Abstract:
As one of the extensions of model predictive control (MPC), event-triggered MPC takes advantage of the reduction of control updates. However, approaches to event-triggere...Show MoreMetadata
Abstract:
As one of the extensions of model predictive control (MPC), event-triggered MPC takes advantage of the reduction of control updates. However, approaches to event-triggered MPCs may be subject to frequent event-triggering instants in the presence of large disturbances. Motivated by this, this paper suggests an application of machine learning to this control method in order to learn a compensation model for disturbance attenuation. The suggested method improves both event-triggering policy efficiency and control accuracy compared to previous approaches to event-triggered MPCs. We employ the radial basis function (RBF) kernel based machine learning technique. By the universial approximation property of the RBF, which imposes an upper bound on the training error, we can present the stability analysis of the learning-aided control system. The proposed algorithm is evaluated by means of position control of a nonholonomic robot subject to state-dependent disturbances. Simulation results show that the developed method yields not only two times less event triggering instants, but also improved tracking performance.
Date of Conference: 12-15 December 2017
Date Added to IEEE Xplore: 22 January 2018
ISBN Information: