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Abstract— Most cities in India do not have water distribution
networks that provide water throughout the entire day. As a
result, it is common for homes and apartment buildings to
utilize water storage systems that are filled during a small
window of time in the day when the water distribution network
is active. However, these water storage systems do not have
disinfection capabilities, and so long durations of storage (i.e.,
as few as four days) of the same water leads to substantial
increases in the amount of bacteria and viruses in that water.
This paper considers the stochastic control problem of deciding
how much water to store each day in the system, as well as
deciding when to completely empty the water system, in order to
tradeoff: the financial costs of the water, the health costs implicit
in long durations of storing the same water, the potential for a
shortfall in the quantity of stored versus demanded water, and
water wastage from emptying the system. To solve this problem,
we develop a new Binary Dynamic Search (BiDS) algorithm
that is able to use binary search in one dimension to compute
the value function of stochastic optimal control problems with
controlled resets to a single state and with constraints on the
maximum time span in between resets of the system.

I. INTRODUCTION

Safe drinking water is not widely available in much of
the developing world. For instance, the majority of cities in
India do not have continuous water supply within the existing
distribution infrastructure, and on average citizens get water
for a 3 to 4 hour period during the day [1], [2]. As a result,
most households use communal and personal water storage
containers to ensure adequate water supply throughout the
day; these water storage containers are filled every 1 or 2
days during periods of water availability [2], [3]. However,
water stored in these containers often becomes contaminated
[4], [5], [6]: Longer durations of storing the same water leads
to increased amounts of bacterial and viral pathogens.

In this paper, we formulate the problem of deciding how
much water to store each day in a local water storage con-
tainer as a stochastic optimal control problem. The challenge
is how to tradeoff the financial costs of purchasing the water,
the degradation in water quality (and associated implicit
health costs) from long storage durations, the potential for
a shortfall in the quantity of stored versus demanded water,
and water wastage. The inherent uncertainty in daily water
demand makes our choice of stochastic optimal control
natural. Furthermore, our goal is to construct a control policy
that is easily implementable via a lookup table that could be
distributed through paper pamphlets or internet websites.
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In addition to studying the stochastic optimal control prob-
lem associated with local water storage container, our second
contribution in this paper is to develop a new algorithm for
solving stochastic optimal control problems with the specific
structure of controlled resets to a single state and with
constraints on the maximum time in between system resets.
Unlike value and policy iteration, which require finding a
fixed point in an infinite dimensional functional space [7],
we develop a Binary Dynamic Search (BiDS) algorithm that
converts the control problem into finding a fixed point in a
vector-space using binary search. Though value and policy
iteration converge exponentially, the convergence rate can be
practically slow when the discount factor is close to 1 [7],
[8]. Our BiDS algorithm can compute the value functions
of problems with controlled resets to a single state using
substantially less computation because it uses binary search.

A. Energy Storage Control

Though local water storage is nominally similar to control
of (mainly electrical) energy storage [9], [10], [11], [12],
[13], [14], [15], [16], there are several differences in the
underlying physics and domain settings that make the two
problems very distinct. The biggest difference is that stored
energy dissipates (or decays) in quantity over time, whereas
local water storage tanks are typically closed and hence have
minimal water evaporation [4], [5], [6]. Another important
contrast is that the quality of stored water decays [4], [5], [6],
whereas the quality of stored energy is directly related to the
stored quantity. Because the quality of stored water decays,
our formulation considers the possibility of flushing all water
from the storage container; in contrast, energy storage does
not have a corresponding control action to empty the storage.

B. Inventory and Supply Chain Management

Our problem of local water storage control is also similar
to inventory and supply management problems [17], [18].
More specifically, it is related to the setting of managing
perishable inventory [19], [20], [21], [22], [23], [24], which
has been mainly explored in the context of healthcare inven-
tory management. In these perishable inventory models, it is
assumed that expired units of inventory can be disposed of
individually, which allows salvage and disposal costs to be
incorporated into the inventory’s holding cost; hence, policies
of strategic inventory removal can be employed [21], [22],
[23], [24]. However, in our setting, since fresh water may mix
with still water, individuals cannot dispose of single units of
their stock strategically. Instead, individuals must make a
decision of either keeping or disposing of their entire stock
of water to reduce the risk of drinking contaminated water.
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C. Numerical Solution of Stochastic Optimal Control

The workhorse for numerical solution of stochastic opti-
mal control is value and policy iteration [7], which require
finding a fixed point in an infinite dimensional space. For
high-dimensional state spaces, exact calculation for these
approaches is numerically difficult (i.e., the so-called curse
of dimensionality). And so a number of approximate dynamic
programming approaches [7], [25], [26], [27], [28], [29] have
been developed, where the main idea is that approximate
dynamic programming performs computation with an inexact
but tractable representation of the value function or policy.

However, the convergence rate of (exact or approximate)
value and policy iteration is governed by the discount factor,
and so convergence is slow for discount factors close to
1 [7], [8]. This motivates development of our BiDS algo-
rithm, which uses the special structure of stochastic control
problems with controlled resets to a single state and with a
constraint on the amount of time in between resets. Our BiDS
algorithm finds a fixed point in a vector-space using binary
search. Since the state space is small for our local water
storage control problem, our numerical results solve the exact
dynamic program; however, in principle our BiDS algorithm
could be used for approximate dynamic programming by
using inexact representations of the value function.

D. Outline

We first describe in Sect. II the stochastic optimal control
problem for managing local water storage. We also describe
a stochastic model for daily water demand. Section III gener-
alizes this into a broader class of reset control problems (i.e.,
stochastic optimal control with controlled resets to a single
state and with a constraint on the maximum timespan in
between system resets). Next we develop essential elements
of the BiDS algorithm for solving reset control problems, and
prove the correctness of the value function and control policy
computed by BiDS. We conclude with Sect. IV, which uses
BiDS to numerically solve the local water storage control
problem for a specific set of numeric problem parameters.

II. DESCRIPTION OF WATER STORAGE MODEL

In this section, we first describe the stochastic optimal
control problem associated with managing a local water
storage container. A key element of this model is the
stochastic distribution used to model daily water demand.
We discuss one common stochastic model for water demand
in a household and provide an algorithm to generate random
samples from this distribution, which is useful for numeric
computations when solving the stochastic optimal control.

A. Stochastic Optimal Control Formulation

The subscript n denotes the corresponding variable for the
n-th day. We define the following variables:
• xn - amount of water stored in the tank;
• tn - number of days since the tank was last emptied;
• un - control of adding new water to the tank;
• dn - amount of water consumed;
• fn - control of emptying the entire tank;

We also have the following dynamics to describe the water
storage tank:

xn+1 =

{
(xn + un − dn)+, if fn = 0

(un − dn)+, if fn = 1

=
(
(1− fn) · xn + un − dn

)+ (1)

tn+1 =

{
tn + 1, if fn = 0

1, if fn = 1

=
(
tn · (1− fn) + 1

) (2)

where (x)+ = max{x, 0} and (x)− = min{x, 0}. Let q :
R+ → R+ be a strictly increasing nonnegative function, and
suppose c, p, cf ∈ R+ are fixed positive constants. The goal
is to solve the following stochastic control problem

min E
[∑∞

n=0 γ
n
(
cun − p · (ξn + un − dn)−+

q(tn) · (ξn + un − dn)+ + cffnxn

)]
s.t. xn+1 = (ξn + un − dn)+, for n ≥ 0

tn+1 = (τn + 1), for n ≥ 0

ξn = (1− fn) · xn, for n ≥ 0

τn = (1− fn) · tn, for n ≥ 0

tn ≤ k, for n ≥ 0

fn ∈ {0, 1}, un ∈ R+, for n ≥ 0

(3)

The interpretation is that p · (ξn+un−dn)− is a penalty for
not having stored enough water to meet demand, q(tn)·(ξn+
un − dn)+ measures the health cost due to storing excess
water, c is the cost of the water, cf is the waste penalty for
flushing too much water, γ ∈ [0, 1) is a discount factor, and
the constraint

∑k
j=1 fn+j ≥ 1 for n ≥ 0 ensures that the

storage tank is fully emptied at least once every k days to
maintain safe water quality. Since the function q is strictly
increasing, the q(tn) term indicates that the quality of water
deteriorates as time passes between emptying the tank.

B. Water Demand Model

A commonly used stochastic distribution for water demand
dn is the Poisson Rectangular Pulse (PRP) model [30], and
the simplest version of this model is that the number of
usage events has a Poisson distribution with rate λ while
the duration of water usage is the sum of exponential
distributions with rate µ. The probability density function
(PDF) of dn is given by

f(d) =

∞∑
k=1

(λ · µ)kdk−1e(−λ−µd)

k!(k − 1)!
1[d > 0] + e−λδ(d) (4)

where λ > 0 is the usage event rate, µ > 0 is the usage
duration rate, 1[·] is the indicator function, and δ(·) is the
Dirac delta function. An alternative expression [30] for the
PDF of this distribution is

f(d) = e(−λ−µd)I1(2
√
λµd)

√
λµ

d
1[d > 0] + e−λδ(d) (5)



Algorithm 1 Random Number Generator for PRP Model
1: initialize d← 0
2: set e← from Poisson distribution with rate λ
3: for ν = 1, . . . , e do
4: set σ ← from exponential distribution with rate µ
5: set d← d+ σ
6: end for

where I1 is the modified Bessel function of the first type.
Though this is an unusual distribution, generating random
numbers is relatively straightforward:

Proposition 1: Algorithm 1 generates random numbers
whose distribution is that of the PRP model.

Proof: This is true by construction of the algorithm and
by the definition of the PRP model.

III. RESET CONTROL MODEL AND BIDS ALGORITHM

An important characteristic of the local water storage con-
trol problem is that choosing fn = 1 in effect causes the state
of the system to be reset to (xn, tn) = (0, 0). In this section,
we generalize the local water storage control problem into
a broader class of stochastic optimal control problems with
controlled resets and with constraints on the maximum time
between rests. Then we develop a new algorithm that uses
binary search to compute the value function and hence solve
this particular stochastic optimal control problem.

A. Stochastic Optimal Control with Controlled Resets

Let the subscript n ∈ Z denote time, and consider the
discrete-time dynamical system

xn+1 = h(ξn, τn, un, wn)

tn+1 = τn + 1

ξn = xn · (1− rn) + ζ · rn
τn = tn · (1− rn)

(6)

where xn× tn ∈ Rp×Z+ are states, ξn× τn ∈ Rp×Z+ are
psuedo-states, un× rn ∈ Rq×{0, 1} are controls, wn ∈ Rm
are i.i.d. random variables, and h : Rp × Z+ ×Rq ×Rm →
R is a deterministic function. The interpretation is that the
control rn = 1 resets the system to a known initial state
ζ ∈ Rp, the state tn keeps track of how many time steps
have passed since the last system reset, and h describes the
dynamics when there is no reset.

Let γ ∈ [0, 1) be a discount factor, and suppose that our
goal is to solve the stochastic control problem

min E
[∑∞

n=0 γ
n
(
g(ξn, τn, un, wn) + s(xn, tn, wn) · rn

)]
s.t. (6), tn ≤ k, un ∈ U , for n ≥ 0

(7)
where g : Rp × Z+ × Rq × Rm → R+ is a nonnegative
and continuous stage cost, s : Rp × Z+ × Rm → R+ is a
nonnegative and continuous reset cost with s(ζ, t, w) ≡ 0,
the constraint un ∈ U restricts the possible control actions,
and the constraint tn ≤ k requires the system be reset at
least once every k time steps. This stochastic optimal control

problem has special structure that can be used to develop a
new approach for its solution.

We first characterize the optimal value function for (7). Let
J(x, t) be the optimal cost to go, and define J0 = J(ζ, 0).
Recall that J(x, t) is defined as the minimum value of (7)
for the initial conditions x0 = x and t0 = t.

Proposition 2: The dynamic programming equations for
(7) are given by

J(ζ, 0) = min
u∈U

E
[
g(ζ, 0, u, w) + γJ(h(ζ, 0, u, w), 1)

]
J(x, t) = min

{
J0 + E

(
s(x, t, w)

)
,

min
u∈U

E
[
g(x, t, u, w) + γJ(h(x, t, u, w), t+ 1)

]}
J(x, k) = J0 + E

(
s(x, k, w)

)
(8)

where the middle J(x, t) holds for all x and t = 0, . . . , k−1.
Proof: We prove this by induction on t. Recalling that

s(ζ, 0, w) = 0, we rewrite (7) for (x0, t0) = (ζ, 0) as

min E
[
g(ζ, 0, u0, w0) +

∑∞
n=1 γ

n
(
g(ξn, τn, un, wn)+

s(xn, tn, wn) · rn
)]

s.t. (6), tn ≤ k, un ∈ U , for n ≥ 0
(9)

But since (x0, t0) = (ζ, 0), we have ξ0 = ζ and t1 = 1 for
both r0 = 0 and r0 = 1. Thus the above simplifies to the
expression for J(ζ, 0) given in (8).

Next consider the case with (x0, t0) = (x, k). We must
have r0 = 1 because otherwise t1 = k + 1 which violates
the constraint tn ≤ k. So ξ0 = ζ, and we can rewrite (7) as

min E
[
s(x, k, w0) + g(ζ, 0, u0, w0)+∑∞
n=1 γ

n
(
g(ξn, τn, un, wn) + s(xn, tn, wn) · rn

)]
s.t. (6), tn ≤ k, un ∈ U , for n ≥ 0

(10)
Clearly we have J(x, k) = J(ζ, 0) +E[s(x, k, w)], since the
reset cost s(x, k, w) does not depend on the control u0.

Now consider the case with (x0, t0) = (x, k − 1), and
let J0(x, k − 1) and J1(x, k − 1) denote the optimal cost
to go under r = 0 and r = 1, respectively. By Bellman’s
principle of optimality we have J(x, k−1) = min{J0(x, k−
1), J1(x, k − 1)}. For J1(x, k − 1), we have ξ0 = ζ by
definition, and so a similar argument to the one for J(x, k)
gives that J1(x, k−1) = J0+E[s(x, k−1, w)]. Next, observe
that we can express J0(x, k − 1) as

min E
[
g(x, k − 1, u0, w0)+∑∞
n=1 γ

n
(
g(ξn, τn, un, wn) + s(xn, tn, wn) · rn

)]
s.t. (6), tn ≤ k, un ∈ U , for n ≥ 0

(11)
Simplifying gives J0(x, k − 1) = minE[g(x, 0, u0, w0) +
γJ(h(x, k − 1, u0, w0), k)]. Hence J(x, k − 1) satisfies the
middle equation for J(x, t) in (8). Now suppose that the
middle equation for J(x, t) in (8) is satisfied up to 0 <
t + 1 ≤ k − 1: We will show this implies that the middle



Algorithm 2 Binary Dynamic Search (BiDS) Algorithm
1: initialize v ← 0 and v ← ( 1

1−γ ) minu E[g(ζ, 0, u, w0) +
γ · s(h(ζ, 0, u, w0), 1, w1)]

2: repeat
3: set v ← (v + v)/2
4: set V (x, k, v) = v + E[s(x,w, k)]
5: for t = (k − 1), (k − 2), . . . , 0 do
6: set V (x, t, v) = min

{
v+E[s(x,w, t)],

minu∈U E[g(x, t, u, w)+
γV (h(x, t, u, w), t+ 1, v)]

}
7: end for
8: set Υ(v) = minu∈U E[g(ζ, 0, u, w) +

γV (h(ζ, 0, u, w), 1, v)]
9: if v < Υ(v) then

10: set v ← v
11: else
12: set v ← v
13: end if
14: until (v − v) ≤ ε
15: set v∗ = (v + v)/2

equation for J(x, t) in (8) is satisfied for t. Indeed, using the
same argument as for the base case gives this desired step.
The final result follows by applying induction.

B. Design of the BiDS Algorithm

To solve these dynamic programming equations and com-
pute the optimal policy, we develop our Binary Dynamic
Search (BiDS) algorithm that is presented in Algorithm 2.
The key feature of BiDS is that unlike value iteration [7],
which requires finding a fixed point over the space of func-
tions by repeated application of a contraction mapping, BiDS
performs a binary search in order to find a fixed (vector-
valued) point of an appropriately constructed mapping.

Our main result about the BiDS algorithm concerns its
finite termination and convergence properties. To show this,
we first study the recursion calculations within BiDS.

Proposition 3: Consider the recurrence relation given by

Υ(v) = min
u∈U

E
[
g(ζ, 0, u, w) + γV (h(ζ, 0, u, w), 1, v)

]
V (x, t, v) = min

{
v + E

(
s(x, t, w)

)
,

min
u∈U

E
[
g(x, t, u, w) + γV (h(x, t, u, w), t+ 1, v)

]}
V (x, k, v) = v + E

(
s(x, k, w)

)
(12)

where the middle equation for V (x, t, v) holds for all x and
t = 0, . . . , k − 1. Then Υ(v) is monotone increasing in v,
we have that V (x, t, J0) = J(x, t), and v = J0 is the unique
(vector-valued) fixed point of Υ(v).

Proof: To prove the first result, note that V (x, k, v) is
monotone increasing by construction. Next, suppose V (x, t+
1, v) is monotone increasing in v. The first term in the
min defining V (x, t, v) is monotone increasing by construc-
tion, and the second term in the min defining V (x, t, v)
is monotone increasing by assumption. Thus V (x, t, v) is

monotone increasing in v, and this result extends to all
t = 0, . . . , k − 1 by induction. Lastly, observe that Υ(v) is
monotone increasing in v since its first term is independent
of v and since the second term V (h(ζ, 0, u, w), 1, v) was
shown to be monotone increasing in v.

To prove the second result, we assume v = J0 and use
induction on t. First note V (x, k, J0) = J0+E(s(x, k, w)) =
J(x, k) by Proposition 2. Next suppose that V (x, t+1, J0) =
J(x, t+ 1), and note that by definition

V (x, t, J0) = min
{
J0 + E

(
s(x, t, w)

)
, (13)

min
u∈U

E
[
g(x, t, u, w) + γV (h(x, t, u, w), t+ 1, J0)

]}
.

Comparing to Proposition 2 shows V (x, t, J0) = J(x, t), and
so the result for V (x, t, J0) for all x and t = 0, . . . , k−1 fol-
lows by induction. Lastly, inserting the relation V (x, 1, J0) =
J(x, 1) into the definition for Υ(J0) gives Υ(J0) = J0 by
comparison with Proposition 2.

To show the third result, let ν be any value such that
ν = Υ(ν). (Note that we have shown above that such a ν
must exist.) Then we can rewrite (12) as

ν = Υ(ν) = min
u∈U

E
[
g(ζ, 0, u, w) + γV (h(ζ, 0, u, w), 1, ν)

]
V (x, t, ν) = min

{
Υ(ν) + E

(
s(x, t, w)

)
,

min
u∈U

E
[
g(x, t, u, w) + γV (h(x, t, u, w), t+ 1, ν)

]}
V (x, k, ν) = Υ(ν) + E

(
s(x, k, w)

)
(14)

Comparing these to Proposition 2 shows that V (x, t, ν) is
a fixed point of the dynamic programming equations for
(7). Thus V (x, t, ν) = J(x, t), and J(x, t) is unique by
Proposition 4.1.5 of [7]. As a result, we have ν = Υ(ν) =
V (ζ, 0, ν) = J0. This means that ν is uniquely defined.

Before we prove our main result about the BiDS algorithm,
we need an additional lemma.

Lemma 1: Suppose |a′−a| ≤ ε and |b′− b| ≤ ε. Then we
have that |min{a′, b′} −min{a, b}| ≤ ε.

Proof: Let c′ = min{a′, b′} and c = min{a, b}. We
have four cases: (1) c′ = a′ and c = a, then |c′− c| ≤ ε; (2)
c′ = b′ and c = b, then |c′−c| ≤ ε; (3) c′ = a′ and c = b, then
c′−c = a′−b ≥ a′−a ≥ −ε and c′−c = a′−b ≤ b′−b ≤ ε;
and (4) c′ = b′ and c = a, then c′−c = b′−a ≥ b′−b ≥ −ε
and c′ − c = b′ − a ≤ a′ − a ≤ ε.

We can now show our main result about BiDS:
Theorem 1: The BiDS algorithm terminates in finite time

when ε > 0, and the solution v∗ returned by BiDS is such
that maxx

∣∣V (x, t, v∗)− J(x, t)
∣∣ ≤ ε for all t = 0, . . . , k.

Proof: Since the state costs and reset costs are non-
negative, Proposition 4.1.5 from [7] implies that the value
function J(x, t) is the unique fixed point of the dynamic
programming equations (8) for (7). Our first intermediate
claim is that J0 is finite. In particular, define

J =
(

1
1−γ

)
minu∈U E

[
g(ζ, 0, u, w0)+

γ · s(h(ζ, 0, u, w0), 1, w1)
]
, (15)



and observe that J is finite since the objective is nonnegative
and the optimization problem is always feasible. Next note
J0 ≥ 0 since the stage costs and reset costs are nonnegative.
Furthermore, using the dynamic programming equations (8)
from Proposition 2 gives that J(x, 1) ≤ J0 + E(s(x, 1, w)).
Again using the dynamic programming equations (8) gives

J0 ≤ min
u

E
[
g(ζ, 0, u, w0)+

γ(J0 + s(h(ζ, 0, u, w0), 1, w1)
]
. (16)

Solving for J0 gives J0 ≤ J . Since we showed J0 ∈ [0, J ],
this implies J0 is finite. Next observe that the BiDS algorithm
is a binary search over the range [0, J ]. Recalling that
V (ζ, 0, v) is monotone increasing in v by Proposition 3, we
must have that the binary search terminates in a finite number
of steps when ε > 0. This proves the first part of the theorem.

We use induction to prove the second part of the theorem.
First note that by Propositions 2 and 3 we have

maxx
∣∣V (x, k, v∗)− J(x, k)

∣∣ =
∣∣v∗ − J0∣∣ ≤ ε (17)

where the inequality follows by the termination condi-
tion of BiDS. Now suppose we have that maxx |V (x, t +
1, v∗) − J(x, t + 1)| ≤ ε. Then a similar calculation gives
maxx

∣∣v∗ + E(s(x, t, w)) − J0 − E
(
s(x, t, w)

)∣∣ ≤ ε and
that maxx,u

∣∣g(x, t, u, w) + γV (h(x, t, u, w), t + 1, v∗) −
g(x, t, u, w)−γJ(h(x, t, u, w), t+1)

∣∣ ≤ ε. And so Lemma 1
implies that maxx |V (x, t, v∗)− J(x, t)| ≤ ε since expecta-
tion preserves distances. Thus maxx |V (x, t, v∗)−J(x, t)| ≤
ε for all t = 0, . . . , k by induction.

We can use the BiDS algorithm to compute the optimal
policy by taking the minimizing arguments of V (x, t, v∗).

Corollary 1: Let v∗ be the value returned by BiDS for
a given ε > 0. If (u, r)∗(x, t, ε) ∈ arg minV (x, t, v∗) for
(x, t) 6= (ζ, 0) and (u, r)∗(ζ, 0, ε) ∈ arg min Υ(v∗), then
lim supε↓0(u, r)∗(x, t, ε) ⊆ arg minJ(x, t) for t = 0, . . . , k.

Proof: Theorem 1 says V (x, t, v∗) converges uniformly
to J(x, t), and that Υ(v∗) converges uniformly to J(ζ, 0).
Next recall Fatou’s lemma [31] implies lower semicontinuity
(lsc) of nonnegative functions is preserved under expec-
tation. This means V (x, k, v∗) is lsc in x. Now suppose
V (x, t + 1, v∗) is lsc in x. Then v∗ + E(s(x, t, w)) and
E[g(x, t, u, w) + γV (h(x, t, u, w), t+ 1, v)] are lsc in (x, u)
by Fatou’s lemma. Since lsc is preserved under minimization
[32], this means V (x, t, v∗) is lsc in x. By induction,
V (x, t, v∗) for t = 0, . . . , k is lsc in x. Hence, Proposition
7.15 of [32] says the objectives of V (x, t, v∗) and Υ(v∗) epi-
converge. So the result follows by Theorem 7.33 of [32].

In words, the above result says that as ε → 0 then BiDS
generates a sequence of v∗ such that the minimizers of
V (x, t, v∗) and Υ(v∗) converge to minimizers of J(x, t).

IV. NUMERICAL SOLUTION OF WATER STORAGE MODEL

In this section, we use BiDS to numerically solve the
water storage model (3) from Sect. II. Computations were
performed in MATLAB 2016b on a laptop computer with a
2.4GHz processor and 16GB of RAM. We generated random

demand from the PRP model using Algorithm 1 with Poisson
rate λ = 40 (i.e., average of 40 water usage events for a
family) and exponential rate µ = 2/L (i.e., average water
usage event consumes 500mL of water). The costs in Indian
Rupees were 0.25/L, 0.5/L, 0.5/L for the purchasing, short-
age, and flushing costs of water, respectively. The holding
cost function in Indian Rupees was q(tn) = 15tn/L, which
satisfies the monotonicity assumption and is high compared
to the other costs to represent a sharp deterioration in the
quality of water.

The BiDS algorithm was used to solve the local water
storage problem with a maximum of k = 6 days between
flushing and with a discount factor of γ = 0.8, and the
results are shown in Fig. 1. These results show the optimal
policy has a clear structure, and this control policy is easily
implementable via a lookup table that could be distributed
through paper pamphlets or internet websites. At each t,
there are at most three thresholds that separate the control
policy into four regions. The first region is where the amount
of water in the tank is so small that the flushing cost is
negligible, and hence it is optimal to flush the tank and
order a one step optimal quantity. Next is a region with
enough water in the tank were it is optimal to order up to
some quantity and still consume most of the water before it
becomes unsafe to drink. Then is a do-nothing region where
it is not optimal to flush the tank or order any more water
since there is enough water in the tank to satisfy possible
future consumption. Finally, there is a region where there is
so much water in the tank that it is almost certain to never
be consumed, and thus it is optimal to flush this water from
the tank and reorder up to some optimal quantity.

V. CONCLUSION

In this paper, we studied the problem of managing local
water storage in the developing world. We first presented
a stochastic optimal control formulation of this problem,
and gave an algorithm for sampling from a PRP model that
describes daily water demand. We showed this water storage
problem can be generalized to stochastic optimal control
problems with controlled resets to a single state and with
constraints on the maximum time between resets. To solve
this class of problems, we developed the BiDS algorithm that
performs binary search to obtain the optimal value function
and corresponding optimal policy. We showed this algorithm
converges in finite time and is guaranteed to find the optimal
value with ε precision. Finally, we concluded by applying the
BiDS algorithm to numerical solve the problem of managing
local water storage. Our results suggest that the optimal
control policy for this problem has a well defined structure,
which we leave to be studied in future work.
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