing its counter value ;¢ to a randomly selected agent
m. The reaction of m is governed by Algorithm [3] which
can be interpreted as follows: If the counter ry(t) of the
leaving agent £ is less than k., (¢), then agent m ignores this
departure since the information of ¢ is deemed less up-to-date
than its own and has not influenced it. On the other hand, if
ke(t) = Km(t), then £ may have influenced m and possibly
agents 7 with values «; higher than x,,, but no larger than
k¢. To ensure that none of the agents with the highest values
x hold the now outdated value x;, m will reset its y,, to
Zy,, Which is by definition a valid value, and set its x,, to
k¢ + 1, a value above that of all those who could have been
influenced by /.

Algorithm 3 Departure algorithm

Assume at time ¢ € N, agent ¢ leaves, ie., V(t +1) =
V(E)\ {4}

Agent ¢ picks a random agent m to inform, and agent m
updates its state as follows

1: if ky(t) < K (t) then
2 ym(t + 1) = ym(t)

3: Em(t+1) = km(t)

4: else if k¢(t) > Kk (t) then
5: ym({t+1) =z,

6: Em(t+1) =ke(t)+1
7: end if

The gossip communication between agents is performed
via Algorithm [] (values not explicitly updated remain con-
stant between ¢ and ¢+ 1). When &;(t) = x;(t), this implies
that agents ¢ and j either have not been informed about
any departure from the group, i.e., k;(t) = k;(t) = 0, or
have equal information level about the departure of one or
more agents. In either case, agents 7 and j can exchange
their information to update their estimate for the MAX
value. When k;(t) > x;(t), agent ¢’s information about past
departures is deemed more up to date. Agent j is then not
allowed to transfer its estimate y; to avoid infecting ¢ with
possibly outdated information (unless its estimate is actually
its own value, which is by definition valid). Therefore, agent
j restarts to max(y;(t), ;) and increments its counter to
kj(t +1) = kK;(t) in order to alert other future agents
who have not been informed yet to restart. The case when
kj(t) > k;(t) is completely symmetric.

Algorithm 4 Gossip algorithm

At each time step ¢ € N, two agents i,j € V(t) are picked
randomly (with possibly 7 = j)

1. if Hi(t) = Kj (t) then

2 y(t+ 1) =yt +1) =max(y(t), y;(t))
3: else if x;(t) > k;(¢t) then

4: yi(t+1) = y;(t + 1) = max(y;(t), z;)

5: Kj(t + 1) = Hi(t)

6: else

7.yt +1) =y;(t+ 1) = max(zi, y;(t))

8: Hi(t —+ 1) = Iij(t)

9: end if

B. Eventual Correctness

We now show that the algorithm described in the previous
subsection is correct in the sense that, with high probability
(and even almost surely), it eventually settles on the correct
value if arrivals and departures stop.

Remember that V(t) := {1,...,N(¢)} denotes the group
of agents present at time ¢, and let X := {x1,..., 25} be
the set of intrinsic values of nodes in V(t). Assume that after
some time 7" € N no agent leaves and no new agent joins
the system, so that V(t) = V(T) =V, £(t) = E(T) = &€
and N'(t) = N(T) = N for all t € Ns7. Then, we need
to show that all the currently existing agents V(T') in the
network will successfully reach the correct maximum value.
For that purpose, we define the following property.

Definition 1. We say that an algorithm is eventually correct
if for any T € N with G(t) = (V,€) for all t € Ny, there
exists a T* € Nxr such that y;(t) = max; gz, for all
i€V and all t € Np-.

max x; and

Denote K(t) = i(t), MAX(t) =
(t) = macwi(t) ) = max

Xk (t) == {z; : i € V(t) A ki(t) = K(t)}. We state the
following result.

Lemma 1. For allt € N and any j € V(t), if ;(t) = K(t)
then y;(t) € Xk (t) C X(¢).

Lemma |1 states that, at any time ¢ € N, if the counter value
of an agent j € V(¢) is equal to the maximum value K (t),
then its estimate y;(¢) is equal to an intrinsic value x; €
Xk (t) of one of the agents present in the system at this
time ¢ and whose value «; is K (t).

Proof. Consider any agent j € V(t) with x;(t) = K(t). We
have three scenarios:

(a) Agent j has just joined the system at time ¢. Hence,
kj(t) = 0 and y;(t) = z; according to Algorithm
Since k;(t) = K(t), this implies that K () = 0. Hence,
K;(t) = 0 for all ¢ € V(t). Consequently, it holds that
yi(t) € Xic(t) = X (1)

(b) K(t) > K(t—1) (and j is not a new agent). In this case,
since at most one agent can change its counter at any time,
there is exactly one agent j with «;(t) = K (¢). This implies



that an agent ¢ € V(t — 1) with k¢(t —1) = K(t—1) has left
at time ¢ and informed agent j about its departure, otherwise
kj(t) # K(t) or K(t) # K(t— 1). Consequently, agent j
restarts according to lines 7-9 in Algorithm [3] and we have
that x;(t) = K(t—1)+1 = K(t) and y;(t) = z; € Xk (t).

(¢c) K(t) = K(t — 1) (and j is not a new agent). We have
two possibilities:

cl) kj(t) > k;(t — 1), i.e., agent j has increased its counter
value at time ¢ such that «;(t) = K(t) = K(t — 1), which
can happen by one of the following actions:

- an agent i € V(t — 1) with k;(t — 1) = K(t — 1) —
1> k;(t — 1) has left the group and informed agent j
about its departure. Consequently, in view of lines 4-6
in Algorithm [3] agent j has incremented its counter to
ki(t) = ki(t—1)+1 = K(t —1) = K(t), otherwise
lﬁj(t) #* K(t - 1) and yj(t) =I; € XK(t)

- no departure occurred but agent j has interacted with
an agent ¢ € V(t — 1) with k;(t — 1) = K(t — 1).
Consequently, in view of lines 4-6 in Algorithm [] we
obtain k;(t) = ki(t —1) = K(t —1) = K(t) and
y;(t) = max(a;, yi{t — 1) € Xic(0).

c2) k;j(t) = k;(t—1), i.e., agent j did not increase its counter
value at time ¢. Then, since K (t) = K(t — 1), it holds that
kj(t—1) = K(t — 1) and we know that y;(t — 1) = x; for
some z; € X (t — 1). There are two different possibilities:

- y;(t) # y;(t — 1), which can only happen if agent j
has interacted via algorithm [] with an agent h with
kp(t —1) = K(t — 1). Hence, in view of line 3 in
algorithm [} it holds that y;(t) = ya(t — 1) € Xk (t).

- y;(t) = y;(t = 1) = x;. We know that agent ¢ did
not leave because otherwise it would have been true
that agent ¢ has informed some neighbour m about its
departure and resulted in k,,(t) = ki(t — 1) +1 =
K(t — 1) + 1, which leads to case (b) not case (c).
Hence, since ¢ € V(t), it holds that y;(t) € Xx(t).

This completes the proof of Lemma |

Theorem 1. Suppose that Assumption |I| holds. Then, Algo-
rithm [I{4) is eventually correct.

Proof. The proof of Theorem [I] relies on Lemma [I] and the
result developed in [10]. Note that an essential difference
between our problem and the setup in [10] is that the gossip
interaction between agents (as in Algorithm depends
considerably on their counter values, which is not the case
in static networks as in [10]. Therefore, we will invoke their
result twice, once on the counter values x; to show that all
agents eventually have the maximal counter value K (7"), and
once on the actual estimate y; () to show that they eventually
reach MAX(T).

After time 7', only Algorithm 4| is applied. Ignoring for
the moment its effect on the y;(t), observe that it performs
a classical gossip operation on the r;(t), in the sense that an

interaction between ¢ and j results in x;(t+1) = k;(t+1) =
max(k;(t), x;(t)). Theorem 4, 5 in [10], applied to complete
graphs following Assumption |1} allows us then to guarantee
that the counters of all agents converge to the maximum
counter value K (7') in a finite time 77" with the following
properties

E(Tf —T) < (W — Dhy ;. (1)

where h,, denotes the mth harmonic number, ie., h, =
w_1 +- Moreover, we have, with probability 1 — e that

Ty — T is bounded by

_ N 1
N —Dhw | 141 () 1+, [1+—— .
( ) N—1 ( 0og . < logN>> (2)

€

After T, since k;(t) = K(t) for all i, it follows from
Lemmathat all y;(t) correspond to actual values z;, j € V.
Moreover, since one can easily verify that y;(¢) > x; at all
times, there holds max;y; i (t) = max; 3 v; = MAX(t) =
MAX(T). It is therefore sufficient to show that all y;(t)
eventually settle on the same value.

For this purpose, observe that when all agents have the
same k;(t) = K(t), Algorithm {| reduces to its line 2,
yi(t +1) = y;(t + 1) = max(y;(¢), y;(¢)), which is again a
classical pairwise gossip. We can then re-invoke Theorem
4, 5 in [10] to show the existence of a T™ after which
yi(t) = max; v yi(T*) = maxXicparv ;i = MAX, with
the same bounds on 7™ — T} as on T} — T'. In particular,
E(T* — T) < 2(N — 1)hzy_,, and there is a probability
1—¢ that T* — T is at most twice the expression in (). This
achieves the proof of Theorem [I] (]

Remark 1. Note that, since we apply the result of [10] twice
to prove that Algorithm is eventually correct, the upper
bound that we obtain on the time needed to achieve this
property is conservative. This comes from the fact that, in
Algorithm the agents update their counters and their
estimates simultaneously and not sequentially. O

V. DEPARTURES ARE NOT ANNOUNCED
A. Algorithm description

Leaving agents may not always be able to announce
their departure, such as in case of unforeseen failures or
disconnections. The algorithms in Section [[V| can no longer
be applied in such a more challenging setting. Therefore,
we now propose an alternative algorithm that does not use
messages from departing agents. The idea is to have each
agent maintain a variable 7; representing the “age” of its
information. This age 7; is kept at 0 when the agent’s
estimate y;(t) of MAX(t) corresponds to (only) its own
value x;, as the validity of its information is then guaranteed.
Otherwise 7; is increased by 1 every time agent ¢ interacts
with another agent, as the information gets “older”. When an
agent ¢ changes its estimate y;(¢) by adopting the estimate
y;(t) of an agent j, it also sets 7;(t) to the value 7;(t), which
corresponds to the age of the new information it now holds.
Finally, when 7;(t) reaches a threshold 7, the information
yi(t) is considered too old to be reliable and is discarded;



y;(t) is reset to x; and T;(t) to 0. We defer the discussion
on the value of 7 to Section but already note that it
should depend on (bounds of) the system size, or (possibly)
change with time.

Formally, the behavior of an agent joining the system is
governed by Algorithm [5| while the update of 7;(t) and
the gossip interactions are governed by Algorithms [6] and
(where we use y;(tT), T;(t7) to denote intermediate values
the variables y;, 7; may take during the computation leading
to their values at ¢ + 1). Observe that when ¢ and j have
the same estimate y;(t) = y;(t) they update the age of
information to the smallest among 7;(t) and 7;(¢). Observe
also that the algorithms guarantee that y;(¢) > x; for every
i at all times, since y;(t) can never decrease except when it
is re-initialized at z;. Finally, there is no algorithm for the
departure, since agents are not assumed to be able to take
any action when other agents leave as this is not announced.

Algorithm 5 Joining algorithm

Assume at time ¢ € N1, a new agent n wants to join. Agent
n initializes its state as follows

I yn(t) = zp

20 To(t) =0

Algorithm 6 UpdateTimer

When agent i calls this procedurd'}
. if yl(t) =x; then

> guaranteed validity of estimate

1

2 Titt) =0

3 yi(tT) =

4: else > estimate gets one period older
5: Tt =Ti(t)+1

6 yi(th) =wi(t)

7: end if

8: if 7;(t) = T* then > Reset if threshold reached
9o y(th) =y

10: Titt)=0

11: end if

Algorithm 7 Gossip algorithm

At each time step ¢, two agents i, j are picked randomly

1: UpdateTimer(i), UpdateTimer(j)

2. if y; (t7) > y;(¢t) then

30 yt+1) =w(t")

4 T(t+1) =Tt

5. else if y;(t7) < y;(t7) then

6yt 1) =y, ()

7. Ti(t+1)=T;(t")

8: else if y;(tT) = y;(¢tT) then

o Ti(t+ 1), Tt + 1) = min(T (), (1))
10: end if

B. Eventual Correctness

We now discuss the eventual correctness of the algorithm
described above. For space reasons, only sketches of proofs

will be presented. We use the same conventions as in Section
We first prove that outdated values are eventually
discarded if agents stop leaving or arriving.

Lemma 2. If no arrival or departure takes place after time
T € N, then almost surely there exists a time T' € N
after which every estimate y; corresponds to the value of
an agent present in the system, ie., for t € N > T, for
all i there exists a j € V(t) =V such that y;(t) = ;. As
a consequence, y;(t) < MAX(T) = max;y;x; for every
iceVit)=VandtcN>T

Proof. Observe first that agents can only set their y; to their
own z; or to the value y; of some other agent. Hence, since
the set of values x; remains unchanged after T, values y; ()
for times ¢ > T that are not equal to some x;, j € V, must be
equal to some y;(7T), i.e., must have been held as estimated
at time 7". We show that these outdated values are eventually
discarded.

Let z € R be such an outdated value, that is, y;(T) = 2
for some i € V but z = x; for no j € V. Let then D(t) =
{i € V : y;(t) = 2} be the set of agents holding z as estimate
at time ¢, and 7(¢) = min{7;(¢) : ¢ € D(¢)} be the minimal
age of information at ¢ for those holding this outdated value
as estimate. As long as D(t) is non-empty, there must hold
7(t) < T* due to the reset in Algorithm [] We will show
that 7(¢) must keep increasing if D(t) remains non-empty,
leading to a contradiction.

Every time an agent ¢ € D(t) for which 7;(t) = 7(¢)
interacts with some other agent, It follows from Algorithm
[7 and the timer update in Algorithm [6] that it must increase
its counter 7; by 1, unless it changes its value y; and no
longer belongs to D(t + 1). In both cases the set of agents
in D(t) with this 7; taking this value has decreased by
1. Besides, since z is equal to no z;, the only way an
agent ¢ can join D(¢ 4+ 1) if it was not in D(¢) is by
interacting with an agent 5 € D(¢), and the rules of the
algorithm imply then that 7;(¢ + 1) = 7;(¢t) +1 > 7(¢) + 1.
Hence 7(t) = min;ep) Ti(t) never decreases, and when
it is not increasing, the number of agents in D(t) for
which 7;(t) = 7(t) either remains constant, or decreases
as soon as one of them is involved in an interaction (once
it reaches 0, 7(¢) automatically increases). Since all agents
are almost surely repeatedly involved in interactions, this
means 7(t) will almost surely eventually increase as long
as D(t) is nonempty, in contradiction with the fact that it
cannot exceed 7*. D(t) must thus almost surely eventually
be empty, which means that any outdated value is thus almost
surely eventually discarded, so that after some time 7’ every
estimate y;(t) corresponds to a z; for j € V. O

Let us now prove that the agents’ estimates y; eventually
take the correct value MAX with a high probability.

Theorem 2. For all € > 0, there exists a (sufficiently large)
T* € N such that, if no arrival or departure takes place
after time T € N, then there exists a time T"" e N> T after
which y;(t) = MAX(T) = max 3 z; holds for every i € V
with a probability at least 1 — e.



Proof. Let m be an agent holding the maximal value after
time T x,, = MAX = max;cy z;. It follows from Lemma
that ¥,,(t) < MAX holds after some 7”, which implies
ym(t) = MAX = x,,, since one can verify that y;(t) > x;
holds for all agents at all times. The timer update Algorithm
[6] implies then that 7;,(¢) = 0 at all times after 7".

Let us now fix some arbitrary time ¢ > 7" and let C'(¢) C
V be the set of agents i such that (i) y;(t) = MAX, and
(i) 7; < t — tg. The set C(ty) contains at least agent m.
Moreover, for t € [tg,to + T* — 1], there holds C(¢) C
C(t+1). Indeed, observe first that no agent of C'(¢) “resets”
because the 7; of agents in C(t) are by definition smaller
than 7*. Moreover, agents in C(¢) do not change their value
y; either because it follows from Lemma [2] that no agent j
has a value y; > y; = MAX, so condition (i) still holds.
Besides, the timer 7; increase by at most 1 at each iteration
so condition (ii) also holds. Observe now that whenever an
agent ¢ € C(t) interacts with an agent j ¢ C(t) at a time
t € [to, to+T*—1], agent j will set y; (t+1) to y;(t) = MAX
and join C'(t+1). A reasoning similar to that the analysis of
classical pairwise gossip algorithm in [10] shows then that,
for every e, there exists of a 7 given by (@) such that with
probability at least 1 — ¢, all agents will be in C(t) after
to + 7 and at least until tqg + 7 (provided 7 > 7). There
would thus hold y; = MAX for all ¢. Since this holds true
for any arbitrary to > T’, it follows that for every ¢ and
t > T + 7, y;(t) = MAX holds with probability at least
1—e |

The proofs of eventual correctness show that the value of
the threshold 7* is subject to a trade-off: We see from the
proof of Lemma [2] that the time needed to discard outdated
values increases when 7 * is increased. On the other hand,
a sufficiently large threshold is needed in Theorem [2] In its
proof, we see that larger thresholds allow larger 7, which
imply smaller probabilities € of some agent not having the
correct value.

Besides, we see in Theorem 2] that 7* must be sufficiently
larger than the expression (2), which depends on N, the even-
tual size of the system. This implies that agent must know at
least a bound on this size, unlike in the algorithm developed
in Section [[V]when leaving agents could send a last message.
One theoretical solution to avoid this problem would be to
let 7* slowly grow with time, so that it would eventually
always be sufficiently large if the system composition stops
changing (This growth should be sufficiently slow for the
argument of Lemma [2] still to be valid). However, the system
would also become slower and slower in discarding outdated
information.

VI. SIMULATIONS

We demonstrate the application of our algorithms on a
group of 25 agents: Initially, the intrinsic states z; of all
agents were assigned to random integer values between 0
and 1000. The largest two values of x; are found to be x9 =
936 and x13 = 815. The estimates y;(0) for all agents are
initialized to x; and all the counters x;(0) and ages 7;(0)
are initialized to 0. Agent 9 with the highest value, z9 =
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Fig. 1. Evolution with time of the agent estimates y; (¢) for the algorithm of
Section m where departures can be announced (a), and of Section Mwhere
departures are not announced, for tresholds 7* = 40 (b) and 7* = 200
(c). (The scale is different in (a)). Departure of the agent with highest value
is represented by a dashed line.

936 leaves at ¢ = 200. Pairwise interactions between two
randomly selected agents take place at every other time.

We have simulated the two algorithms, with two thresholds
T* for that of Section [V] and the results are represented
in Fig. [l We note that in the three cases, all the agents
first converge to the MAX value of 9 = 936 in a bit
more than 100 time steps, before agent 9 leaves the network.
After the departure of agent 9 at ¢ = 200, we see that the
algorithm of Section that uses messages from departing
agents reconverges to the new maximal value z;3 = 815 in
137 time steps. The performance of the algorithm of Section
[V] without messages from leaving agents are significantly
worse. For a threshold 7* = 40, we see that it takes 506 time
steps to reconverge to the new maximal value, but the system
later suffers from several spurious resets. These are caused by
agents reaching the threshold by chance. The probability of
this occurring can be significantly reduced by taking a higher
threshold, but this results in an even longer time to react to
the departure of 9, as seen in Fig. Ekc) with 7 = 200. 2439
time-steps are indeed needed to re-obtain the correct value,



mostly because it takes very long before the agents abandon
their former estimate. This clearly illustrates the trade-off
on the threshold value 7*: a too small value will result in
spurious resets as soon as some agents “have not heard”
about the agent with the highest value for too long. But a
too large threshold will result in a significant delay before
agents decide that an agent has probably left the system.
We also performed comparisons between the two ap-
proaches on the convergence time to reach consensus after
the agent with MAX has left the group for other numbers
of nodes. The results are summarized in Table [I We take
T* = 1.1N(0) with the algorithm of Section V] We observe
that when the number of agents increases, the algorithm of
Section requires proportionally much fewer iterations to
reach consensus, as expected and already observed in Fig. [1}
Moreover, it also achieves a stronger version of the property
of eventual correctness than the algorithm of Section |V] as it
avoids spurious resets, as discussed above. It does however
require the possibility of sending messages when leaving.

Number of nodes \ Iterations to reach MAX-consensus

| Algorithm Algorithm
10 21 64
20 129 162
30 194 599
50 246 1885
100 628 6580
TABLE I

COMPARISON BETWEEN THE TWO TECHNIQUES WITH DIFFERENT
NUMBER OF NODES.

VII. DISCUSSION AND CONCLUSION

We have investigated the distributed MAX-consensus
problem for open multi-agent systems. Two algorithms have
been proposed depending on whether the agents who leave
the network can inform another existing agent about their
departure or cannot. The eventual correctness has been
proven for both.

Taking a step back, we see two main challenges in the
design of algorithms for open multi-agent systems, as also
briefly noted in [20]:

Robustness and dynamic information treatment: The al-
gorithms should be robust to departures and arrivals, in
the sense that they should keep updating their estimates to
discard outdated information. Moreover, novel information
held by arriving agents should be taken into account, and
outdated information, for example, related to agents no
longer in the system, should eventually be discarded.

Performance in open context: The performance of classical
multi-agents algorithms is often measured by the rate at
which they converge to an exact solution or a desired sit-
uation (or the time to reach such a situation). This approach
is no longer relevant in a context where agents’ departures
and arrivals keep “perturbing” the system, and possibly
the algorithm goal (as is the case here). Rather, efficient

algorithms would be those for which the estimated answer
remains ‘“close” to some “instantaneous exact solution”,
according to a suitable metric.

The algorithms we have developed here do answer the first
issue of robustness and information treatment for the problem
of distributed maximum computation. The characterization
and optimization of their performance in an open context,
however, remains unanswered at present and could be the
topic of further works. We note that the behavior of a gossip
averaging algorithm in an open multi-agent system was
characterized in [20], but this algorithm was not designed
to compute a specific value, as is the case here.

In particular, we observe that both algorithms would suffer
from occasional apparently unnecessary resets. This may
happen after the departure of an agent that did not have the
largest value in the algorithm of Section or when an agent
has been isolated for too long from that with the highest value
in the algorithm of Section[V] We do not know at this stage if
these spurious resets can be entirely avoided, especially when
leaving agents cannot send a final message. In this case, it is
indeed impossible to know for sure whether the agent with
the highest value has left or has just not communicated for a
while. There are, however, several possibilities to mitigate
the damage of these spurious resets and to play on the
trade-off between the effect of these perturbation and the
speed at which the system reacts. A simple solution could
be for example to apply an additional filtering layer when the
algorithm requires an important decrease of y;. In this case,
a new estimate y; would follow y; except that sharp decrease
would be replaced by gradual ones. We also observe that our
second algorithm will either only work when the system size
is not too large with respect to 7* (case of a fixed threshold)
or eventually work for all size but gradually become slower
and slower to react (case of a growing 7). Whether this
can be avoided in a context when leaving agents do not warn
others about their departure also remains an open interesting
question.
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