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Abstract— Theoretical results for the existence of (nons-
mooth) control Lyapunov functions (CLFs) for nonlinear sys-
tems asymptotically controllable to the origin or a closed
set have been available since the late 1990s. Additionally,
robust feedback stabilizers based on such CLFs have also
been available though, to the best of our knowledge, these
stabilizers have not been implemented. Here, we numerically
investigate the properties of the closed loop solutions of the
nonholonomic integrator using three control techniques based
on the knowledge of two different nonsmooth CLFs. In order
to make the paper self-contained, we review theoretical results
on the existence of nonsmooth CLFs.

I. INTRODUCTION

Control Lyapunov functions (CLFs) were first introduced
by Artstein in [1] and have been widely used for the design of
feedback stabilizers; see, e.g., [12], [17]. However, there is a
known impediment to the existence of continuously differen-
tiable CLFs [2], [6] for systems asymptotically controllable
to the origin. The existence of nonsmooth CLFs under the
assumption of asymptotic controllability was first addressed
by Sontag [18], wherein a continuous CLF was presented.
Subsequently, existence results and, in fact, feedback stabiliz-
ers were presented in [5], [15], [9], [10]. This is an endeavour
with a rich history and a comprehensive survey can be found
in [4].

Generally speaking, the results above have been restricted
to theoretical development without investigating the im-
plementation of the proposed (sample and hold) feedback
stabilizers, with an exception being the work of Nakamura
et al. [11], [16], [14], where piecewise continuous stabilizers
are developed in contrast to the piecewise constant sample
and hold feedbacks considered here.

In part, this lack of attention is due to the significant
theoretical and practical advances in model predictive control
techniques. Since, in general, model predictive control is easy
to implement (if questions like robustness and stability of the
closed loop system are put aside), and feedback design based
on nonsmooth CLFs can only be implemented if a CLF is
known, CLF-based feedback design has not received recent
attention. However, such designs have tangible benefits in the
form of guaranteed closed-loop stability as well as inherent
robustness properties [8].
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In this paper, we investigate the performance of the closed-
loop solutions for the nonholonomic integrator(

ẋ1 ẋ2 ẋ3

)T
=
(
u1 u2 x1u2 − x2u1

)T
, (1)

x ∈ R3, u ∈ R2. We propose two CLFs, with differing
regularity properties, and investigate the behavior of three
different feedback stabilizers based on these CLFs. The non-
holonomic integrator is of particular interest since Brockett’s
condition implies that there exists no continuous control law
asymptotically stabilizing the origin, even though the system
is asymptotically controllable to the origin [2]. Thus, the
nonholonomic integrator fails to admit a smooth CLF which
explains the necessity of the consideration of nonsmooth
CLFs and the introduction of generalized derivatives such
as the Dini derivative. Additionally, the dynamics of the
nonholonomic integrator are particularly interesting since
they can be used to model the dynamics of mobile robots
(see for example [11], [19], and the references therein). In
this context, model predictive control has been applied to the
nonholonomic integrator in [7], [19], and [13], for example.
Here, the difficulty lies in the definition of an appropriate
running cost and a prediction horizon that guarantees stability
– a problem which is still not fully understood.

The paper is organized as follows. In Section II the math-
ematical setting is introduced. This includes definitions and
properties of the dynamical systems considered, necessary
and sufficient conditions for existence of (nonsmooth) CLFs,
and semiconcavity, a property of importance for nonsmooth
CLFs. In Section III we present three feedback design
techniques based on the knowledge of a CLF. The numerical
properties of these methods are analyzed in Section IV using
two nonsmooth CLFs for the dynamics of the nonholonomic
integrator. The paper ends with conclusions in Section V.

II. CLFS: THEORY AND DEFINITIONS

In this section the mathematical setting and the notations
used throughout the paper are introduced. In the second part
of this section necessary and sufficient conditions for the
existence of (nonsmooth) CLFs based on the Dini derivative
are reviewed. The section concludes with the definition and
illustration of semiconcavity in the context of CLFs.

A. Mathematical setting

The system dynamics of a nonlinear time-invariant con-
trol system, including the dynamics of the nonoholonomic
integrator, are described by

ẋ = f(x, u) (2)



where x ∈ Rn denotes the state, u ∈ U ⊂ Rm denotes the
input, and f : Rn×U→ Rn is a continuous function defin-
ing the dynamics of the system. Alternatively, the system
dynamics can be represented using a differential inclusion

ẋ ∈ F (x) (3)

where F : Rn ⇒ Rn. Here, F is defined as

F (x) = co{z ∈ Rn|z = f(x, u), u ∈ U},
where co(·) denotes the closure of the convex hull. In the
context of CLFs, (2) and (3) can be used interchangeably.

We make use of the following definitions and notations.
Br(x) = {y ∈ Rn|‖x − y‖ < r} denotes an open ball
of radius r > 0 centered around x ∈ Rn and Br(x) =
{y ∈ Rn|‖x − y‖ ≤ r} denotes its closure. A function φ :
R≥0 × Rn → Rn is said to be a solution of the differential
inclusion (3) from initial condition x ∈ Rn if it is absolutely
continuous and satisfies φ̇(t, x) ∈ F (φ(t, x)) for almost all
t ∈ R≥0. We use φ(·, x, u) to emphasize a particular input.
S(x) denotes the set of solutions starting at x. A function
α : R≥0 → R≥0 is said to be of class K∞ (α ∈ K∞) if α is
continuous, strictly increasing, α(0) = 0 and α(r)→∞ for
r → ∞. A function β : R2

≥0 → R≥0 is said to be of class
KL (β ∈ KL) if β(·, t) ∈ K∞ for all t ∈ R≥0 and β(r, ·)
is continuous, decreasing and β(r, t)→ 0 for t→∞ for all
r ∈ R>0. A function ρ : R≥0 → R≥0 is said to be of class
P (ρ ∈ P) if ρ is continuous ρ(0) = 0 and ρ(r) > 0 for all
r > 0.

We make the following standard assumptions on the set-
valued map defining (3) guaranteeing existence of solutions.

Definition 2.1: A set-valued map F : Rn ⇒ Rn is said
to satisfy the basic conditions on Rn if, for each x ∈ Rn,
F (x) is nonempty, compact, and convex and if F (·) is upper
semicontinuous on Rn; i.e., for each x ∈ Rn and ε > 0 there
exists δ > 0 such that for all ξ ∈ Rn satisfying ‖x− ξ‖ ≤ δ,
we have F (ξ) ⊂ F (x) +Bε(0).

Definition 2.2: A set-valued map F : Rn ⇒ Rn is locally
Lipschitz on O ⊂ Rn if, for all x ∈ O, there exists a
neighborhood U ⊂ O of x and L > 0 such that x1, x2 ∈ U
implies F (x1) ⊂ F (x2) +BL‖x1−x2‖(0).

We also make the following assumption on F :
Assumption 2.3: For each r > 0 there exists M > 0 such

that ‖x‖ < r implies supw∈F (x) ‖w‖ ≤M .
In terms of the system representation (2), Definition 2.1

and 2.2 and Assumption 2.3 are satisfied if f is Lipschitz
continuous with respect to x and if U is convex and compact.

B. (Nonsmooth) CLFs in the Dini sense

With the set-valued map F defined above, asymptotic
controllability to the origin for (2) can be viewed as a weak
form of asymptotic stability for (3).

Definition 2.4: The differential inclusion (3) is weakly
KL-stable with respect to the origin if there exists β ∈ KL
such that, for each x ∈ Rn, there exists φ ∈ S(x) so that

‖φ(t, x)‖ ≤ β(‖x‖, t)
for all t ≥ 0.

The connection of weak KL-stability and the existence of
a smooth CLF is stated in the following theorem.

Theorem 2.5 (Smooth CLF): Suppose F satisfies the ba-
sic conditions on Rn, is locally Lipschitz on Rn\{0}, and
satisfies Assumption 2.3. Then the origin of the differential
inclusion (3) is weakly KL-stable if there exists a smooth
CLF V : Rn → R≥0 (V ∈ C∞), α1, α2 ∈ K∞ and ρ ∈ P
such that for all x ∈ Rn,

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), and

min
w∈F (x)

〈∇V (x), w〉 ≤ −ρ(‖x‖).

Unfortunately Theorem 2.5 only provides a sufficient
condition for weak KL-stability in terms of CLFs. For
general systems (2), and in particular for the nonholonomic
integrator (1), a continuously differentiable CLF fails to
exist. In general, under the assumption of weak KL-stability,
only a semiconcave (see Section II-C), and thus, Lipschitz
continuous CLF V can be expected [15].

To this end, generalized gradient definitions have been
used to define CLFs; see [4] for a thorough discussion. Here
we consider CLFs, as introduced by Sontag in [18], based
on the Dini or directional derivative dV . Note that, as no
converse result is possible in Theorem 2.5, to our knowledge
Theorem 2.5 has not been written down in this form before.
However, the proof easily follows by appealing to known
results using generalized gradients as in Theorem 2.7 below.

Definition 2.6: Let the function ϕ : Rn → R be Lipschitz
continuous in a neighborhood of x ∈ Rn. Then the (lower)
Dini derivative in direction v ∈ Rn is defined as

dϕ(x; v) = lim inf
t↘0

ϕ(x+ tv)− ϕ(x)

t
.

We point out two properties that will be important for our
application of the Dini derivative in what follows:

(i) If ϕ : Rn → R is continuously differentiable on a
neighborhood containing x ∈ Rn, then

dϕ(x; v) = 〈∇ϕ(x), v〉.
(ii) A Lipschitz continuously differentiable function is

continuously differentiable almost everywhere due to
Rademacher’s theorem.

Using an equivalent CLF definition in terms of the proxi-
mal subgradient, [15] extended Theorem 2.5 and obtained a
necessary and sufficient condition relating weak KL-stability
and the existence of Lipschitz continuous CLFs (see also [9],
[10] for a locally Lipschitz construction directly in terms of
the Dini derivative).

Theorem 2.7 (Dini CLF): Suppose F satisfies the basic
conditions on Rn, is locally Lipschitz on Rn\{0} and
satisfies Assumption 2.3. Then the origin of the differential
inclusion (3) is weakly KL-stable if and only if there exists a
semiconcave (and thus Lipschitz continuous) CLF V : Rn →
R≥0, α1, α2 ∈ K∞ and ρ ∈ P such that for all x ∈ Rn

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), and (4)
min

w∈F (x)
dV (x;w) ≤ −ρ(‖x‖). (5)



In the sequel, we will refer to a locally Lipschitz function
V satisfying (4) and (5) as a CLF. For completeness, we next
present the definition of semiconcavity and several properties
of semiconcave functions.

C. Semiconcave functions

The last ingredient required prior to considering feedback
stabilization of the nonholonomic integrator is the notion of
semiconcavity (see [3, Chapter 2] for the results reviewed in
this section). Herein, we make the standing assumption that
O ⊂ Rn is open.

Definition 2.8: A function ϕ : O → R is semiconcave if
there exists a nondecreasing upper semicontinuous function
κ : R>0 → R>0 such that limρ↘0 κ(ρ) = 0 and

λϕ(x) + (1− λ)ϕ(y)− ϕ(λx+ (1− λ)y)

≤ λ(1− λ)‖x− y‖κ(‖x− y‖)
for any pair x, y ∈ O such that the segment [x, y] is contained
in O and for any λ ∈ [0, 1]. We call κ a modulus of
semiconcavity for ϕ in O. A function ϕ is called semiconvex
in O if −ϕ is semiconcave.

The following relationship between semiconcavity and
locally Lipschitz was previously mentioned.

Theorem 2.9: A semiconcave function ϕ : O → R is
locally Lipschitz continuous in the interior of O.

The following two properties are useful in characterizing
semiconcave functions.

Theorem 2.10: Let ϕ : O → R, be continuously differen-
tiable in O. Then both ϕ and −ϕ are semiconcave in O.

Corollary 2.11: Suppose ϕ : O → R and O is convex.
If there exist ϕ1, ϕ2 : O → R such that ϕ1 is continuously
differentiable, ϕ2 is concave, and ϕ = ϕ1 + ϕ2 holds, then
ϕ is semiconcave.

Theorem 2.10 and Corollary 2.11 help to identify semi-
concave functions. An example of a semiconcave function is
shown in Figure 1. Theorem 2.10 indicates that one only has
to examine points where a given function is not continuously
differentiable to check if the function is semiconcave. Since
a semiconcave function is locally Lipschitz, and thus contin-
uously differentiable almost everywhere, the semiconcavity
properties of a Lipschitz continuous function depend on
a set of measure zero. At points where the function is
not continuously differentiable, according to Corollary 2.11,
semiconcavity can be shown by defining an appropriate
decomposition.

The qualitative difference between a Lipschitz continuous
but not semiconcave CLF and a semiconcave CLF is shown
in Figure 2 by means of the functions

VL(x) = (|x1|+ |x2|)2 − 0.9‖x‖2,
VS(x) = (|x1| − |x2|)2 + 0.5‖x‖2.

If VL and VS were nonsmooth CLFs, then the shape of
the semiconcave CLF indicates that solutions φ ∈ S(x)
(based on control actions yielding a decrease in the CLF)
propagate away from non-differentiable points. By contrast,
in the non-semiconcave case, trajectories propagate towards
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Fig. 1. Example of a semiconcave function (—) and a possible decomposi-
tion into a continuously differentiable function (- -) and a concave function
(· · · ). To decide if the function is semiconcave, only the point x = 1 has
to be investigated.

Fig. 2. Example of a semiconcave function VS (left) and a Lipschitz
continuous non-semiconcave function VL (right).

non-differentiable points. One possible disadvantage of non-
semiconcave CLFs with respect to feedback design is made
precise in Section III-A.

III. FEEDBACK STABILIZATION USING CLFS

We now describe how CLFs can be used in stabilizing
feedback design for nonlinear systems. As we will use
sample and hold feedbacks with piecewise constant inputs
of length ∆T , we begin with a definition of sample and
hold feedback, stability properties in the sample and hold
sense, and the connection to weak KL-stability.

Definition 3.1: For ∆T > 0 we call φ(·, x, u∆T ) a sample
and hold solution of (2) if u∆T : R≥0 → U is defined such
that u∆T (t) = u(k ·∆T ) holds for all t ∈ [k∆T, (k+1)∆T )
for all k ∈ N. We call µ∆T : Rn → U a sample and hold
feedback if u∆T (k∆T ) = µ∆T (x(k∆T )) holds for all k ∈
N. To emphasize that a particular input is a feedback, we
use the notation φ(·, x, µ∆T ).

Definition 3.2 (Practical asymptotic stability): A sample
and hold feedback µ∆T : Rn → U practically asymptotically
stabilizes the origin for the dynamical system (2), if there
exists a function β ∈ KL, such that for R > ε > 0 there
exists a T0 > 0 such that for all ∆T ∈ (0, T0] the solution
φ(t, x, µ∆T ) satisfies the estimate

‖φ(t, x, µ∆T )‖ ≤ max{β(t, ‖x‖), ε}
for all t ≥ 0 and for all x ≤ BR(0).

Theorem 3.3 ([4], Thm. 7.1): The system (3) is weakly
KL-stable if and only if there exists a sample and hold
feedback µ∆T : Rn → U which practically asymptotically
stabilizes the origin for (2).

With the definition of practical asymptotic stability, we
investigate three different control strategies in the remainder



of this section.

A. Steepest descent feedback

Definition 3.4 (Steepest descent feedback): Let V be a
CLF for (3). We call a feedback µ : Rn → U a steepest
descent feedback if it is computed as

µ(x) ∈ argmin
u∈U

dV (x; f(x, u)), (6)

for all x 6= 0.
For a sample and hold feedback as in Definition 3.4 the

following convergence result holds.
Theorem 3.5 ([4], Thm. 8.2): Let V : Rn → R≥0 be a

semiconcave CLF, and let µ∆T : Rn → U be defined accord-
ing to Definition 3.4. Then µ∆T practically asymptotically
stabilizes the origin for system (2).

Remark 3.6: The statement of Theorem 3.5 is still valid
if the minimum (6) is replaced by any µ satisfying the
inequality

dV (x; f(x, µ(x)) ≤ −ρ(‖x‖),
where ρ ∈ P is the positive function from Theorem 2.5.
This is particularly important since it implies that practical
asymptotic stability can be achieved even if it is not possible
to compute the global minimum of a possibly nonconvex
optimization problem.

As we will see in Section IV-A, for non-semiconcave CLFs
sample and hold stability does not always hold for the steep-
est descent closed loop system. A descriptive explanation for
this property was already given in Section II-C and in Fig-
ure 2, showing that solutions propagate towards nonsmooth
points of the CLF. As a consequence, semiconcavity of V is
crucial for Theorem 3.5 to hold. Nonetheless, it is possible
to define a stabilizing feedback based on the knowledge of
a non-semiconcave Lipschitz continuous CLF.

B. Dini aiming

A stabilizing sample and hold feedback based on “Dini
aiming” was proposed in [9], [10]. We briefly describe the
main idea here, while details can be found in [9], [10]. Let
σ : R≥0 → R≥0 be a nondecreasing continuous function.
The Dini aiming feedback is defined in two steps. Let x ∈ Rn
be the current state. In the first step, the CLF V is minimized
over a neighborhood of x, i.e.,

s? ∈ argmin
s∈Br(x)

V (s) (7a)

for a given r > 0. Based on the direction s?, the feedback
µ(x) is defined through the optimization problem

µ(x) = argmin
u∈U∩Bσ(‖x‖+r)(0)

〈x− s?, f(x, u)〉
‖x− s?‖

(7b)

where the set of admissible control values is defined as

U ∩Bσ(‖x‖+r)(0) = {u ∈ U|‖u‖ ≤ σ(‖x‖+ r)}
and depends on the distance of the state to the origin. If
the sampling time ∆T is chosen small enough, in accor-
dance with σ and r, the feedback practically asymptotically
stabilizes the origin for system (2) (see [9], [10]). The
corresponding result is summarized in the following.

Assumption 3.7: Let V : Rn → R≥0 be a Lipschitz
continuous CLF. Let σ : R≥0 → R≥0 be nondecreasing and
continuous, let r > 0, and assume that for all R > ε > 0
there exists a c > 0 such that

min
u∈U∩Bσ(‖x‖)(0)

dV (x; f(x, u)) < −c (8)

for all x ∈ BR(0) ∩Bε(0).
Theorem 3.8: Let Assumption 3.7 hold and let µ∆T :

Rn → U be defined through (7). Then µ∆T practically
asymptotically stabilizes the origin for system (2).

Compared to the steepest descent feedback, observe that
for Dini aiming the CLF does not need to be semiconcave
to obtain practical asymptotic stability.

Note that a function σ satisfying the decrease condition (8)
always exists since V is a CLF. Because ρ(‖x‖) > 0 for
all x 6= 0, the minimum of ρ(‖x‖) over the compact set
BR(0) ∩ Bε(0) is attained and can be used to define c. If
possible, an appropriate choice of σ can ensure that ‖x‖ → 0
implies ‖u‖ → 0.

C. Optimization-based feedback

Instead of using the pointwise decrease condition (6) one
can also directly minimize the Dini derivative of a given CLF
in x over the set of admissible constant inputs; i.e.,

min
u∈U

∫ ∆T

0

dV (φ(t, x, u); f(x, u)) dt

or equivalently

min
u∈U

[V (φ(∆T, x, u))− V (x)] .

Thus we define the one step optimization-based feedback as

µ∆T (x) ∈ argmin
u∈U

V (φ(∆T, x, u)). (9)

This approach implies that the solution φ(t, x, u) has to
be computed over the sampling period [0,∆T ] at every time
step. Observe that for some t ∈ [0,∆t] it is possible that

dV (φ(t, x, µ(x)), f(φ(t, x, µ(x)), µ(x)) > 0.

The optimization-based feedback (9) combines the two
steps of the Dini aiming (7) in a single optimization problem.
Consequently, the decrease in V obtained by Dini aiming
provides a lower bound for the decrease in V obtained by the
optimization-based feedback. Thus, if Assumption 3.7 holds,
it follows immediately that the optimization-based feedback
practically asymptotically stabilizes the origin of (2).

Theorem 3.9: Let Assumption 3.7 hold and let µ∆T :
Rn → U be defined by (9). Then µ∆T practically asymptot-
ically stabilizes the origin for system (2).

Additionally observe that the optimization-based feedback
explicitly depends on ∆T in contrast to the feedbacks
proposed in Section III-A and III-B.

IV. FEEDBACK STABILIZATION OF THE NONHOLONOMIC
INTEGRATOR

In this section we compare the performance of the three
feedback design approaches introduced in the last section



using the dynamics of the nonholonomic integrator(
ẋ1 ẋ2 ẋ3

)T
=
(
u1 u2 x1u2 − x2u1

)T
with the convex and compact input set given by u ∈ U =
[−1, 1]2.

We define a semiconcave CLF and a locally Lipschitz (but
not semiconcave) CLF, respectively, for the nonholonomic
integrator by

VS(x) =

(√
x2

1 + x2
2 − |x|

)2

+ x2
3 (10)

= x2
1 + x2

2 + 2x2
3 − 2|x3|

√
x2

1 + x2
2

and

VL(x) = (|x1| − |x3|)2 + (|x2| − |x3|)2 + 10|x3| (11)

= x2
1 + x2

2 + 2x2
3 + |x3|(10− 2(|x1|+ |x2|)).

The function VS was shown to be a global semiconcave
CLF for the nonholonomic integrator in [4]. That VS is
semiconcave can be seen by decomposing VS into a con-
tinuously differentiable part x2

1 + x2
2 + 2x2

3 and a concave
part −2

√
x2

1 + x2
2|x3|.

The function VL is a Lipschitz continuous (local) CLF
on the domain X = [−2, 2]3. A proof is provided in the
Appendix. The function VL is not semiconcave since, for
fixed x1, x2, and 10 − 2(|x1| + |x2|) > 0, it is strictly
convex in a neighborhood around x3 = 0. Yet, VL is also
not semiconvex due to the strictly concave terms −2|x1| and
−2|x2| in a neighborhood of the origin and fixed x3 6= 0.

For the following numerical simulations we use the initial
value of x = (1 1 1)T if not explicitly stated otherwise. As a
stepsize for the piecewise constant input we use ∆T = 0.02.

The optimization problems involved in the feedback de-
sign are solved using fmincon in Matlab. Since the CLFs
are nonsmooth and the dynamics are nonlinear, it is not
guaranteed that a global optimal solution was found in every
iteration in the following simulations.

A. Numerical simulations: The steepest descent feedback

Of the three methods, the steepest descent feedback de-
scribed in Section III-A is the easiest method to implement.
At every time step the optimization problem (6) is solved in
order to obtain the feedback law µ∆T . The numerical results
are visualized in Figure 3 and Figure 4. As one could expect
from Theorem 3.5, the semiconcave CLF VS brings the initial
state to a neighborhood of the origin (see Figure 3). By
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Fig. 3. Closed loop simulation using the CLF VS and the steepest descent
feedback (6) with ∆T = 0.02. The feedback drives the initial state to a
neighborhood of the origin which depends on the stepsize ∆T .

contrast, since the CLF VL is not semiconcave, convergence
of the solution φ(t, x, µ∆T ) to a neighborhood of the origin
cannot be expected and cannot be observed in our numerical
simulations (see Figure 4).
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Fig. 4. Closed loop simulation using the CLF VL and the steepest descent
feedback (6) with ∆T = 0.02. The solution starts to chatter after a
neighborhood is reached where the function VL is not semiconcave.

Since (6) does not penalize ‖µ∆T ‖, the steepest descent
feedback leads to a bang-bang control and makes it neces-
sary that U is bounded. Nevertheless, the steepest descent
feedback is very easy to implement and leads to practical
asymptotic stability when used with a semiconcave CLF.

B. Numerical simulations: The Dini aiming feedback

In Figure 5, the numerical results of the Dini aiming
feedback using the CLF VS are visualized. Here, the search
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Fig. 5. Closed loop simulation using the CLF VS and Dini aiming with
∆T = 0.02. Due to the choice σ(x) = ‖x‖, Dini aiming does not lead to
a bang-bang control, in contrast to steepest descent.

area is defined by setting r = 0.05. Observe that the choice
of the function σ(x) = ‖x‖ ensures that ‖µ∆T (x)‖ ≤ ‖x‖+r
for all x. The degree of freedom in the function σ enables
Dini aiming to avoid bang-bang behavior of the input u.

In Figure 6, the closed loop solution using the CLF VL
is visualized. Here, we use σ(x) = 0.5‖x‖. In contrast to
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Fig. 6. Closed loop simulation using the CLF VL and Dini aiming with
∆T = 0.02 and σ(x) = 0.5‖x‖.

steepest descent, Dini aiming stabilizes the initial value also
with the function VL. The difficulty with the Dini aiming
algorithm is to define the constant r > 0 and the function
σ in line with the step size ∆T such that a decrease in the
CLF V is guaranteed in every sampling period.



For the initial value x = (1 1 1)T the semiconcavity
of the function VS seems to be a disadvantage in the
Dini aiming algorithm since it leads to oscillations of the
solution φ(t, x, µ∆T ). With the function VL, the solution
φ(t, x, µ∆T ) converges to a subset of R3 on which the CLF
VL is semiconvex. (The function VL is semiconvex around
a neighborhood of x3 = 0 excluding a neighborhood around
the origin.) After the neighborhood of x3 = 0 is reached,
the solution φ(t, x, µ∆T ) stays in that neighborhood and
oscillations are prevented.

C. Numerical simulations: The optimization-based feedback

The results of the optimization-based feedback for the
initial value x = (1 1 1)T are visualized in Figures 7
and 8. As argued in Section III-C the decrease of V for
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Fig. 7. Closed loop simulation using the CLF VS and the optimization-
based feedback with ∆T = 0.02.
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Fig. 8. Closed loop simulation using the CLF VL and the optimization-
based feedback with ∆T = 0.02.

the optimization-based feedback is at least as fast as the
decrease of V for the Dini aiming feedback. Thus, we obtain
similar convergence results for both methods. However, the
optimization-based feedback outperforms Dini aiming, since
it does not depend on the choice of the search area r > 0
or the function σ. Of course this gain of performance comes
with the price of the higher computational effort for solving
the underlying optimization problem.

Again, looking at the closed loop solutions using the
CLF VS and the CLF VL, semiconcavity seems to be a
disadvantage and semiconvexity seems to be an advantage
in the optimization-based feedback. In Figure 9, the closed
loop solution using VL for the initial value x = (0 0 0.5)T

is visualized. In a neighborhood of the initial state VL is
semiconcave and not semiconvex which leads to zigzagging.
Looking at Figures 8 and 9 this raises the question if
semiconvex CLFs are beneficial compared to semiconcave
CLFs when an optimization-based feedback is used. Addi-
tionally, this leads to the question of existence of nonsmooth
semiconvex CLFs for weakly KL-stable systems.
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Fig. 9. Closed loop simulation using the CLF VL and optimization-based
feedback with ∆T = 0.02 for the initial value x = (0 0 0.5)T .

V. CONCLUSIONS & OUTLOOK

In this paper we reviewed theoretical results for CLFs and
numerical methods for feedback design using nonsmooth
CLFs. To investigate the discrepancy between theory and
application, a numerical case study on the example of the
dynamics of the nonholonomic integrator was performed.
The numerical results show the potential of CLF based
feedbacks which we will further analyze by a thorough
comparison with model predictive control in future work.

APPENDIX

In this section we provide a proof that the function

VL(x) = (|x1| − |x3|)2 + (|x2| − |x3|)2 + 10|x3|
= x2

1 + x2
2 + 2x2

3 + |x3|(10− 2(|x1|+ |x2|))
introduced in Equation (11) is a control Lyapunov function
in the Dini sense on the domain x ∈ X = [−2, 2]3.

As a first step, observe that with

α1(s)
.
= s2 and α2(s)

.
= 2s2 + 10s

for all s ∈ R≥0, the inequality (4) holds for all x ∈ X. The
main step, showing that the decrease condition

min
u∈U

dVL(x; f(x, u)) ≤ −ρ(‖x‖)

is satisfied for a positive definite function ρ ∈ P for all
x ∈ X, will be split into two parts. (Note that the condition
u ∈ U is stronger than the condition w ∈ F (x) used in (5)
as we do not need to consider the closed convex hull of the
vector field to obtain suitable controls.)

A. The differentiable domain of VL

We define the set X0 = {x ∈ X|x1 6= 0, x2 6= 0, x3 6= 0}.
If x ∈ X0, then VL is continuously differentiable. In this
case, the gradient is given by

∇VL(x) =

 2x1 − 2|x3| sign(x1)
2x2 − 2|x3| sign(x2)

4x3 + (10− 2(|x1|+ |x2|)) sign(x3)


and thus the directional derivative can be written as

〈∇VL(x), f(x, u)〉
= [2x1 − 2|x3| sign(x1)]u1

− [4x3 + (10− 2(|x1|+ |x2|)) sign(x3)]x2u1

+ [2x2 − 2|x3| sign(x2)]u2

+ [4x3 + (10− 2(|x1|+ |x2|)) sign(x3)]x1u2.



Using the input

ũ1 = − [2x1 − 2|x3| sign(x1)]

+ [4x3 + (10− 2(|x1|+ |x2|)) sign(x3)]x2

ũ2 = − [2x2 − 2|x3| sign(x2)]

− [4x3 + (10− 2(|x1|+ |x2|)) sign(x3)]x1

and

ui(x) =

{
ũi(x) for |ũi(x)| ≤ 1

ũi(x)/|ũi(x)| for |ũi(x)| > 1

for i = 1, 2 shows that

min
u∈U
〈∇VL(x), f(x, u)〉 ≤ −u1ũ1 − u2ũ2 ≤ 0

holds for all x ∈ X0. As a next step we show that
the decrease condition (5) is satisfied for every orthant by
considering different cases. We begin with x ∈ X\{0} and
xi ≥ 0, i = 1, 2, 3. Then

ũ2
1 = (2x1 − 2x3 − (4x3 + (10− 2(x1 + x2))x2)2 (12)

ũ2
2 = (2x2 − 2x3 + (4x3 + (10− 2(x1 + x2))x1)2 (13)

holds. Since, 4x3 + 10 − 2(x1 + x2) ≥ 2 we observe from
Equation (13) that

2x2 − 2x3 + 2x1 ≤ 0 (14)

(and −2x3 + 6x1 ≤ 0 in the case x2 = 0) needs to hold in
order to obtain u2

2 = 0. Inequality (14) implies that 2x1 −
2x3 ≤ 0 (or 6x1 − 2x3 ≤ 0 in the case x2 = 0). Combining
this result with 4x3 +(10−2(x1 +x2)) > 0 in Equation (12)
leads to ũ1 < 0 for x ∈ X\{0}, i.e.,

u1ũ1 + u2ũ2 > 0

for all x ∈ X\{0} with xi ≥ 0, i = 1, 2, 3. The other orthants
can be iteratively reduced to the case xi ≥ 0, i = 1, 2, 3 by
using the following transformations.
• Let −x̃1 = x1 > 0, x2 > 0 and x3 > 0:

ũ2
1 = (−2x̃1 + 2x3 + (4x3 + (10− 2(x̃1 + x2))x2)2

ũ2
2 = (2x2 − 2x̃3 + (4x3 + (10− 2(x̃1 + x2))x̃1)2

• Let x1 > 0, −x̃2 = x2 > 0 and x3 > 0:

ũ2
1 = (2x1 − 2x3 + (4x3 + (10− 2(x1 + x̃2))x̃2)2

ũ2
2 = (−2x̃2 + 2x̃3 + (4x3 + (10− 2(x1 + x̃2))x1)2

• Let x1 > 0, x2 > 0 and −x̃3 = x3 < 0:

ũ2
1 = (2x1 − 2x̃3 + (4x̃3 + (10− 2(x1 + x2))x2)2

ũ2
2 = (2x2 − 2x̃3 − (4x̃3 + (10− 2(x1 + x2))x1)2

Since we included x1 = 0, x2 = 0, x3 = 0 but x 6= 0 in
our calculations, it holds that

min
u∈U
〈∇VL(x), f(x, u)〉 < 0

for all x ∈ X0 ∩ Br(0) for all r > 0, i.e., the decrease
condition (5) is satisfied for all x ∈ X0.

B. The decrease condition of VL using the Dini derivative

In this section we show that the decrease condition is
also satisfied at the points x ∈ X where the function VL
is not continuously differentiable. In order to compute the
Dini derivative of VL, we first compute the Dini derivative

of two auxiliary functions.

• Consider the function ϕ : R → R defined as ϕ(x) =
c|x| for c ∈ R. At x = 0 the Dini derivative is given by

dϕ(0; v) = lim inf
t↘0

ϕ(tv)

t
= lim inf

t↘0

c|tv|
t

= c|v|

• Consider the function ϕ : R2 → R defined as ϕ(x) =
|x1| · |x2|. In the case x1 = 0 and x2 6= 0 we obtain

dϕ(x; v) = lim inf
t↘0

|tv1| · |x2 + tv2|
t

= lim inf
t↘0

|v1| · |x2 + tv2| = |v1| · |x2|.

Since ϕ is symmetric, in the case x1 6= 0 and x2 = 0
we obtain

dφ(x; v) = |v2| · |x1|.
For x = 0 the Dini derivative satisfies

dφ(x; v) = lim inf
t↘0

|tv1| · |tv2|
t

= lim inf
t↘0

|v1| · |tv2| = 0.

To show that the decrease condition is satisfied for the
remaining set of measure zero we use the results from the
auxilary functions and consider different cases.

(i) In the case x1 6= 0, x2 = 0, x3 = 0 we have

dVL(x; v) = 2x1v1 + 10|v3| − 2|v3||x1|.
Here we define u such that v3 = 0 holds, i.e.,

0 = v3 = x1u2 − x2u1 = x1u2.

We set ũ2 = u2 = 0 and ũ1 = −x1,

u1 = sign(ũ1) min{|ũ1|, 1}.
and obtain the decrease condition

dVL(x, f(x, ũ)) = −x2
1 = −‖x‖2.

(ii) For x1 = 0, x2 6= 0, x3 = 0 the Dini derivative is given
by

dVL(x; v) = 2x2v2 + 10|v3| − 2|v3||x2|.
and we obtain

dVL(x, f(x, ũ)) = −x2
2 = −‖x‖2.

analogously to case (i) by using the input ũ1 = u1 = 0
and ũ2 = −x2,

u2 = sign(ũ2) min{|ũ2|, 1}.
(iii) For x1 = 0, x2 = 0, x3 6= 0 and

dVL(x; v) = 4x3v3 +10 sign(x3)v3−2|x3|(|v1|+|v2|)
we automatically have v3 = 0 independent of the
choice of u1 and u2. For v1 = ũ1 = x3, u1 =
sign(ũ1) min{|ũ1|, 1} and v2 = u2 = 0 we obtain the
decrease condition

dVL(x; f(x, ũ)) = −2x2
3 ≤ −‖x‖2.

(iv) For x1 6= 0, x2 6= 0, x3 = 0 we obtain

dVL(x; v)=2(x1v1 +x2v2)+10|v3|−2|v3|(|x1|+|x2|).



We start with the condition

0 = v3 = x1ũ2 − x2ũ1

and assume that x2 ≥ x1 holds. (If x2 ≤ x1 the role of
u1 and u2 can be changed due to symmetry.) We define

ũ1 =
x1

x2
ũ2,

then the decrease condition reads

dVL(x; f(x, ũ)) = 2
x2

1

x2
ũ2 + 2x2ũ2

= 2

(
x1

x2
x1 + x2

)
ũ2

If we define

ũ2 = −
(
x1

x2
x1 + x2

)
the decrease condition, becomes

dVL(x; f(x, ũ)) = −2

(
x1

x2
x1 + x2

)2

= −2

(
x4

1

x2
2

+ 2x2
1 + x2

2

)
< −2(x2

1 + x2
2) = −2‖x‖2

The bounded input u is again obtained by projection of
ũ on U = [−1, 1]2.

(v) For x1 6= 0, x2 = 0, x3 6= 0, and hence

dVL(x; v) = 2x1v1 +4x3v3 +10 sign(x3)v3−2|x3||v2|
− 2(sign(x3)|x1|v3 + sign(x1)|x3|v1),

we consider two cases. Assume that 2|x1| ≤ |x3|. Then
we define ũ2 = v2 = − sign(x1)/x3 (which implies
v3 = −|x1|/x3) and ũ1 = v1 = x1. Then the decrease
condition satisfies

dVL(x; f(x, ũ))

= 2x2
1 − 4|x1| − 10

|x1|
|x3|
− 2 + 2

|x1|
|x3|
|x1|

− 2 sign(x1)|x3|x1

≤ 2x2
1 − 4|x1| − 10

|x1|
|x3|
− 2 + |x1| − 2x2

1

|x3|
|x1|

≤ 2x2
1 − 3|x1| − 10

|x1|
|x3|
− 2− 2x2

12

= −3|x1| − 10
|x1|
|x3|
− 2− 2x2

1

In the case 2|x1| > |x3| we define v3 = −x3, i.e.,
ũ2 = v2 = −x3/x1, and ũ1 = v1 = − sign(x1). Then
the decrease condition reads

dVL(x; f(x, ũ)) = −2|x1| − 4x2
3 − 10|x3| − 2|x3|

|x3|
|x1|

− 2

(
sign(x3)|x1|

(
−x3

x1

)
− |x3|

)
< −2|x1| − 4x2

3 − 10|x3|
+ 2 sign(x1)|x3| − 2|x3|

< −2|x1| − (10− 2 sign(x1) + 2)|x3|
≤ −2|x1| − 6|x3|.

Again, we define u as the projection of ũ.
(vi) For x1 6= 0, x2 = 0, x3 6= 0, due to symmetry, the

same arguments as in case (v) apply.
To obtain a positive function satisfying the decrease con-

dition (5) we define ρ ∈ P by ρ(0) = 0,

ρ(s) = − sup
s=‖x‖

dVL(x; f(x, u(x))

for s > 0, and u(x) as defined in Appendix A and B.
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