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Abstract— Data-driven approaches from machine learning
provide powerful tools to identify dynamical systems with
limited prior knowledge of the model structure. This paper
utilizes Gaussian processes, a Bayesian nonparametric ap-
proach, to learn a model for feedback linearization. By using a
proper kernel structure, the training data for identification is
collected while an existing controller runs the system. Using the
identified dynamics, an improved controller, based on feedback
linearization, is proposed. The analysis shows that the resulting
system is globally uniformly ultimately bounded. We further
derive a relationship between the training data of the system
and the size of the ultimate bound to which the system converges
with a certain probability. A simulation of a robotic system
illustrates the proposed method.

I. INTRODUCTION

Feedback linearization of nonlinear system allows to con-
trol many real-world systems with well-understood tech-
niques from linear control theory [1]. However, feedback
linearization requires precise model knowledge to ensure
the exact cancellation of all nonlinearities in the system.
Therefore, precise identification of the nonlinear dynamical
system is a crucial step for applying feedback lineariza-
tion. However, this becomes more and more challenging,
as control is increasingly applied to highly complex sys-
tems, especially, when the dynamics cannot be derived from
first principles. Since classical system identification uses
observations of the system’s behavior to select parametric
models and tune its parameters [2], it is prone to fail, if
no structural knowledge is available. Therefore, data-driven
approaches gain popularity because they allow generalization
outside of the training data with only a minimum set of prior
assumptions [3]. A mathematically very profound method
is Bayesian nonparametric modeling which unifies the de-
manded properties: Incorporate prior knowledge through the
Bayesian framework and provide sufficient flexibility through
their nonparametric nature.

In this work, we focus on Gaussian processes (GPs) as a
Bayesian nonparametric model, which already was success-
fully applied to the identification of dynamical systems [4],
[5]. However, a formal analysis from a control point of view
is missing. The necessary convergence analysis of a Gaussian
process dynamical model was first conducted in [6], [7] and
the work in [8] uses a GP to safely explore the state space of
a dynamical system. For the stability analysis, it makes use of
a further favorable property of a GP: It provides, along with
the estimated function value, a measure for the model fidelity
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depending on the state space region. Based on the distance
to training data, it provides upper bounds for the difference
between true and inferred function value as derived in [9].
The knowledge of its own ignorance represents a benefit over
many other representation approaches.

To deal with the lack of model knowledge in feedback
linearization, the work in [10] focuses on a robust design,
under the assumption that the effect of the control input
on the state is known. Also [11] considers uncertainties in
the given dynamics, but without specifying how these are
obtained. The methods in [12], [13] use an adaptive scheme,
however, nonparametric identification methods for control
affine systems have not been exploited.

As main contribution, we propose the identification with
Gaussian processes and show that the system with the pro-
posed feedback linearizing controller is globally uniformly
ultimately bounded. For the identification, we transfer the
knowledge of the control affine structure of the system
into the kernel function. This allows to identify the system
in closed-loop, while an arbitrary controller is running the
system. Further analysis shows how the ultimate bound is
reduced as more knowledge (training data) is available and
derives a relationship between training data and size of the
set to which the system converges for a given probability.

The remainder of this paper is structured as follows: After
defining the considered problem setting in Sec. II, Sec. III
introduces the identification method based on Gaussian pro-
cesses. Section IV focuses on the proposed controller and
analyzes its convergence properties. It is followed by a
numerical illustration for an example system in Sec. V and
a conclusion in Sec. VI.

II. PROBLEM FORMULATION

Consider a state-feedback linearizable single-input system
with the controllable canonical form1

ẋ1 = x2

ẋ2 = x3

· · ·
ẋn = f(x) + g(x)u, x0 = x(0), (1)

1Notation: Lower/upper case bold symbols denote vectors/matrices,
respectively.In denotes the n× n identity matrix and A � 0 the positive
definiteness of matrix A. E[·] denotes the expected value, V[·] the variance
of a random variable. R0

+, R+ denote all real positive numbers with and
without the zero, respectively. The norm ‖ ·‖ denotes Euclidean norm. Nor-
mal distributed random variables with mean µ and variance σ are denoted
by N (µ,σ). a1:n denotes the first n elements of a and σmax(A),σmin(A)
the maximal and minimal singular value of a matrix A. The x dependencies
of f , f̂ , g, ĝ are partially omitted for notational convenience.



where x = [x1 x2 · · ·xn]ᵀ ∈ X ⊆ Rn, u ∈ U ⊆ R and the
full state vector x is assumed measurable. In addition, the
following is assumed:

Assumption 1: The unknown functions f : X → R,
g : X → R are bounded and infinitely differentiable.

Assumption 2: The system’s relative degree is equal to the
system order n for all x ∈ X .

Assumption 3: The sign of g(x) is known for at least
one x ∈ X .
Assumptions 1 and 2 are common assumptions for feedback
linearization. While the first ensures existence of a unique
solution to (1), the second ensures, that there are no inter-
nal dynamics. Assumption 3 does not impose any severe
restriction, since the sign of g(x) can be determined from
measurements which are assumed to be available (see below).

From Assumption 2 it holds g(x) 6= 0, ∀x ∈ X (as
g(x) = 0 leads to an undefined relative degree). This leads,
with continuity from Assumption 1, to a constant sign of g.
Without loss of generality, we take g to be strictly positive

g(x) > 0, ∀x ∈ X . (2)

The first objective is to approximate the unknown func-
tions f(x), g(x) through f̂(x), ĝ(x), respectively. Based
on these estimates, we aim for feedback linearization using

uf := u =
1

ĝ(x)

(
−f̂(x) + ν

)
, (3)

where ν ∈ R is the input to the resulting approximately
linearized system.

To determine the estimates f̂(x) and ĝ(x), it is assumed,
that a controller u = u0(x) exists, which keeps the tra-
jectories x(t) uniformly bounded for a finite time. Thus,
∃ T > 0, ε > 0 such that ‖x(t)‖ < ε,∀t ∈ [0, T ].
This is necessary to collect N training data pairs of the
system (1), without risking damage. Since no assumption on
the stability of f(x) is made, it is not possible to set u = 0
and collect training data of f(x) separately from g(x).
However, since the controller only needs to ensure finite
time boundedness, its existence is a very mild assumption. In
addition to the state vector x, we assume availability of noisy
observations y = ẋn + ε, where ε ∼ N (0,σ2

n), resulting in
the data set2

D =
{
x(i), y(i)

}N
i=1

.

Note, that the training points do not need to be samples
along a single trajectory but are independent of any time
indexing. The general idea is summarized in the following
three steps:
• Collect training data D using the controller u0, e.g., by

initializing the system at various x0.
• Perform identification by building estimates f̂ , ĝ using

GPs and Assumptions 1-3 as described in Sec. III.

2For practical applications, time derivatives can be approximated through
finite differences. The approximation error is then considered as part of the
measurement noise (even though it is not necessarily Gaussian).

• Employ the feedback linearization controller (3) instead
of u0 to control the system as described in Sec. IV.

By initially considering the from in (1), we implicitly assume
that the states of the canonical form are known.

III. IDENTIFICATION OF CONTROL AFFINE
SYSTEMS USING GAUSSIAN PROCESSES

We aim to identify f , g using Gaussian process regression
as reviewed in the following.

A. Gaussian Process Basics

Given noisy measurements of a function ftrue : X → R

y
(i)
f = ftrue

(
x(i)

)
+ ε(i)

with inputs x(i) ∈ X , ε(i) ∼ N (0,σ2
n) and i = 1, . . . ,N .

The function is modeled with a stochastic process fGP(x)
which assigns a joint Gaussian distribution to any finite
subset {x1, . . . ,xM} ⊂ X in a continuous domain. The
Gaussian process, also considered as distribution over func-
tions [14], is denoted by

fGP(x) ∼ GP (m(x), k(x,x′)) .

The GP is fully specified by a mean m(x) : X → R and
covariance k(x,x′) : X × X → R function. The first is
employed to include prior knowledge regarding the unknown
function, but is also often set to zero without loss of general-
ity. The latter, also called kernel function, determines among
other things the resulting smoothness properties of fGP(x).
Both, mean and kernel function, are parameterized by hy-
perparameters, concatenated in ψ. According to Bayesian
principles, the optimal hyperparameters to the observed data
are obtained by maximizing the likelihood

ψ∗ = arg max
ψ

log p(yf |X,ψ), (4)

log p(yf |X,ψ) =
1

2

(
yTfKyf − log detK −N log(2π)

)
,

where

X =
[
x(1) · · · x(N)

]
∈ Rn×N ,

yf =
[
y

(1)
f · · · y(N)

f

]ᵀ
∈ RN ,

concatenate the input/output data, respectively and

K=

k
(
x(1),x(1)

)
· · · k

(
x(1),x(N)

)
...

. . .
...

k
(
x(N),x(1)

)
· · · k

(
x(N),x(N)

)
∈RN×N (5)

concatenates pairwise kernel evaluations of the input training
data. The optimization is generally non-convex, however
it is commonly solved successfully with gradient-based
methods [14]. The effect of local minima and the resulting
suboptimal identification is discussed in Remark 1.

Gaussian process regression uses the joint Gaussian dis-
tribution of training data and a test input x∗[

fGP(x∗)
yf

]
∼ N

([
m(x∗)
mX

]
,

[
k∗ kᵀ

k K + σ2
nIN

])
,



with

mX =
[
m
(
x(1)

)
· · · m

(
x(N)

)]ᵀ
,

to infer posterior mean and variance through conditioning

µ(x∗) := E [fGP(x∗)|D] (6)

= m(x∗) + kᵀ(K + σ2
nIN )-1(yf −mX),

σ(x∗) := V [fGP(x∗)| D] = k∗ − kᵀ(K + σ2
nIN )-1k, (7)

with
k∗ = k(x∗,x∗),

k =
[
k
(
x(1),x∗

)
· · · k

(
x(N),x∗

)]ᵀ
∈ RN .

(8)

Going back to the original problem, the difficulty here is
that individual observations of the function f(x) and g(x)
from (1) are not available in D. Since ẋn = f(x) is possibly
unstable, we must run the system in closed-loop to take
measurements. Thus, we aim to identify the functions f , g
from only observing their sum, as given in the data set D.
Therefore, the knowledge regarding the control affine struc-
ture of (1) will be exploited as follows.

B. Expressing Structure in Kernels

The kernel function of a GP does not only express its
smoothness properties but is also used to express prior
knowledge on the structure of the function [15]. Note that
this it not equivalent to assuming a parametric structure of
the function as in classical system identification. The kernel
encodes that the function is represented as a sum or a product
but leaves each function unlimited flexibility.

1) Sum of functions: Suppose fa, fb : X → R are drawn
independently from two GP priors

fa(x) ∼ GP (ma(x), ka(x,x′)) ,

fb(x) ∼ GP (mb(x), kb(x,x′)) ,

and are composed to fsum(x) = fa(x) + fb(x) then

fsum(x) ∼ GP (ma(x) +mb(x), ka(x,x′) + kb(x,x′))

is another GP. Assuming that there are measurements

y(i)
sum = fsum

(
x(i)

)
+ ε(i) = fa

(
x(i)

)
+ fb

(
x(i)

)
+ ε(i),

of the sum of the functions available with ε(i) ∼ N (0,σ2
n)

and i = 1, . . . ,N . Then, the joint distribution (ma(x) =
mb(x) = 0 for notational simplicity)fa(x∗)

fb(x
∗)

ysum

 ∼ N
0,

k∗a 0 kᵀa
0 k∗b kᵀb
ka kb Ka +Kb + σ2

nIN


with ka,kb, k

∗
a, k∗b defined according to (8), is used for

conditioning on the output of the individual functions

fa(x∗)|ysum ∼ N
(
kᵀaK

−1
sumysum, k∗a − k

ᵀ
aK
−1
sumka

)
,

fb(x
∗)|ysum ∼ N

(
kᵀbK

−1
sumysum, k∗b − k

ᵀ
bK
−1
sumkb

)
,

where Ksum = Ka +Kb + σ2
nIN with Ka,Kb according

to (5). The hyperparameter vector is extended accordingly,
ψsum = [ψᵀ

a ψᵀ
b ]ᵀ and also determined by optimization (4),

where K = Ksum and yf = ysum. This enables us to
infer the posterior mean and variance functions of fa, fb
separately, using only observations of their sum.

2) Product with known function: The knowledge that an
unknown function fh(x) : X → R is multiplied with a
known function h(x) : X → R, can also be represented in
the kernel of a GP: Suppose measurements of the product

y
(i)
prod = fprod

(
x(i)

)
+ ε(i) = fh

(
x(i)

)
h
(
x(i)

)
+ ε(i),

with ε(i) ∼ N (0,σ2
n), i = 1, . . . ,N are taken

and fh ∼ GP(0, kh(x,x′)), then fprod(x) is also a GP with
scaled kernel (mh(x) = 0 for notational simplicity)

fprod(x) ∼ GP(0,h(x)kh(x,x′)h(x′)).

The resulting joint distribution is[
fh(x∗)
yprod

]
∼ N

(
0,

[
h∗k∗hh

∗ h∗kᵀhH
ᵀ

Hkhh
∗ HᵀKhH + σ2

nIN

])
,

where H = diag
(
h
(
x(1)

)
, . . . ,h

(
x(N)

))
∈ RN×N ,

h∗ = h(x∗) and kh, k∗h, Kh as in (8) and (5), respectively.
Defining Kprod = HᵀKhH+σ2

nIN and conditioning leads
to inference for function fh

fh(x∗)|yprod ∼ N
(
h∗kᵀhH

ᵀK-1
prodyprod,

h∗k∗hh
∗ − h∗kᵀhH

ᵀK-1
prodHkhh

∗).
3) Restriction to positive domain: The true function g(x)

is strictly positive ∀x ∈ X and therefore this must also hold
for its estimate ĝ(x) to obtain bounded control signals in (3).
This is ensured as follows: According to [6], the posterior
mean function µ(x) for a squared exponential kernel is
bounded. Thus, a constant bµ > 0 exists such that

µm=0(x) + bµ > 0, ∀x ∈ X ,

where µm=0 denotes the posterior mean function with zero
prior mean. There exist methods to compute arbitrarily tight
bounds for µm=0(x) on a compact set [16]. Thus, without
elaborating further details, we assume a bµ is known, which
is set as constant prior mean, for which µ(x) > 0, ∀x ∈ X .

C. GP Identification for Control Affine Systems

In the following, we bring all mentioned techniques to-
gether to identify control affine system f(x) + g(x)u(x)
using GPs. We set the prior mean functions for f and g to

mf (x) = 0, mg(x) = bµ, (9)

and use a composite of squared exponential (SE) kernels with
automatic relevance determination

k(x,x′) = kf (x,x′) + u0(x)kg(x,x′)u0(x′). (10)

with

kf (x,x′) = σ2
f exp

 n∑
j=1

(xj − x′j)2

−2l2j,f

 ,

kg(x,x′) = σ2
g exp

 n∑
j=1

(xj − x′j)2

−2l2j,g

 ,



where the hyperparameters are lengthscales lj,f ,lj,g∈R+,
j = 1, . . . ,n, signal variance σf ,σg ∈ R0

+ and observation
noise σn ∈ R0

+. They are concatenated in

ψgf =
[
l1,f l1,g · · · ln,f ln,g σ

2
f σ

2
g σ

2
n

]ᵀ
,

and optimized using (4). The joint distribution with test
input x∗ isf(x∗)
g(x∗)
y

 ∼ N
 0

bµ
U0bµ

 ,

k∗f 0 kᵀf
0 k∗g kᵀgU

ᵀ
0u
∗
0

kf U0kgu
∗
0 Kfg

 ,

where U0 = diag
(
u0

(
x(1)

)
, . . . ,u0

(
x(N)

))
∈ RN×N ,

u∗0 = u0(x∗), bµ = [bµ · · · bµ]
ᵀ ∈ RN ,

Kfg = Kf +Uᵀ
0KgU0 + σ2

nIn

and kf ,kg,Kf ,Kg are build using kf (x,x′), kg(x,x′)
analog to (8) and (5). The training output

y =
[
y(1) · · · y(N)

]ᵀ ∈ RN

and input values x(i), i = 1, . . . ,N are given in the data
set D. The resulting posterior mean function of the two
functions are set to the estimates f̂(x), ĝ(x) given by

f̂(x∗) := µf (x∗) = kᵀfK
-1
fg (y −U0bµ) (11)

ĝ(x∗) := µg(x
∗) = bµ + u∗0k

ᵀ
gU0K

-1
fg (y −U0bµ) .

Lemma 1: Consider a control affine system (1) with As-
sumptions 1-3 and corresponding training data in D. Then
the estimates f̂(x) and ĝ(x) represented by a Gaussian
process with SE kernels (10) and prior mean (9) are bounded,
infinitely differentiable and ĝ(x) > 0 holds ∀x ∈ X .

Proof: The differentiability and boundedness follows
from the SE kernel according to [14] and [6], respectively.
The strict positivity of ĝ(x) follows from the boundedness
and the choice of the constant prior mean in (9).

Remark 1: Obviously, there exist infinitely many possibil-
ities to find two functions which add up to the same function.
Therefore, by only using observations of the sum, learning
the unique correct individual functions cannot be expected.
The estimates in (11) are only one of many possibilities
(selected by the hyperparameters) which are in line with the
training data. However, additional knowledge regarding the
structure of f(x), g(x), e.g., dependence only a subset of the
state variables, can be transfered into the kernel: By setting
the lengthscales lj,f = lj′,g =∞ for the states j, j′ on which
they do not depend, it is ensured, that also the estimates show
no dependency on these input directions. This simplifies the
optimization of hyperparameters since it takes place in a
lower dimensional space. In the general case, the identifica-
tion possibly fails in separating the contribution of f and g.
The limits have not been studied well. Nevertheless, this does
not affect Lemma 1 and only compromises performance but
not the following results on convergence.

IV. CONVERGENCE ANALYSIS FOR FEEDBACK
LINEARIZING CONTROL

This section proposes the feedback linearizing controller
based on estimates f̂ , ĝ from (11) and analyzes the conver-
gence of the closed loop system.

Control affine
system (1)

Feedback
linearization (3)

GP regression
estimates (11)

kc[λᵀ 1]

[0 λᵀ]

D

r −

−

ν u

f̂

ĝ x

x

x

Fig. 1. The overall design of the framework

A. Control Law

Consider the filtered scalar state r ∈ R, defined as

r =
[
λᵀ 1

]
x, (12)

where λ = [λ1 λ2 · · ·λn−1]ᵀ ∈ Rn−1 is a coef-
ficient vector such that for s ∈ C the polynomial
sn−1 + λn−1s

n−2 + · · ·+ λ1 is Hurwitz. Under this condi-
tion, the state converges exponentially x→ 0 as r → 0 [12].
The dynamic of the filtered state is

ṙ = f(x) + g(x)uf (x) + λᵀx2:n,

where x2:n = [x2 · · ·xn]
ᵀ ∈ Rn−1 and

uf (x) =
1

ĝ(x)

(
−f̂(x)− kcr − λᵀx2:n

)
, (13)

according to (3) where

ν = −kcr − λᵀx2:n,

with kc ∈ R+ is used. The control scheme is shown in Fig. 1.

B. Convergence Analysis

The closed-loop behavior is analyzed in the following.
Proposition 1: There exists a k∗c > 0 such that for

every kc ≥ k∗c the system (1) under Assumptions 1-3 with
estimates (11) under control law (13) is globally uniformly
ultimately bounded.

Proof: Consider the Lyapunov candidate

V (x) = r2/2 (14)

with its time derivative

V̇ (x) = rṙ = r (f + gu+ λᵀx2:n)

= r
(
f − ḡf̂

)
− kcḡr2 + (1− ḡ)rλᵀx2:n, (15)

where ḡ := g/ĝ is positive and bounded ∀x ∈ X from
Lemma 1 and Assumptions 1-3. In addition, define con-
stants b ∈ Rn, A,B ∈ Rn×n, with A,B � 0 for which

bᵀx ≥ r
(
f − ḡf̂

)
, xᵀAx ≤ ḡr2,

xᵀBx ≥ (1− ḡ)rλᵀx2:n, ∀x ∈ X ,

holds which exist since f , f̂ , ḡ are bounded. Therefore,

V̇ (x) ≤ ‖b‖‖x‖ − kcσmin(A)‖x‖2 + σmax(B)‖x‖2,



and there exists a k∗c > 0 such that

σmax(B)− k∗cσmin(A) < 0. (16)

For every kc > k∗c , the Lyapunov function decreases

V̇ (x) < 0, ∀x ∈ X \ B1

outside of the hyperball

B1 =

{
x ∈ X

∣∣∣∣ ‖x‖ ≤ ‖b‖
kcσmin(A)− σmax(B)

}
.

The attributes uniform and global hold, since the closed-loop
system is time independent and the Lyapunov function is
radially unbounded [1]. Therefore, trajectories of the closed-
loop system converge for any x0 ∈ Rn to B1.

Remark 2: Since no assumption regarding the available
training data are made for Proposition 1, the result holds also
when only applying the prior estimates, i.e. the prior mean
functions f̂(x) = mf (x) = 0 and ĝ(x) = mg(x) = bµ
without any training. We also have not assumed anything
regarding the precision of f̂ , ĝ, thus the statements hold
regardless of a successful hyperparameter optimization as
mentioned in Remark 1.

C. Tighter Bound with Training Data

It is expected, that the set B1, to which the trajectories
converge according to Proposition 1, is getting smaller as
a higher quantity (amount of training data) and quality
(distribution of input locations in the training data over X ) of
training data is available. This relationship is investigated in
the following. To keep the analysis tractable, the following
assumption is made:

Assumption 4: The function g(x) is known,
thus ĝ(x) = g(x) and noisy measurements for f(x),

y
(i)
f = f

(
x(i)

)
+ ε(i) = ẋ(i)

n − g
(
x(i)

)
u0

(
x(i)

)
+ ε(i)

with ε(i) ∼ N (0,σ2
n), i = 1, . . . ,N are available.

This assumption is commonly applied for robust feedback
linearization, e.g., [10]. Analog to (11), the unknown func-
tion is now estimated with

f̂(x) := µ(x) = kᵀf (Kf + σ2
nIN )-1yf , (17)

where yf =
[
y

(1)
f · · · y

(N)
f

]ᵀ
and kf , Kf are computed

according to (8) and (5) for the SE kernel. Under this
assumption, Proposition 1 can be relaxed with respect to the
choice of the gain kc.

Corollary 1: The system (1) under Assumptions 1-4 with
estimate (17) for f(x) under control law (13) is globally
uniformly ultimately bounded for any kc > 0.

Proof: As a special case of Proposition 1, the condi-
tion (16) is dropped since 1− ḡ = 0. This allows to extend
the statement for all gains kc.

In the following, we aim to derive a tight bound regarding
the precision of the estimate f̂(x) using the variance function
σ(x) : X → R0

+ of the GP as defined in (7). It is an indicator
for the model fidelity and (for a SE kernel) it is also a
measure for the distance to training data.

Lemma 2: The variance function of a GP, as defined
in (7), is bounded for a SE kernel by

0 ≤ σ(x) ≤ σ2
f , ∀x ∈ X .

Proof: Since the SE kernel is bounded
by 0 ≤ kf (x,x′) ≤ σ2

f [7], it follows from Kf � 0.

Since the GP is a probabilistic model in nature, we cannot
expect any deterministic statements regarding the error of the
estimate |f − f̂ |, however, according to [9], it is possible to
make high probability statements regarding the distance from
the true function f(x) to the mean function µ(x) using the
variance function σ(x). This requires additional assumptions
regarding the complexity of f(x).

Assumption 5: f(x) has a bounded reproducing kernel
Hilbert space (RKHS) norm with respect to a continuously
differentiable bounded kernel k, denoted by ‖f(x)‖2k ≤ Bf .

Lemma 3: [9] Suppose Assumption 5 holds, then

Pr
{
∀x ∈ X̃ , |µN (x)− f(x)| ≤ βN+1σN (x)

}
≥ 1− δ,

holds on a compact set X̃ ⊂ Rn, where δ ∈ (0, 1),

βN+1 =
√

2Bf + 300γN+1 log3((N + 1)/δ) and γN+1 is
the maximum mutual information that can be obtained about
f(x) from N+1 noisy samples x(1), . . . ,x(N+1) and µN (x)
and σN (x) are posterior mean and variance function of a GP
for N data points as defined in (6), (7), respectively.

Proposition 2: For system (1) under Assumptions 1-5
with estimate (17) for f(x) based on N training points and
under control law (13), with probability 1− δ, δ ∈ (0, 1), the
closed-loop system is globally uniformly ultimately bounded
for any kc > 0 to the set

B2 =

{
x ∈ X

∣∣∣∣∣‖x‖ ≤ βN+1σ̄

kc
∥∥[λᵀ 1

]∥∥
}

,

where σ̄ is an upper bound such that σ̄ ≥ σ(x)
holds ∀x ∈ B1 and βN+1 is defined in Lemma 3.

Proof: Proposition 1 guarantees the convergence to a
compact set B1 = X̃ . Thus, the results from Lemma 3 are
applicable and the further analysis can be limited to B1.
Using Lyapunov candidate (14), its time derivative (15) for
the case g − ĝ = 0 (Assumption 4) is

V̇ (x) = r(f − f̂)− kcr2. (18)

According to Lemma 3,

|f − f̂ | ≤ βN+1σ̄ ⇒ V̇ (x) < 0 ∀x ∈ X \ B2,

holds with a probability 1 − δ, which ensures convergence
to a set of radius βN+1σ̄

kc
. Because r converges to B2, x is

ultimately bounded. The attributes uniform and global hold,
since the closed-loop system is time independent and the
Lyapunov function is radially unbounded [1].

Remark 3: Even though B1, B2 from Propositions 1 and 2
can be made arbitrarily small through larger choices of kc,
this is undesired due to the resulting high gain controller.
Given a fixed set of training data, the convergence set B2 can
be computed from Proposition 2 for any probability 1 − δ



(and also vice versa). If the pair of achieved probability 1−δ
and corresponding set size B2 does not meet the required
performance, the system must be trained with additional
data to reduce σ̄. The following lemma exploits the behavior
of σ(x) as more training data is added.

Lemma 4: For the posterior variance function with SE
kernel defined in (7), the following two statements hold:

i) Let σN (x),σN+1(x) denote the variance functions
for N , N + 1 training data points, respectively, then

σN (x) > σN+1(x), ∀x ∈ X ,

ii) If to the existing training points x(i), i = 1, . . . ,N0,
training points at the test point x∗ = x(i),
i = N0 + 1, . . . ,N are added, then

lim
N→∞

σN (x∗) = 0 with σN = O(1/N).

Proof: Statement i) follows directly from con-
stant k∗f = σ2

f in (7) and Kf � 0. For statement ii), consider

σN (x∗) = σ2
f − k

ᵀ
f (Kf + σ2

nI)-1kf

≤ σ2
f − ‖kf‖2σmin

(
(Kf + σ2

nI)-1)
≤ σ2

f −
∑N
i=1 kf (x∗,x(i))2

σmax(Kf ) + σ2
n

≤ σ2
f −

∑N0

i=1 kf (x∗,x(i))2 + (N −N0)σ2
f

Nσ2
f + σ2

n

,

where the last inequality is obtained from the Gershgorin
circle theorem and the fact Kij ≤ σ2

f , ∀i, j = 1, . . . ,N .
Since

∑N0

i=1 kf (x∗,x(i))2/σ2
f −N0σ

2
f := k0 is constant

lim
N→∞

σN (x∗) ≤ lim
N→∞

σ2
f

(
1− k0 +N

N + σ2
n/σ

2
f

)
= 0,

which concludes the proof.
Assuming now, that the location of the training points can be
chosen arbitrarily in B1, it is shown in [9], that the maximum
mutual information γN+1 has a sub-linear dependency on
the number of training points N for the SE kernel γN+1 =
O(log(N)n+1). Therefore, even though βN+1 increases
with N , the product βN σ̄ decreases as more appropriately
chosen points are in the training set.

V. NUMERICAL ILLUSTRATION

To validate the proposed approach, we conduct a simula-
tion for the following system with n = 2 and

ẋ1 = x2, (19)

ẋ2 = 1− sin(x1) + s(x2)︸ ︷︷ ︸
=f(x)

+

(
1 +

1

2
sin(x2/2)

)
︸ ︷︷ ︸

=g(x)

u,

where s(x) = 0.5
1+exp(−x/10) is the sigmoidal function. The

system is an adapted pendulum system and fulfills Assump-
tions 1-3. Note, that for the simulation, we are not making
use of Assumptions 4 and 5, since we aim to validate the
simultaneous identification of f(x) and g(x).

kc λ σ2
n kp kd x0 bµ Nfull Nfrac

0.3 1 0.1 5 2 [−3 0]ᵀ 2 150 6

TABLE I
PARAMETERS EMPLOYED IN THE SIMULATION

−6 −4 −2 0 2 4 6−5

0

5

0

2

x1

x2

f
(x

),
f̂
(x

) f̂(x)

f
(
x(i)

)

Fig. 2. The estimate f̂(x) (surface) along with the test points f
(
x(i)

)
,

for Dfull (black marks). Consider that f
(
x(i)

)
are not available as mea-

surements for identification but are only added here as reference.

A. Setup

As described in Sec. II, the simulation is partitioned in the
following three steps:

Collecting training data: A PD controller

u0(x) = −kpx1 − kdx2,

with parameters from Table I is employed. The system is
initialized 3 times at 10 different starting points which are
randomly selected from the interval [−5, 5]× [−5, 5] accord-
ing to a uniform distribution. Each of the 30 trajectories runs
for Ttrain = 2s and is sampled at time steps of 0.5s, resulting
in Nfull = 150 training points. This data set is denoted
as Dfull. For comparison, we also run the identification on a
small fraction of the data set Dfrac. The observations of ẋ2

are perturbed with N (0,σ2
n) and recorded along with the

system state x = [x1 x2]ᵀ.
Identification: The likelihood optimization (4) is per-

formed using the optimizer from [14] and initial val-
ues ψgf = [3 3 5 3 3 5 0.1]ᵀ separately for the data sets Dfull
and Dfrac.

Running Simulation: The system is initialized at x0 from
Table I which is generally not part of the training data. It uses
estimates (11) to control the system based on (13). We run
the simulation for Tsim = 50s three times: Without any data
Dnone = ∅, with Dfrac and Dfull.

B. Results

The estimates for f̂(x), ĝ(x) along with the true func-
tion values f

(
x(i)

)
, g
(
x(i)

)
, i = 1, . . . ,Nfull are shown

in Figs. 2 and 3. Note, that these points are not avail-
able for training, since only a noisy version of the
sum f

(
x(i)

)
+ g

(
x(i)

)
u0

(
x(i)

)
is observed. However, the

identification performs well and distinguishes between the
contribution of f̂(x) and ĝ(x) to the measurements.

The plot in Fig. 4 shows the trajectories for the closed-
loop system starting at x0 for the different training data
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Fig. 4. Training data (arrows) and trajectories of system (19) with GP
feedback linearization for no training data, a fraction of the training data
Dfrac and the full data set Dfull.

sets Dfull,Dfrac,Dnone. All trajectories are bounded and the
ultimate bound contracts as more training data is added.

C. Discussion

Gaussian processes turn out to be suitable since all
prior assumptions are properly transfered into the model
(Lemma 1) and the identification runs in closed-loop. Since
no parametric structure is assumed for f , g, the model is
very flexible and the data-driven framework increases its
complexity as more data is available, which is the most
significant advantage over classical system identification.
Considering the difficulty mentioned in Remark 1, the struc-
ture in (19), (g(x) only depends on x2) is surely beneficial
(simplifying the hyperparameter optimization) for the good
result. However, this is common in many real-world systems.

The accuracy of the model depends on the distribution
of the training data, which is determined by the initial
controller u0. There surely exist better methods for the
exploration-exploitation trade-off, than the used PD con-
troller, see [16], yet this is out of the scope of this work.

For the control side, we take advantage of an additional
feature of the GP: The variance function allows high prob-
ability statements regarding the precision of the estimate
without knowing the true function or an upper bound (only
its RKHS norm). This is a significant advantage over neural
networks or other robust control approaches. Knowing the
precision allows to formulate the ultimate bound, to which

the system converges with high probability. Given a perfor-
mance based control tasks, e.g. a convergence set size, the
derived relationship allows to conclude whether the provided
training data is sufficient or more information is needed.

VI. CONCLUSION
This paper introduces a feedback linearization control

law for initially unknown systems. We exploit a particular
kernel structure of Gaussian processes to identify the control
affine systems in a closed-loop setting. We show, that (under
the specified assumption) the system is globally uniformly
ultimately bounded. The advantage of GPs, the provided
measure for the model fidelity, is exploited by deriving
tighter bounds for the set of convergence under a specified
probability. We show, that the control outcome improves as
more training data is collected and validate this in simulation.
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