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Abstract

To gain theoretical insight into the relationship between parking scarcity and con-
gestion, we describe block-faces of curbside parking as a network of queues. Due to the
nature of this network, canonical queueing network results are not available to us. We
present a new kind of queueing network subject to customer rejection due to the lack
of available servers. We provide conditions for such networks to be stable, a compu-
tationally tractable “single node” view of such a network, and show that maximizing
the occupancy through price control of such queues, and subject to constraints on
the allowable congestion between queues searching for an available server, is a convex
optimization problem. We demonstrate an application of this method in the Mission
District of San Francisco; our results suggest congestion due to drivers searching for
parking stems from an inefficient spatial utilization of parking resources.

1 INTRODUCTION

Drivers in densely populated urban districts often find that desirable parking close to their
destination is unavailable or prohibitively expensive. Drivers will begin to cruise for park-
ing [Shoup, 2005], significantly contributing to surface street congestion. Researchers have
attempted to measure the economic loss to both these drivers and the cities themselves.
For the former, drivers in different cities can spend anywhere between 3.5 to 14 minutes
searching for spots every time they park [Shoup, 2006]. For the latter, cruising behaviors
can lead to substantial congestion in dense urban districts. For instance, there exists a
commonly cited folklore that 30% of traffic in a city is directly due to drivers looking for
parking [Shoup, 2005]1.

Municipalities and city planners typically aim to achieve some target occupancy : the
percentage of parking spaces in use at any given time [SFpark, 2013]. Fig. 1 shows the
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occupancy of the 3400 block of 18th St. in San Francisco, CA. Cities like San Francisco
have launched projects like SFPark to target an average occupancy between around 85% by
slowly adjusting prices based on observed demand [SFpark, 2013].

Fig. 1: The observed parking occupancy (percentage of parking spaces in use), on a Saturday
along the 3400 block of 18th St. in the Mission District of San Francisco. Fig. 2 illustrates
a key result of this paper: the congestion resulting from lack of parking along a block-face.

Parking occupancy (and availability) is an indirect measure (and means of control) of
overall demand for vehicle access. Yet, if city planners must control congestion, occupancy
alone is not a sufficient measure. Firstly, the same occupancy levels of two streets in different
parts of the city can lead to different effects on through-traffic delays or respond differently
to incremental price changes. Secondly, the street topology and interactions between dif-
ferent blocks can lead to complex traffic dynamics, which a single number like occupancy
cannot capture. At the same time, cities cannot be overly aggressive in controlling parking
occupancy since they must maintain a high availability of parking resources to serve down-
town businesses and residents, as well as delivery, courier, and emergency vehicle services.
Therefore, a reasonable question that a city planner would be interested in addressing is the
following: Given a maximum tolerable level of congestion, what is the maximum occupancy
at a block and what price achieves this occupancy?

The question of parking’s impact on congestion has remained difficult to address due to:
1) lack relevant data on pricing and demand and 2) lack of tractable and rigorous models
that link parking to congestion and capture spatial and temporal variation. To address
this question utilizing parking occupancy, traffic, and surface street topology data that is
available today, our contributions are:

1. Modeling : we describe and analyze a new kind of queue network where customers move
between queues according to a network topology until an available server is found, and
leave the network after service

2. Control : we show that maximizing occupancy subject to constraints on the congestion
created by drivers searching for parking is a convex program.

3. Application: we conduct a study based on real occupancy and pricing data for blocks
in the San Francisco Mission District, showing that a) higher total occupancy does not
necessarily lead to more traffic, and b) incentivizing drivers to park further away by



Fig. 2: A visualization of one of our key results: estimated percentage of through traffic
searching for parking. This estimate is obtained by determining the minimum arrival rate
necessary to achieve an observed occupancy (Fig. 1), and comparing this to the observed
total through-traffic.

reducing price can be equally as effective as disincentivizing drivers from parking at
desirable locations.

The paper is organized as follows. We provide motivation and review related work in
Section 2. In Section 3, we present the network queue model. We present results in Section 4.
In particular, we provide stability conditions under a uniformity assumption on the network
topology, we provide a framework for determining the arrival rate in the non-uniform case,
and we pose an optimization problem to optimize parking availability subject to maximum
congestion constraints that we show to be convex. In Section 6, we demonstrate the effective-
ness of the solution to the optimization problem on a network modeled after San Francisco’s
Mission District. We conclude with discussion and commentary on future work in Section 7.

2 Motivation

As observed by Pierce and Shoup, circling for parking occurs when occupancy reaches 100%
[Pierce and Shoup, 2013], however, this takes an instantaneous point of view likely unavail-
able to city planners. Rather, if occupancy is taken to be the expected proportion of parking
spaces in use over a given time period, then high occupancy block-faces must be full at least
some of the time, and therefore responsible for some traffic—see, e.g., Fig. 2.

2.1 Data Availability

Municipalities (in particular, city planners and transportation departments) are gaining
access to data from recently installed smart parking meters and, on occasion, individual
parking space sensors (e.g., San Fransisco [SFpark, 2013], Seattle [Ottosson et al., 2013],
Los Angeles [Ghent et al., 2012], and Pittsburgh [Fabusuyi et al., 2013]). Yet, no city has
completely implemented full-scale transportation sensor grids that include active monitoring
of parking on a space-by-space basis. Regardless whether such a goal may be reached,
however, many cities have a growing history of parking transaction data collected by digital



meters. These data can be used to estimate parking occupancy; transactions provide an
estimate of how long a driver intended to park and the number of drivers parked moment to
moment. In our experiments, we make use of transaction, traffic, and infrastructural data
publicly made available by the SFPark pilot study [Agency, 2017].

2.2 Related Work

Early work focused largely on parking supply and demand [Vickrey, 1954], and refinement
of the economic view of parking continues through today [Inci, 2015]. The costs of conges-
tion caused by cruising for parking [Shoup, 2005, Shoup, 2006] have motivated research in
modeling urban parking dynamics, and economizing of parking spaces has led to a desire to
control demand levels via price.

Over the last few decades, a number of models (e.g., Vickrey’s celebrated “bathtub”
model) have been developed and introduced in the absence of data only recently becoming
available [Arnott, 2013, Arnott and Inci, 2006]. These models typically take a time-varying
flow and capacity view in the form of systems of partial differential equations (see [Inci, 2015]
for an overview of variations on these models).

Recent research has observed, however, that transaction data can be used to estimate
parking occupancy and, in consequence, used to estimate resource performance [Yang and Qian, 2017,
Dowling et al., 2017]. The distinction that occupancy below 100% results in congestion has
recently been noted by [Millard-Ball et al., 2014] in their own analysis of the SFPark pilot
study parallel to [Pierce and Shoup, 2013], however the authors of [Millard-Ball et al., 2014]
view block-face parking as a Bernoulli random variable, between being full or not. We build
on this work by 1) not implicitly assuming curbside parking occupancy is independent be-
tween block-faces and 2) considering all possible states of parking spaces—from completely
empty to completely full—along block-faces.

Occupancy and other data lend themselves to discrete and probabilistic models that may
potentially better reflect flow on surface streets as compared to flow on highways or through
spatially homogeneous regions, as in [Arnott, 2006] and [Arnott and Rowse, 2009]. Hence,
classical methods of queueing theory have recently been applied to parking areas: garage
and curbside alike [Ratliff et al., 2016, Larson and Sasanuma, 2010, Caliskan et al., 2007,
Ceballos and Curtis, 2004].

Our work primarily builds on existing parking literature by expressing curbside parking
as a network of queues. Specifically, utilizing newly available parking data, we implement
the basis for a spatially heterogeneous model city planners can use to effectively test parking
policies and, furthermore, we determine that maximizing occupancy subject to congestion
constraints using price controls is a convex optimization problem.

3 Queueing Model

3.1 Model Setup

Although a natural model, queue networks have not been used extensively in parking related
research (see, e.g. [Raheja, 2010] and the references within for more details). Two major



(a) Example of block-
face adjacency with re-
spect to one-way (green,
one arrow) and two-way
(red, two arrows) streets.
The corresponding net-
work version is illustrated
by Fig. 3b.

(b) Corresponding graphical represen-
tation of Fig. 3a with respect to in-
dividual sides of a street. The solid
arrows are edges between block-faces
visible in Fig. 3a, while the dashed
arrows are between block-faces not la-
beled. Note that drivers leaving the
red, two-way block-faces (1 and 3) may
only continue straight or turn right,
while drivers leaving the green, one-
way block-faces (2 and 4) can continue
straight, or turn right or left.

Fig. 3: Block-face parking around a typical city block, and the corresponding graphical
representation of the queue-network with respect to legal turns.

reasons for this are: 1) the size of the state space grows exponentially as the size of the
network grows; 2) established queueing network results (e.g., for communication networks)
do not carry over directly. The rest of this section will describe the details of the queueing
network model, its difference to conventional models, and how we overcome these difficulties.

3.2 Queues Interacting Via Rejections

We model each block-face as a multi-server queue, where the number of servers is the number
of available parking spots on that block-face. The block-faces are connected as nodes on a
graph, where two nodes are adjacent if vehicles can go from one block-face to the other in
the road network. See Fig. 3a for an example. To account for legal turning maneuvers (e.g.,
right turn only) and one way streets, we use directed edges. We use conventional notations
D = (V,E) to describe this digraph. Without loss of generality (WLOG), we assume this
graph is connected.

A queue, or a node i ∈ V is characterized by an exogenous arrival rate λi, a service
rate µi, and the number of servers ki. We assume that the exogenous arrival process is
Poisson (independent between queues) and the services times are generally distributed like
conventional M/G/ ·/· queues [Wolff, 1989], however, unlike conventional queueing networks
where customers are buffered at individual queues, we assume that customers (or drivers),
are buffered or queued along the network edges. This behavior reflects the key fact that
vehicles which cannot find parking circulate in the network rather than wait at one location.



Therefore, if the driver is served by a queue, it then leaves the network. However, if it finds
the current queue to be full, it is rejected by that queue and moves to neighboring queues
to find new parking spots. The rate of these rejections is parking scarcity’s contribution to
through-traffic delays.

The key difference between our queue network and conventional networks–such as a Jack-
son network [Jackson, 1957]–is that drivers proceed to other queues after they are rejected
rather than served. Since the rejection of a queue with Poisson arrivals and exponential
service times is not Poisson, characterizing the stationary distribution of this network of
queues is very difficult because the distribution of total arrival rate itself to any queue is
unknown.

Since the exact distribution of the queue is difficult to characterize, we instead turn to
understanding the behavior of the mean performance metrics of the network. This relaxation
allows us to use theorems such as Little’s Law [Little, 1961] that do not depend on the exact
distributions. Secondly, the controllable and measurable quantities are often average values
like occupancy and parking service times.

3.3 Stationary Distribution of a Single Queue

Here we introduce how a single queue can be analyzed, and later in the paper extend the
analysis to a network of queues. To help avoid confusion between exogenous arrivals (from
outside of the network, denoted by λ) and endogenous arrivals (rejection from neighboring
queues, denoted by x), we use y as the total arrival rate to a queue. Suppose the service
rate (inverse length of parking time) of each server is 1

µ
and there are k servers (k parking

spots) in total. Let πi be the stationary probability that i servers are busy (i cars are parked),
for i = 0, . . . , k. Let π = [π0 . . . πk]. For this single queue, we can explicitly write down its
stationary probability distribution via the transition rate matrix:

Q =


−y y 0 0 · · · 0 0
µ −(µ+ y) y 0 · · · 0 0
0 2µ −(2µ+ y) y · · · 0 0

...
0 0 0 0 · · · kµ −kµ

 ,
and π is the unique solution to

πQ = 0 (1)

such that
∑
πi = 1. Let ρ = y

µ
. By standard calculations [Wolff, 1989],

π = π0 ·
[
1, ρ, · · · , ρ

k

k!

]
(2)

where π0 = [
∑k

j=0
ρj

j!
]−1. Using Little’s Law, the occupancy u, or the proportion of busy

servers at any given time can be expressed as,

u =
y

kµ

(
1− π0

ρk

k!

)
(3)



.
Note that (1 − π0 y

k

k!
) is the probability that at least one space is available. Consider, if

drivers are unable to wait for an available server at a particular block, in order to obtain
occupancies approaching 100%, cars would need to arrive at an infinite rate in order to
immediately replace vehicles exiting service. Since it is often cited that congestion due to
driver’s searching for parking is a significant cost to the social welfare, this is a critical
misconception.

A block-face queue is therefore rejecting incoming vehicles at a rate of y ·πk. The difficulty
therein lies with estimating these total arrival rates, because no two adjacent block-faces are
independent.

4 Network of Queues

In this section we study these networks of queues. We first consider the uniform case, then
extend the results to the non-uniform case.

4.1 Uniform Network

Many urban centers have fairly uniform street topologies (e.g., the famed Manhattan streets),
where the streets from a regular graph. In this section we make the assumption that the
queueing network is entirely uniform: the topology is a d-regular graph, all block-faces have
the same number of servers with the same service rate µ, and they have the same exogenous
arrival rate λ.

In this regular queue network, each queue will have equal stationary distributions in the
steady state, therefore we only need to look at a single queue as representative of the state
space of the entire network. Let x be the average rate of rejection of a queue to one of its
neighbors, and dx be the total rejection to all of its neighbors. Let y = λ + dx be the total
arrival rate to a queue, where λ is the exogenous arrivals and dx are the rejections from its
neighboring queues. We have the conservation equation,

dx = yπk, (4)

where πk is the probability that all k severs are busy. Combined with stationary distribution
of (1) we have the following equations:

πQ = 0∑
πi = 1

dx = πk(λ+ dx)
(5)

We can write (4) as,

y − λ =
ρk

k!∑k
i=0

ρi

i!

y (6)

where ρ = y
µ
. The equation in (6) is a polynomial in y. The next lemma states that there

exists a unique solution to y (and thus x) as long as the queues are stable:



Lemma 1. If 0 < λ < µk, then (i) there is a unique and positive solution to y in (6) and (ii)
the solution is greater than λ. In addition, the rejection rate x is also unique and positive.

The proof is given in Appendix .1. This result states that as long as the total arrivals
are less then the service rate times the number of spaces, we can explicitly find the rejection
rates and the stationary probabilities by solving a polynomial equation.

4.2 Non-uniform Network

Of course, the totally uniform assumption rarely holds up in practice. But given occupancy
data we show that the total exogenous and endogenous arrivals to a queue can still be
solved for and used to estimate the traffic caused by drivers searching for parking. This
time, for some total incoming rejection rate x, letting y = λ + x, we can estimate the
endogenous proportion of incoming arrivals as the sum of the outgoing fractional rejection
rates of adjacent queues.

Assuming the queueing network reaches steady state, from the perspective of a single
queue in solving 3 for π0 gives

π0
ρk

k!
+
ukµ

y
= 1, (7)

where u is the occupancy level and ρ = y
µ
. Rearranging terms yeilds a polynomial in y,

0 =
k∑
i=0

1

µi−1

[
i− uk
i!

]
yk. (8)

Again, we can characterize the solutions to (8)

Lemma 2. If u ∈ [0, 1) and k is a positive integer, then (8) has a unique real, positive root.

The proof is provided in Appendix .2.
This root need not be bounded, hence the restriction of the values of u to the interval

[0, 1). In order to achieve a 100% occupancy, implying the probability of being full is 1,
vehicles would need to arrive constantly (y = ∞), immediately taking the place of any
vehicle that leaves upon completion of service. This is analogous to the requirement that for
the M/M/k/k queue to be stable, π0 > 0.

5 Optimizing parking availability

Price elasticity of demand provides a means of describing how consumer demand will change
with incremental changes to price. Currently, Pierce and Shoup’s analysis of the SFPark
pilot project in [Pierce and Shoup, 2013] is the state-of-the-art in estimating the price elas-
ticity of demand for curbside parking; their exploratory analysis provided rough estimates of
aggregated elasticities across time, location, and price change directions. For the purposes
of this paper, and in order to make use of the results in [Pierce and Shoup, 2013] we assume
a linear elasticity, however, any demonstrably reasonable (reflective of consumer behavior),



concave function would not tax the validity of our results. Thus, a block-face has a linear
elasticity α, and a function U : p 7→ u, taking a price p to an occupancy level u, defined as

U(p) = 1− αp (9)

Recall (8); we can write the right-hand side of this equation as a mapping F : Y ×U → R
where U = (0, 1) such that

F (y, u) =
k∑
i=0

1

µi−1

[
i− uk
i!

]
yk (10)

Note that this map is smooth in both its arguments y and u. By applying the Implicit
Function Theorem [Lee, 2012, Theorem C.40], a smooth mapping f : u 7→ y exists and it is
continuous and differentiable. Moreover, there is an explicit expression for its derivative and
the function f maps an occupancy u ∈ U to the unique real root y of F (y, u) = 0.

Consider the following composition,

g(p) = f(U(p)) · πk, (11)

which is equal the rate of rejection of vehicles from a block given a price p. The composition
(11) takes a price to a resulting level of congestion along an edge in a queue network due to
rejections.

The optimization problem given by

maximize
p

U(p)

subject to gi(pi) ≤ x̄i, i = 1, . . . ,m.
(P-1)

maximizes parking resource utilization subject to a congestion constraints x̄i imposed on
each block-face. Since (9) is concave, if gi’s are convex, then (P-1) is a convex optimization
problem easily solved by gradient descent.

Theorem 1. The optmization problem (P-1) is convex.

The main technical challenge is to show that the constraints gi’s are convex in the occu-
pancy ui. This is somewhat involved and the proof is provided in Appendix .3. Since (P-1)
is convex, there exist many ways to solve it. We use a projected gradient for the case study
in the next section.

6 APPLICATION

We consider the application of the above methods to curbside parking San Francisco’s Mission
District (Fig. 4). Using data collected by the SFPark pilot from May 8th, 2012 - August
29th, 2017 and elasticities estimated by [Pierce and Shoup, 2013], we identify block-faces
responsible for the high congestion impacts to through-traffic and set constraints to bring
this down to some hypothetically tolerable level. All data is calculated to an hourly rate,
e.g. the average percentage of parking spaces in use over the course of an hour.



Fig. 4: Block-faces, highlighted in red, with
curbside parking data from the SFPark pilot
program; Mission District, San Francisco.

According to [Pierce and Shoup, 2013],
curbside parking in the Mission District of
San Francisco displayed an average price
elasticity of −0.21. Price elasticity varied
greatly due to the time of day, week, and
year, among a number of other observable
factors. For the purposes of demonstra-
tion in this paper, we assume a uniform
price elasticity of −0.21 across block-faces in
the Mission District, and therefore, resulting
price changes should be taken with a grain
of salt.

We examine two scenarios: 1) we wish to
reduce overall congestion due to parking by
80% at two high occupancy block-faces and
2) achieve >80% occupancy at each block-
face, rather than a neighborhoodwide aver-
age of 80%, concentrated at a smaller pro-
portion of the blocks in the district. We find
that, in particular, spatial inefficiency, and not high occupancy, results in congestion.

6.0.1 Congestion Reduction

Fig. 5: Neccesary total arrival rate y to achieve
an occupancy level for some fixed number of
servers k with a service time µ of 1. Not the
sharp increase in total arrival rate around the
90% occupancy mark and that increasing the
number of servers only has a marginal bearing
on this arrival rate.

The 3300 block of 17th street and the 3400
block of 18th street are responsible for the
overwhelming majority of parking related
congestion in Mission District at noon on
the average Saturday, generating a total of
nearly 60 vehicles unable to find parking per
hour. As illsutrated by Fig. 2, a full third
of 18th street’s through traffic is made up of
drivers unable to find parking.

At these traffic levels, 17th and 18th street
have occupancies of 97% and 98% respec-
tively. By increasing prices by $0.28 on
17thth and $0.27 on 18th, we are able to
reduce this congestion by 80% to approx-
imately 11 vehicles per hour, total, while
still maintaining 91% and 92% occupancies,
respectively. All other blocks see compara-
tively negligible changes.

The “elbow” of the highly non-linear
curve describing the total arrival rate needed
to achieve a particular occupancy level oc-
curs around the 90% mark, as illustrated in



Fig. 5. By redistributing vehicles intending
to park at high occupancy blocks to historically low occupancy blocks through price control,
less time is spent cruising for parking, leading us to our next experiment.

6.0.2 Occupancy Redistribution

(a) Occupancy and resulting traffic in vehicles per hour
generated.

(b) Redistributing demand in Fig. 6a to low-occupancy
block-faces using the price changes indicated in Fig. 6c
results in less total traffic.

(c) Price changes corresponding to the resulting occu-
pancy redistribution in 6.0.2

Fig. 6: Results of experiments in section 6.0.2

On a typical Saturday at noon, the Mission
District achieves an average occupancy of
approximately 78%, while generating over 60
vehicles per hour in additional traffic due to
drivers searching for parking because there
is a small number of high occupancy block-
faces and a larger number of low occupancy
block-faces. By bounding each block to pro-
ducing no more than 1 vehicle every 20 min-
utes unable to find parking (for a total of
48 per hour for the district), each individ-
ual block-face individually exceeds 85% oc-
cupancy at each block-face. Indeed, after
price control, the Mission District services
a larger total number of vehicles while still
producing less additional traffic due parking
scarcity.

Fig. 6c indicates that, significantly dis-
counting prices on low occupancy block-
faces is an equally effective solution as rais-
ing prices at high occupancy block-faces, in
order to achieve an effective distribution of
parking resources that does not generate a
costly amount of congestion searching for
parking. Indeed, considering that a small
number of block-faces may exhibit a high
occupancy due to their desirable proximity
to popular locations, incentivizing drivers to
park somewhat further away may be more
effective than pricing out other drivers by
means of money or time to walk to a loca-
tion.

7 CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

With the growth of ride sharing services, electric vehicles, and increased demand for local
delivery services, personal and commercial transportation is changing. In order for city plan-



ners to design effective future parking policies and make use of growing bodies of parking
data, we developed a new kind of queueing network. We provided conditions for such net-
works to be stable, a “single node” view of a queue in such a network, and showed that
maximizing the occupancy of such queues subject to constraints on the allowable congestion
between queues searching for an available server is a convex optimization problem.

7.2 Future Works

A standing question in parking economics research is that of an appropriate maximum park-
ing time [Inci, 2015]. Some argue that a lower maximum parking time or lack of an initial
buy-in price results in higher vehicle turn-over, and hence more congestion. Indeed, accord-
ing to (3), decreasing µ increases the total arrival rate necessary to achieve a fixed occupancy,
but the probability of being full remains unchanged. Combined with the collection of ground-
truth data and hypothesis testing, this question is closer to being answered.

Further, driver behavior is an important next-step to be considered. We have implicitly
assumed that drivers, once inside the network searching for parking, will park regardless of
price at a particular block-face. While this assumption alone is not unrealistic, how demand
changes with respect to the total network sojourn time of the driver, distance from the
initially desired location, and whether or not drivers have access to information regarding
available parking locations are all certainly critical implications to consider.
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.1 Proof of Lemma 1

Proof. Some algebra on (6) gives

k!(y − λ)
∑k

i=0
ρi

i!
= yρk

The yk+1

µk
and yρk terms cancel, and we have a polynomial with degree k

k
µk−1 − λ

µk

k!
yk +

k−1
µk−2 − λ

µk−1

(k − 1)!
yk−1 + · · ·+ (1− λ

µ
)y − λ = 0. (12)

Descartes’ rule of signs [Meserve, 1982a], which roughly states that given a polynomial and
ordering its terms from highest degree to lowest degree, the number of real positive roots
is related to the number of sign changes. Let n be the number of sign changes (from
positive to negative), then the only possible number of positive roots to this polynomial
are n, n − 2, n − 4, . . . In particular, if n = 1, then the polynomial has one and only one
positive root. Applying to the polynomial in (12), we notice the sign of the coefficients are
determined by k − λ, k − 1 − λ, k − 2 − λ and so on, until the constant term −λ. By
assumption, λ < µk, so the first coefficient is positive. By assumption, λ > 0, so the last
coefficient (constant term) is negative. Then for any λ ∈ (0, µk), it causes at most one
change the signs of the other coefficients. So n = 1 for all possible λ ∈ (0, k), and there is a
unique positive solution to y.

To show that y > λ, let f(y) be the polynomial in (12). We have f(0) = −λ < 0, and
f(z) > 0 for sufficiently large z (positive coefficient on yk term). Since there is only one
positive solution, it suffices to show that at f(λ) < 0. It turns out that f(λ) has a telescoping
sum, and

f(λ) =
∑k

i=1
λi

(i−1)! −
∑k

i=1
λi+1

i!
− λ

= λ− λk+1

k!
− λ

< 0.



.2 Proof of Lemma 2

Proof. Let us first examine the coefficients of yk. WLOG, assume µ = 1. We have the
following sequence:

s = {−uk, 1− uk, 2−uk
2!
, . . . , k−uk

k!
} (13)

We will show that if u ∈ [0, 1), k ∈ Z+, the sequence (13) undergoes exactly 1 sign change,
and again apply Descartes’ rule of signs. Observe that s0 < 0 for any allowable values of
u and k. Further, observe that sk = (1 − u) ((k − 1)!)−1. By induction, sk will always be
positive for any value of k. If k = 1, then s1 = (1 − u)(1)−1, and since u ∈ [0, 1), s1 > 0.
Assume this is true for k, then for k + 1, sk = (1− u) (k!)−1, so that we have that sk+1 > 0.
It now suffices to show that {s} can only undergo one sign change as we increment i. For
some k, the i–th element of {s} is si = (i − uk)(i!)−1. Fix k. While the denominator of
the sequence is itself increasing with i (meaning {s} need not be monotonic), it is strictly
positive. We need only look at the sign of the numerator. In particular, uk is fixed between
[0, 1) ·k = [0, k), and i is the set of indices between [0, k]. The sequence (13) will be negative
until i > bukc, and since bukc < uk, we are ensured there is only one sign change.

Since the coefficients of (8) undergo one sign change, we again invoke Descartes’ rule,
and observe that we have one real positive root.

.3 Proof of Theorem 1

Proof. Let x = ku. Then we can think of (8) as

F (y, x) = ( x
k!
− 1

(k−1)!)y
k + · · ·+ ( x

2!
− 1)y2 + (x− 1)y + x (14)

Implicit differentiation of (14), written as DxF +DyF · y′ where y′ = dy/dx, gives

0 = (y
k

k!
+ · · ·+ y + 1) + (( 1

(k−1)! −
x
k!

)kyk−1+

· · ·+ (1− x))y′ (15)

Noting that (DxF )(y) = yk

k!
+ · · ·+ y+ 1 and (DyF )(x, y) = ( 1

(k−1)! −
x
k!

)kyk−1 + · · ·+ (1−x)
so that

y′ = −DxF · (DyF )−1 (16)

Proposition 1. Let (x, y) be a positive solution to F (x, y) = 0, then y′ evaluated at that
solution is positive.

We first show the theorem assuming the proposition is true. We can similarly compute
the second order implicit derivative d2y/dx2; indeed,

y′′ =
DxF · (D2

yF · y′ +Dx,yF )−DyF ·Dy,xF · y′

(DyF )2
(17)



Hence, if DxF · (D2
yF · y′ +Dx,yF )−DyF ·Dy,xF · y′ > 0 then y′′ > 0. We have

DxF · (D2
yF · (−DxF · (DyF )−1)+ (18)

Dx,yF )−DyF ·Dy,xF · (−DxF · (DyF )−1)

= DxF · (D2
yF · (−DxF · (DyF )−1) + 2Dy,xF ) (19)

= DxF · h(x, y) (20)

where h(x, y) = D2
yF · y′ + 2Dy,xF . Since DxF > 0, we focus on h(x, y): Now,

(Dy,xF )(y) = ((k − 1)!)−1yk−1 + · · ·+ 1 (21)

and

−D2
yF = ( x

k!
− 1

(k−1)!)k(k − 1)yk−2 + · · ·+ 2(x
2
− 1) (22)

Collecting all the x terms in D2
yF we can define

h̃(x, y) = x
(k−2)!y

k−2 + · · ·+ x. (23)

Since F (y, x) = 0, we have

x
k!
yk + x

(k−1)!y
k−1 + · · ·+ x = 1

(k−1)!y
k + · · ·+ y (24)

so that

h̃(x, y) + x
k!
yk + x

(k−1)!y
k−1 − x

k!
yk − x

(k−1)!y
k−1

= 1
(k−1)!y

k + · · ·+ y − x
k!
yk − x

(k−1)!y
k−1

Then,

D2
yF = x

k!
yk + x

(k−1)!y
k−1 + k

(k−2)!y
k−2 + · · ·+ 2

− 1
(k−1)!y

k − · · · − y.

so that

h(x, y) = 2
(k−1)!y

k−1 + · · ·+ 2−
(

1
(k−1)!y

k + · · ·+ y − x
k!
yk

− x
(k−1)!y

k−1 − k
(k−2)!y

k−2 − · · · − 2
)
y′

= y′
(
x
k!
− 1

(k−1)!

)
yk

+ y′
(

2
(k−1)!y′ + x

(k−1)! −
1

(k−2)!

)
yk−1

+ y′
(

2
(k−2)!y′ + k

(k−2)! −
1

(k−3)!

)
yk−2

+ y′
(

2
(k−3)!y′ + k−1

(k−3)! −
1

(k−4)!

)
yk−3

...

+ y′
(

2
y′

+ 2
)
.



Through straightforward, but somewhat cumbersome algebra, we can show that if (x, y) is
a pair such that F (x, y) = 0, then

2

y′
+ 1 ≥ x.

Following the above inequalities and using 2
y′

+2 ≥ x, at the solution (x, y) where F (x, y) = 0

h(x, y) ≥ y′
(
x
k!
− 1

(k−1)!

)
yk

+ y′
(

x
(k−1)! −

1
(k−2)!

)
yk−1

+ y′
(

x
(k−2)! −

1
(k−3)!

)
yk−2

...

+ y′ (x)

= y′F (x, y)

= 0,

and y′′ ≥ 0 follows from h(x, y) ≥ 0.
Now we prove Prop. 1. This lemma follows from the Gauss-Lucas Theorem [Meserve, 1982b],

which states that if p(z) is a polynomial with real coefficients with complex roots r1, . . . , rn,
then the complex roots of p′(z) is contained in the convex hull of r1, . . . , rn. For a fix x,
applying this theorem to DyF yields the fact that real parts of all roots of DyF is less than
the root of F (x, y). Since DyF → −∞ as y →∞, at the root of F (x, y), DyF ≤ 0. By (16)
and the fact DxF > 0, y′ > 0.
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