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On reduction of differential inclusions and

Lyapunov stability
Rushikesh Kamalapurkar, Warren E. Dixon, and Andrew R. Teel

1. INTRODUCTION

Differential inclusions can be used to model and analyze a large variety of practical systems. For example,

systems that utilize discontinuous control architectures such as sliding mode control, multiple model and sparse

neural network adaptive control, finite state machines, gain scheduling control, etc., are analyzed using the theory

of differential inclusions. Differential inclusions are also used to analyze robustness to bounded perturbations and

modeling errors, to model physical phenomena such as coulomb friction and impact, and to model differential

games [1], [2].

Asymptotic properties of trajectories of differential inclusions are typically analyzed using Lyapunov-like

comparison functions. Several generalized notions of the directional derivative are utilized to characterize the change

in the value of a candidate Lyapunov function along the trajectories of a differential inclusion. Early results on

stability of differential inclusions that utilize nonsmooth candidate Lyapunov functions are based on Dini directional

derivatives [3], [4] and contingent derivatives [5, Chapter 6]. For locally Lipschitz, regular candidate Lyapunov

functions, stability results based on Clarke’s notion of generalized directional derivatives have been developed in

results such as [6]–[8]. In [6], Shevitz and Paden utilize the Clarke gradient to develop a set-valued generalized

derivative along with several Lyapunov-based stability theorems. In [7], Bacciotti and Ceragioli introduce another

set-valued generalized derivative that results in sets that are pointwise smaller than those generated by the set-valued

derivative in [6]; hence, the Lyapunov theorems in [7] are generally less conservative than their counterparts in [6].

The Lyapunov theorems developed by Bacciotti and Ceragioli have also been shown to be less conservative than

those based on Dini and contingent derivatives, provided locally Lipschitz, regular candidate Lyapunov functions

are employed (cf. [9, Prop. 7]).

In this paper, and in the preliminary work in [10], locally Lipschitz, regular functions are utilized to identify and

remove infeasible directions from a set-valued map that defines a differential inclusion to yield a pointwise smaller
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(in the sense of set containment) set-valued map that defines an equivalent reduced differential inclusion. Using

the reduced differential inclusion, a novel generalization of the set-valued derivatives in [6] and [7] is introduced

for locally Lipschitz candidate Lyapunov functions. The developed technique yields less conservative statements of

Lyapunov stability results (cf. [3], [4], [6], [7], [11], [12]), invariance results (cf. [8], [13]–[15]), invariance-like

results (cf. [16, Thm. 2.5], [17]), and Matrosov results (cf. [18]–[22]) for differential inclusions.

The paper is organized as follows. Section 2 introduces the notation. Sections 3 and 4 review differential inclusions

and Clarke-gradient-based set-valued derivatives from [6] and [7], respectively. In Section 5, locally Lipschitz, regular

functions are used to identify the infeasible directions in a set-valued map that defines a differential inclusion. Section

6 develops a novel generalization of the notion of a derivative in the direction(s) of a set-valued map. Sections 7 and

8 develop stability theory for autonomous and nonautonomous differential inclusions, respectively, using the new

generalized derivative. Illustrative examples where the developed stability theory is less conservative than results

such as [6] and [7] are presented. Section 9 summarizes the article and includes concluding remarks.

2. NOTATION

The n−dimensional Euclidean space is denoted by Rn, µ denotes the Lebesgue measure on Rn, D denotes

an open and connected subset of Rn, and Ω := D × [0,∞). Elements of Rn are interpreted as column vectors

and (·)T denotes the vector transpose operator. The set of positive integers excluding 0 is denoted by N. For

a ∈ R, R≥a denotes the interval [a,∞) and R>a denotes the interval (a,∞). A set-valued map from A to the

subsets of B is denoted by F : A ⇒ B. For a set A, the convex hull, the closed convex hull, the closure, the

interior, and the boundary are denoted by coA, coA, A, Å, and bd (A), respectively. If a ∈ Rm and b ∈ Rn then

[a ; b] denotes the concatenated vector

a
b

 ∈ Rm+n. For A ⊆ Rm, B ⊆ Rn, the set {[a ; b] | a ∈ A, b ∈ B}

is denoted by

A
B

 or [A ; B]. For A,B ⊆ Rn, ATB denotes the set
{
aTb | a ∈ A, b ∈ B

}
, A ± B denotes the

set {a± b ∈ Rn | a ∈ A, b ∈ B}, and A (≥) ≤ B implies ‖a‖ (≥) ≤ ‖b‖, ∀a ∈ A, and ∀b ∈ B. For x ∈ Rn

and r, l > 0, the sets {y ∈ Rn | ‖x− y‖ ≤ r}, {y ∈ Rn | ‖x− y‖ < r}, and {y ∈ Rn | r ≤ ‖y‖ ≤ l} are denoted

by B (x, r), B (x, r) and D (r, l), respectively. If a ∈ R then |a| denotes the absolute value and if A is a set

then |A| denotes its cardinality. For A ⊂ Rn and x ∈ Rn, dist (x,A) := infy∈A ‖x− y‖. Essentially bounded,

n−times continuously differentiable, and locally Lipschitz functions with domain A and codomain B are denoted

by L∞ (A,B), Cn (A,B), and Lip (A,B), respectively. The zero element of Rn is denoted by 0n, with the subscript

n suppressed whenever clear from the context. The notation V̇ is reserved for the total derivative of V with respect

to time.

3. DIFFERENTIAL INCLUSIONS

Let F : Ω ⇒ Rn be a set-valued map. Consider the differential inclusion

ẋ ∈ F (x, t) . (1)
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A locally absolutely continuous function x : Ix → D is called a solution to (1), with interval of existence Ix =

[t0, T ), for some 0 ≤ t0 < T ≤ ∞, if ẋ (t) ∈ F (x (t) , t), for almost all t ∈ Ix [1, p. 50]. A solution is called

complete if Ix = R≥t0 and maximal if it does not have a proper right extension1 which is also a solution to (1). If a

solution is maximal and if the set {x (t) | t ∈ Ix} is compact, then the solution is called precompact. Similar to [23,

Prop. 1], Zorn’s lemma can be used to show that every solution to (1) admits a right extension that is also a maximal

solution to (1). Let S (E) denote the set of all maximal solutions to (1) such that (x (t0) , t0) ∈ E ⊆ Ω (in the case

of an autonomous system, S (A) denotes the set of all maximal solutions to ẋ ∈ F (x) where x (t0) ∈ A ⊂ Rn)

The discussion in this article concerns set-valued maps that define differential inclusions that admit local solutions.

Definition 3.1. Let F : Ω ⇒ Rn be a set-valued map and E ⊆ Ω. The differential inclusion (1) is said to admit

local solutions over E if for all (y, t0) ∈ E , there exists T ∈ R>t0 and a locally absolutely continuous function

x : [t0, T )→ D such that x (t0) = y and ẋ (t) ∈ F (x (t) , t) for almost all t ∈ [t0, T ). 4

Sufficient conditions for the existence of local solutions to differential inclusions can be found in [1, §7, Thm. 1]

and [1, §7, Thm. 5]. To assert the existence of complete solutions, the following notions of invariance are utilized

in this article.

Definition 3.2. A set A ⊆ D is called weakly forward invariant with respect to (1) if ∀x0 ∈ A, ∃x (·) ∈

S ({x0} × R≥0) such that x (t) ∈ A, ∀t ∈ Ix. It is called strongly forward invariant with respect to (1) if

every x (·) ∈ S (A× R≥0) satisfies x (t) ∈ A, ∀t ∈ Ix. 4

Forward invariance of a set A ⊆ D in the sense of Def. 3.2 does not imply completeness of any x (·) ∈

S (A× R≥0) since x (·) can exit D in finite time, resulting in a finite interval of existence Ix. However, the

following Lemma, which is a slight generalization of [23, Prop. 2], implies that under general conditions on F , if

A is also compact then S (A× R≥0) contains complete solutions, and under strong forward invariance of A, all

solutions in S (A× R≥0) are complete.

Lemma 3.3. Let F : Ω ⇒ Rn be a set-valued map such that (1) admits local solutions over Ω. Let x (·) be a

maximal solution to (1) such that {x (t) | t ∈ Ix} ⊂ D. If the set ∪t∈JF (x (t) , t) is bounded for every subinterval

J ⊆ Ix of finite length, then x (·) is complete.

Proof. For the sake of contradiction, assume that the interval of existence, Ix, is finite. That is, Ix = [t0, T )

for some t0 < T < ∞. Boundedness of the set ∪t∈[t0,T )F (x (t) , t) implies that ẋ (·) ∈ L∞ ([t0, T ) ,Rn). Since

x (·) is locally absolutely continuous on [t0, T ), it can be concluded that ∀t1, t2 ∈ [t0, T ), ‖x (t2)− x (t1)‖2 =∥∥∥∫ t2t1 ẋ (τ) dτ
∥∥∥
2
. Furthermore, ẋ (·) ∈ L∞ ([t0, T ) ,Rn) implies that

∥∥∥∫ t2t1 ẋ (τ) dτ
∥∥∥
2
≤
∫ t2
t1
M dτ , where M is

a positive constant. Thus, ‖x (t2)− x (t1)‖2 ≤ M |t2 − t1|, and hence, x (·) is uniformly continuous on [t0, T ).

Therefore, x (·) admits a continuous extension x′ : [t0, T ] → Rn [24, Chapter 4, Exercise 13]. Since x′ (·) is

1A solution y : [t0, Ty) → Rn to (1) is a (proper) right extension of a solution x : [t0, Tx) → Rn to (1) if Ty (>) ≥ Tx and

y (t) = x (t) , ∀t ∈ [t0, Tx).
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continuous, D is open, and {x (t) | t ∈ [t0, T )} ⊂ D, it is clear that x′ (T ) ∈ D. Since (1) admits local solutions

over Ω, x′ (·) can be extended into a solution to (1) on the interval [t0, T
′) for some T ′ > T , which contradicts

the maximality of x (·). Hence, x (·) is complete.

Remark 3.4. The hypothesis of Lemma 3.3, that the set ∪t∈JF (x (t) , t) needs to be bounded for every subinterval

J ⊆ Ix of finite length, is met if, e.g., (x, t) 7→ F (x, t) is locally bounded over Ω and x (·) is precompact (cf.

[25, Prop. 5.15]).

The following section presents a summary of the relevant Lyapunov methods that utilize Clarke’s notion of

generalized directional derivatives and gradients [26, p. 39] for the analysis of differential inclusions.

4. SET-VALUED DERIVATIVES

Clarke gradients are utilized in [6] by Shevitz and Paden to introduce the following set-valued derivative of a

locally Lipschitz, positive definite (i.e., locally positive definite in the sense of [27, Sec. 5.2, Def. 3] at (x, t), for

all (x, t) in its domain) candidate Lyapunov function that is regular (i.e., regular at (x, t), in the sense of [26, Def.

2.3.4], for all (x, t) in its domain).

Definition 4.1. [6] Given a regular function V ∈ Lip (Ω,R), and a set-valued map F : Ω ⇒ Rn, the set-valued

derivative of V in the direction(s) F is defined as

˙̃V (x, t) :=
⋂

p∈∂V (x,t)

pT

F (x, t)

{1}

 ,∀ (x, t) ∈ Ω,

where ∂V denotes the Clarke gradient of V , defined as (see also, [26, Thm. 2.5.1])

∂V (x, t) := co {lim∇V (xi, ti) | (xi, ti)→ (x, t) , (xi, ti) ∈ Ω \ (ΩV ∪ S)} ,∀ (x, t) ∈ Ω, (2)

where ΩV is the set of Lebesgue measure zero where the gradient ∇V of V is not defined and S ⊂ Ω is any other

set of Lebesgue measure zero. 4

Lyapunov stability theorems developed using the set-valued derivative ˙̃V exploit the property that every upper

bound of the set ˙̃V (x (t) , t) is also an upper bound of V̇ (x (t) , t), for almost all t where V̇ (x (t) , t) exists. The

aforementioned fact is a consequence of the following proposition.

Proposition 4.2. [6] Let x : Ix → D be a solution to (1). If V ∈ Lip (Ω,R) is a regular function, then V̇ (x (t) , t)

exists for almost all t ∈ Ix and V̇ (x (t) , t) ∈ ˙̃V (x (t) , t), for almost all t ∈ Ix.

Proof. See [6, Thm. 2.2].

In [7], the notion of a set-valued derivative is further generalized via the following definition.

Definition 4.3. [7] For a regular function V ∈ Lip (Ω,R) and a set-valued map F : Ω ⇒ Rn, the set-valued

derivative of V in the direction(s) F is defined as

V̇ (x, t) :=
{
a ∈ R | ∃q ∈ F (x, t) | pT [q ; 1] = a,∀p ∈ ∂V (x, t)

}
,∀ (x, t) ∈ Ω. 4
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The set-valued derivative in Def. 4.3 results in less conservative statements of Lyapunov stability than Def. 4.1

since it is contained within the set-valued derivative in Def. 4.1 and, as evidenced by [7, Example 1], the containment

can be strict. The Lyapunov stability theorems developed in [7] exploit the property that Prop. 4.2 also holds for

V̇ (see [7, Lemma 1]).

In the following, notions of Lyapunov stability for differential inclusions are introduced.2

Definition 4.4. The differential inclusion ẋ ∈ F (x) is said to be (strongly)

(a) stable at x = 0 if ∀ε > 0 ∃δ > 0 such that every x (·) ∈ S
(
B (0, δ)

)
is complete and satisfies x (t) ∈ B (0, ε),

∀t ≥ 0.

(b) asymptotically stable at x = 0 if it is stable at x = 0 and ∃c > 0 such that every x (·) ∈ S
(
B (0, c)

)
is

complete and satisfies limt→∞ ‖x (t)‖ = 0.

(c) globally asymptotically stable at x = 0 if it is stable at x = 0 and every x (·) ∈ S (Rn) is complete and

satisfies limt→∞ ‖x (t)‖ = 0. 4

The following proposition is an example of a typical Lyapunov stability result for time-invariant differential

inclusions that utilizes set-valued derivatives of the candidate Lyapunov function. The proposition combines [7,

Thm. 2] and a specialization of [6, Thm. 3.1].

Proposition 4.5. Let F : Rn ⇒ Rn be an upper semi-continuous map with compact, nonempty, and convex values.

If V ∈ Lip (Rn,R) is a positive definite and regular function such that either3 max V̇ (x) ≤ 0 or max ˙̃V (x) ≤ 0,

∀x ∈ Rn, then ẋ ∈ F (x) is stable at x = 0.

Proof. See [7, Thm. 2] and [6, Thm. 3.1].

Inspired by [6] and [7], the following section presents a novel notion of reduced differential inclusions that

results in statements of Lyapunov theorems such as Prop. 4.5. that are less conservative than those available in the

literature.

5. REDUCED DIFFERENTIAL INCLUSIONS

By definition, V̇ (x, t) ⊆ ˙̃V (x, t), ∀ (x, t) ∈ Ω, which, assuming compact values, implies max V̇ (x, t) ≤

max ˙̃V (x, t), ∀ (x, t) ∈ Ω. In some cases, max V̇ can be strictly smaller than max ˙̃V and Lyapunov theorems

based on V̇ can be less conservative than those based on ˙̃V [7, Example 1]. A tighter bound on the evolution of

V along an orbit of (1) can be obtained by examining the following equivalent representation of max V̇ :4

max V̇ (x, t) = min
p∈∂V (x,t)

max
q∈GF

V (x,t)
pT [q ; 1] , (3)

2While the results in this paper are stated in terms of stability at the origin, they extend in a straightforward manner to stability of arbitrary

compact sets.
3The definitions of V̇ and ˙̃V translate to time-invariant systems as V̇ F (x) =

{
a ∈ R | ∃q ∈ F (x) | pTq = a,∀p ∈ ∂V (x)

}
and ˙̃V (x) :=⋂

p∈∂V (x) p
TF (x), respectively.

4The minimization in (3) serves to maintain consistency of notation, but is in fact, redundant.
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where, for any regular function U ∈ Lip (Ω,R), and any set-valued map H : Ω ⇒ Rn, the reduction GHU : Ω ⇒ Rn

is defined as

GHU (x, t) :=
{
q ∈ H (x, t) | ∃a ∈ R | pT [q ; 1] = a,∀p ∈ ∂U (x, t)

}
,∀ (x, t) ∈ Ω. (4)

The representation in (3), along with Prop. 4.5, suggest that the only directions in F that affect the stability

properties of solutions to (1) are those included in GFV , that is, the directions that map the Clarke gradient of V to a

singleton. The key observation in this paper is that the statement above remains true even when V is replaced by any

arbitrary locally Lipschitz, regular function U . The following proposition formalizes the aforementioned observation.

For clarity, the proposition is stated here for autonomous differential inclusions. The analysis of nonautonomous

differential inclusions is deferred to Thm. 8.2.

Proposition 5.1. Let F : Rn ⇒ Rn be a locally bounded map with compact values such that ẋ ∈ F (x) admits

local solutions over Rn. Let V ∈ Lip (Rn,R) be a positive definite and regular function and let U ∈ Lip (Rn,R)

be any other regular function. If

min
p∈∂V (x)

max
q∈GF

U (x)
pTq ≤ 0, ∀x ∈ Rn,

then ẋ ∈ F (x) is stable at x = 0.

Proof. The proposition follows from the more general result stated in Thm. 7.1 .

Prop. 5.1 indicates that locally Lipschitz, regular functions help discover the admissible directions in F . That is,

from the point of view of Lyapunov stability, only the directions in GFU are relevant, where U can be an arbitrary

locally Lipschitz, regular function, possibly different from the candidate Lyapunov function V . If U = V , Prop.

5.1 reduces to Prop. 4.5.

In fact, the differential inclusion ẋ ∈ GFU (x, t) is, in a sense, equivalent to the differential inclusion ẋ ∈ F (x, t).

To make the equivalence precise, the following definition of a reduced set-valued map is introduced.

Definition 5.2. Let F : Ω ⇒ Rn be a set-valued map and U := {Ui}i∈N ⊂ Lip (Ω,R) be a countable collection

of regular functions, indexed over N ⊆ N. The set-valued map F̃U : Ω ⇒ Rn, defined as

F̃U (x, t) :=
⋂
i∈N

GFUi
(x, t) =

⋂
i∈N

{
q ∈ F (x, t) | ∃a ∈ R | pT [q ; 1] = a,∀p ∈ ∂Ui (x, t)

}
,∀ (x, t) ∈ Ω,

is called the U−reduced set-valued map for F and the differential inclusion ẋ ∈ F̃U (x, t) is called the U−reduced

differential inclusion for (1). If U is empty, then F̃U := F . 4

In other words, the U−reduced set-valued map collects all directions q in F that, through the inner product

pT [q ; 1], map the Clarke gradient of all functions in U to a singleton. The following theorem demonstrates the

key utility of the reduction in Def. 5.2, i.e., the reduced differential inclusion is found to be sufficient to characterize

the solutions to (1).

Theorem 5.3. If x : Ix → D is a solution to (1), then ẋ (t) ∈ F̃U (x (t) , t) for almost all t ∈ Ix.
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Proof. The theorem can be proved using techniques similar to [7, Lemma 1].

Although not directly related to the current discussion, it is worth mentioning that Thm. 5.3 also expands the

class of differential inclusions that admit solutions, as detailed in the following corollary.

Corollary 5.4. A differential inclusion ẋ ∈ G (x, t), with G : Ω ⇒ Rn, admits local solutions over E ⊆ Ω if there

exists: a set-valued map, F : Ω ⇒ Rn, such that (1) admits local solutions over E; and a countable collection,

U ⊂ Lip (Ω,R), of regular functions, such that G is the U−reduced set-valued map for F .

The following example illustrates the utility of Thm. 5.3.

Example 5.5. Consider the differential inclusion in (1), where x ∈ R, and F : R× R≥0 ⇒ R is defined as

F (x, t) :=

2 sgn (x− 1) |x| 6= 1,

[−2, 5] |x| = 1,

where sgn (x) denotes the sign of x. The function U : R× R≥0 → R, defined as

U (x, t) :=

|x| |x| ≤ 1,

2 |x| − 1 |x| > 1,

satisfies U ∈ Lip (R× R≥0,R). In addition, since U is convex, it is also regular [26, Prop. 2.3.6]. The Clarke

gradient of U is given by

∂U (x, t) =



[[1, 2] ; {0}] x = 1,

[[−2,−1] ; {0}] x = −1,

[{sgn (x)} ; {0}] 0 < |x| < 1,

[{2 sgn (x)} ; {0}] |x| > 1,

[[−1, 1] ; {0}] x = 0.

The set GFU is then given by

GFU (x, t) =


{0} |x| = 1,

∅ x = 0,

F (x, t) otherwise.

Thm. 5.3 can then be invoked to conclude that every solution x : Ix → R to (1) satisfies ẋ (t) ∈ F̃{U} (x (t) , t) =

GFU (x (t) , t), for almost all t ∈ Ix. 4

6. GENERALIZED TIME DERIVATIVES

Given a countable collection U ⊂ Lip (Ω,R) of regular functions and a set-valued map F : Ω ⇒ Rn with compact

values, Prop. 5.1 and Thm. 5.3 suggest the following notion of a generalized derivative of V in the direction(s) F .
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Definition 6.1. The U−generalized derivative of V ∈ Lip (Ω,R) in the direction(s) F , denoted by V̇ U : Ω → R

is defined, ∀ (x, t) ∈ Ω, as

V̇ U (x, t) := min
p∈∂V (x,t)

max
q∈F̃U (x,t)

pT [q ; 1] , (5)

if V is regular, and

V̇ U (x, t) := max
p∈∂V (x,t)

max
q∈F̃U (x,t)

pT [q ; 1] , (6)

if V is not regular. The U−generalized derivative is understood to be −∞ when F̃U (x, t) is empty. 4

Def. 6.1 facilitates a unified treatment of Lyapunov stability theory using regular as well as nonregular candidate

Lyapunov functions. A candidate Lyapunov function will be called a Lyapunov function if the U−generalized

derivative is negative.

Definition 6.2. If V ∈ Lip (Ω,R) is positive definite and if V̇ U (x, t) ≤ 0,∀ (x, t) ∈ Ω, then V is called a

U−generalized Lyapunov function for (1). 4

If V is regular, then it can be assumed, without loss of generality, that V ∈ U . In this case, F̃U ⊆ GFV , and

hence, V̇ U (x, t) ≤ max V̇ (x, t) ,∀ (x, t) ∈ Ω. Thus, by judicious selection of the functions in U , V̇ U (x, t) can

be constructed to be less conservative than the set-valued derivatives in [6] and [7]. Naturally, if U = {V } then

V̇ U = V̇ .

In general, the U−generalized derivative does not satisfy the chain rule as stated in Prop. 4.2. However, it satisfies

the following weak chain rule which turns out to be sufficient for Lyapunov-based analysis of differential inclusions.

Theorem 6.3. If V ∈ Lip (Ω,R) and S (Ω) 6= ∅, then ∀x (·) ∈ S (Ω),

V̇ (x (t) , t) ∈ (∂V (x (t) , t))
T

F̃U (x (t) , t)

{1}

 , (7)

for almost all t ∈ Ix. In addition, if there exists a function W : Ω→ R such that V̇ U (x, t) ≤W (x, t), ∀ (x, t) ∈ Ω,

then V̇ (x (t) , t) ≤W (x (t) , t) , for almost all t ∈ Ix.

Proof. Let x (·) ∈ S (Ω). Consider a set of times T ⊆ Ix where ẋ (t), V̇ (x (t) , t), and U̇i (x (t) , t) are defined

∀i ≥ 0 and ẋ (t) ∈ F̃U (x (t) , t). Using Thm. 5.3 and the facts that x (·) is absolutely continuous and V is locally

Lipschitz, it can be concluded that µ (Ix \ T ) = 0.

If V is regular, then arguments similar to the proof of Thm. 5.3 can be used to conclude that

V̇ (x (t) , t) = pT [ẋ (t) ; 1] ,∀p ∈ ∂V (x (t) , t) ,∀t ∈ T . Thus, (5) and Thm. 5.3 imply that V̇ (x (t) , t) ∈

(∂V (x (t) , t))
T
[
F̃U (x (t) , t) ; {1}

]
and V̇ (x (t) , t) ≤W (x (t) , t), for almost all t ∈ Ix.

If V is not regular, then [9, Prop. 4] (see also, [28, Thm. 2]) can be used to conclude that, for almost every

t ∈ Ix, ∃p0 ∈ ∂V (x (t) , t) such that V̇ (x (t) , t) = pT0 [ẋ (t) ; 1]. Thus, (6) and Thm. 5.3 imply that V̇ (x (t) , t) ∈

(∂V (x (t) , t))
T
[
F̃U (x (t) , t) ; {1}

]
and V̇ (x (t) , t) ≤W (x (t) , t) for almost all t ∈ Ix.

The following sections develop relaxed Lyapunov-like stability theorems for differential inclusions based on the

properties of the U−generalized derivative hitherto established.
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7. STABILITY OF AUTONOMOUS SYSTEMS

In this section, U−generalized Lyapunov functions are utilized to formulate less conservative extensions to

stability and invariance results for autonomous differential inclusions of the form

ẋ ∈ F (x) , (8)

where F : D ⇒ Rn is a set-valued map.

A. Lyapunov stability

The following Lyapunov stability theorem is a consequence of Thm. 6.3.

Theorem 7.1. Let 0 ∈ D and let F : D ⇒ Rn be a locally bounded set-valued map with compact values

such that (8) admits local solutions over D. If there exists a countable collection, U ⊂ Lip (Ω,R), of regular

functions and a U−generalized Lyapunov function V : D → R for (8), then (8) is stable at x = 0. In addition, if

V̇ U (x) ≤ −W (x) ,∀x ∈ D, for some positive definite function W ∈ C0 (D,R), then (8) is asymptotically stable at

x = 0. Furthermore, if D = Rn and if the sublevel sets Ll := {x ∈ Rn | V (x) ≤ l} are compact for all l ∈ R>0,

then (8) is globally asymptotically stable at x = 0.

Proof. Given ε > 0, let r > 0 be such that B (0, r) ⊂ D and r ∈ (0, ε]. Let β ∈
[
0,min‖x‖=r V (x)

)
and

Lβ :=
{
x ∈ B (0, r) | V (x) ≤ β

}
. Since V is continuous, ∃δ > 0 such that B (0, δ) ⊂ Lβ . Let x (·) ∈ S (D) be a

solution to (8). Using Thm. 6.3, which implies that t 7→ V (x (t)) is nonincreasing on Ix, and standard arguments

(see, e.g., [29, Thm. 4.8]), it can be shown that Lβ is compact, (strongly) forward invariant, and Lβ ⊂ D. Hence,

every solution x (·) ∈ S (Lβ) is precompact, and by Lemma 3.3, complete. Furthermore, if x (·) ∈ S
(
B (0, δ)

)
then x (t) ∈ B (0, ε), ∀t ∈ R≥t0 .

In addition, if V̇ U (x) ≤ −W (x) ,∀x ∈ D, for some positive definite function W ∈ C0 (D,R), then Thm. 6.3

implies that t 7→ V (x (t)) is strictly decreasing on R≥t0 provided x (t0) ∈ B (0, δ). Asymptotic stability and global

asymptotic stability (in the case where the sublevel sets of V are compact) of (8) at x = 0 then follow from standard

arguments (see, e.g., [27, Section 5.3.2]).

The following example presents a case where tests based on V̇ and ˙̃V are inconclusive but Thm. 7.1 can be used

to establish asymptotic stability.

Example 7.2. Let H : R ⇒ R be defined as

H (y) :=

{0} |y| 6= 1,

[−1, 1] |y| = 1.

Let F : R2 ⇒ R2 be defined as

F (x) :=

{−x1 + x2}+H (x2)

{−x1 − x2}+H (x1)

 .
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Fig. 1. The function U : R2 → R.

Consider the differential inclusion in (8) and the candidate Lyapunov function V : R2 → R defined as V (x) :=

1
2 ‖x‖

2
2. Since V ∈ C1

(
R2,R

)
, the set-valued derivatives V̇ in [7] and ˙̃V in [6] are bounded by

V̇ (x) , ˙̃V (x) ≤
{
−x21 − x22

}
+ x1H (x2) + x2H (x1) ,∀x ∈ R2. (9)

Since neither ˙̃V nor V̇ can be shown to be negative semidefinite everywhere, the inequality in (9) is insufficient to

draw conclusions regarding the stability of (8).

The function U : R2 → R, defined as (see Fig. 1)

U (x) := max ((x1 − 1) , 0)−min ((x1 + 1) , 0) + max ((x2 − 1) , 0)−min ((x2 + 1) , 0) ,∀x ∈ R2,

satisfies U ∈ Lip
(
R2,R

)
. In addition, since U is convex, it is also regular [26, Prop. 2.3.6]. The Clarke gradient

of U is given by,

∂U (x) =



[{sgn 1 (x1)} ; {sgn 1 (x2)}] |x1| 6= 1 ∧ |x2| 6= 1,

[co {0, sgn (x1)} ; {sgn 1 (x2)}] |x1| = 1 ∧ |x2| 6= 1,

[{sgn 1 (x1)} ; co {0, sgn (x2)}] |x1| 6= 1 ∧ |x2| = 1,

[co {0, sgn (x1)} ; co {0, sgn (x2)}] |x1| = 1 ∧ |x2| = 1,

where

sgn 1 (y) :=

0 −1 < y < 1,

sgn (y) otherwise.

In this case, the reduced inclusion GFU is given by

GFU (x) =

F (x) |x1| 6= 1 ∧ |x2| 6= 1,

∅ otherwise.
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Since GFU (x) ⊂ F (x) ,∀x ∈ R2, F̃{U} = GFU . Since V ∈ C1
(
R2,R

)
, ∂V (x) =

{
∂V
∂x (x)

}
, and hence, the

{U}−generalized derivative of V in the direction(s) F is given by

V̇ {U} (x) = max
q∈F̃{U}(x)

(
∂V

∂x
(x)

)T

q,∀x ∈ R2,

=

[x1 x2] [−x1 + x2 ; −x1 − x2] |x1| 6= 1 ∧ |x2| 6= 1,

−∞ otherwise,

≤ −x21 − x22,∀x ∈ R2.

Global asymptotic stability of (8) at x = 0 then follows from Thm. 7.1. 4

In applications where a negative definite bound on the derivative of the candidate Lyapunov function cannot

be found easily, the invariance principle is invoked. The following section develops invariance results using

U−generalized derivatives.

B. Invariance principle

Analogs of the Barbashin-Krasovskii-LaSalle invariance principle for autonomous differential inclusions appear in

results such as [7], [13], [30]. Estimates of the limiting invariant set that are less conservative than those developed

in [7], [13], [30] can be obtained by using locally Lipschitz, regular functions to reduce the admissible directions

in F . For example, the following theorem extends the invariance principle developed by Bacciotti and Ceragioli

(see [7, Thm. 3]).

Theorem 7.3. Let F : D ⇒ Rn be locally bounded and outer semicontinuous [25, Def. 5.4] over D; F (x) be

nonempty, convex, and compact, ∀x ∈ D; U ⊂ Lip (D,R) be a countable collection of regular functions; C ⊂ D

be a compact set that is strongly forward invariant with respect to (8); V ∈ Lip (D,R); and V̇ U (x) ≤ 0, ∀x ∈ D.

If M is the largest weakly forward invariant set (with respect to (8)) in E∩C, where E :=
{
x ∈ D | V̇ U (x) = 0

}
,

then every x (·) ∈ S (C) is complete and satisfies limt→∞ dist (x (t) ,M) = 0.

Proof. Existence of at least one x (·) ∈ S (C) follows from [1, §7, Thm. 1] and completeness of every x (·) ∈

S (C) follows from Lemma 3.3. Given any x (·) ∈ S (C), the same argument as [7, Thm. 3] indicates that

t 7→ V (x (t)) is constant on ω (x (·)), the ω−limit set of x (·) [7, Def. 3]. Note that ω (x (·)) is weakly invariant

[13, Prop. 2.8] (see also, [1, §12, Lem. 4]) and ω (x (·)) ⊂ C. Let y : I → ω (x (·)) be a solution to (8) such that

y (t0) ∈ ω (x). The existence of such a solution follows from weak invariance of ω (x (·)). Since t 7→ V (x (t)) is

constant on ω (x (·)), V̇ (y (t)) = 0,∀t ∈ R≥t0 .

Let T be a set of time instances where ẏ (t) is defined and ẏ (t) ∈ F̃U (y (t)). If V is regular, then arguments

similar to the proof of Thm. 5.3 can be used to conclude that ∀t ∈ T and ∀p ∈ ∂V (y (t)), 0 = V̇ (x (t)) = pTẏ (t).

Since V̇ U (x) = minp∈∂V (x) maxq∈F̃U (x) p
Tq ≤ 0,∀x ∈ D and pTẏ (t) = 0, ∀p ∈ ∂V (y (t)), it follows that

V̇ U (y (t)) = 0,∀t ∈ T , which means that y (t) ∈ E, for almost all t ∈ R≥t0 .

If V is not regular then [9, Prop. 4] (see also, [28, Thm. 2]) can be used to conclude that for almost every t ∈ I,

∃p0 ∈ ∂V (y (t)) such that 0 = V̇ (y (t)) = pT0 ẏ (t). Since, V̇ U (x) = maxp∈∂V (x) maxq∈F̃U (x) p
Tq ≤ 0,∀x ∈ D
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and pT0 ẏ (t) = 0 for some p0 ∈ ∂V (y (t)), it follows that V̇ U (y (t)) = 0,∀t ∈ T , which means that y (t) ∈ E for

almost all t ∈ R≥t0 .

Since y (·) ∈ C0 (R≥t0 ,Rn), y (t) ∈ E, ∀t ∈ R≥t0 . That is, ω (x (·)) ⊂ E, and hence, ω (x (·)) ⊂ E ∩

C. Since ω (x (·)) is weakly invariant, ω (x (·)) ⊂ M . As a result, limt→∞ dist (x (t) , ω (x (·))) = 0 implies

limt→∞ dist (x (t) ,M) = 0.

The following corollary illustrates one of the many alternative ways to establish the existence of a compact

strongly forward invariant set needed to apply Thm. 7.3.

Corollary 7.4. Let F : D ⇒ Rn be locally bounded and outer semicontinuous [25, Def. 5.4] over D; F (x) be

nonempty, convex, and compact, ∀x ∈ D; and U ⊂ Lip (D,R) be a countable collection of regular functions.

Let V ∈ Lip (D,R) and V̇ U (x) ≤ 0, ∀x ∈ D. Let l > 0 be such that the level set Ll := {x ∈ D | V (x) ≤ l}

is closed and a connected component Cl of Ll is bounded. If M is the largest weakly forward invariant set

contained in E ∩ Cl, where E :=
{
x ∈ D | V̇ U (x) = 0

}
, then every x (·) ∈ S

(
Cl
)

is complete and satisfies

limt→∞ dist (x (t) ,M) = 0.

Proof. Existence of at least one x (·) ∈ S
(
Cl
)

follows from [1, §7, Thm. 1]. Given x (·) ∈ S
(
Cl
)
, it can be

concluded from Thm. 6.3 that t 7→ V (x (t)) is nonincreasing on Ix. Note that by definition of Ix, x (t) ∈ D, for

all t ∈ Ix. If there exists t1 ∈ Ix such that x (t1) /∈ Cl, then continuity of x (·), the fact that Cl is a connected

component of Ll, and the fact that Ll is closed imply that x (t1) /∈ Ll, which is impossible since t 7→ V (x (t))

is nonincreasing on Ix. Hence, Cl is strongly forward invariant on Ix. Since Cl is bounded by assumption, Cl is

also bounded, and as a result, x (·) is precompact. Therefore, by Lemma 3.3, x (·) is complete. The conclusion of

the corollary then follows from Thm. 7.3 with C = Cl.

The invariance principle is often applied to conclude asymptotic stability at the origin in the form of the following

corollary.

Corollary 7.5. Let 0 ∈ D and V ∈ Lip (D,R) be a positive definite function. Let F : D ⇒ Rn be locally

bounded and outer semicontinuous [25, Def. 5.4] over D; F (x) be nonempty, convex, and compact, ∀x ∈ D; and

U ⊂ Lip (D,R) be a countable collection of regular functions. If V̇ U (x) ≤ 0, ∀x ∈ D, and if, for each ν > 0, no

complete solution to (8) remains in the level set {x ∈ D | V (x) = ν}, then (8) is asymptotically stable at x = 0. In

addition, if D = Rn and the sublevel sets {x ∈ Rn | V (x) ≤ l} are compact for all l ∈ R≥0, then (8) is globally

asymptotically stable at x = 0.

Proof. To prove the corollary, it is first established that every complete solution converges to the origin, and then

it is shown that all solutions that start in a small neighborhood of the origin are complete, and hence, converge to

the origin.

Given a complete solution x (·), since t 7→ V (x (t)) is decreasing (by Thm. 6.3) and bounded below (because V is

positive definite), limt→∞ V (x (t)) = c for some c ≥ 0. For all y∗ ∈ ω (x (·)), ∃ {ti}i∈N ⊂ R≥t0 , limi→∞ ti =∞
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such that limi→∞ x (ti) = y∗. Since V is continuous, V (ω (x (·))) = {c}. If it can be shown that c = 0, then

positive definiteness of V would imply that ω (x (·)) = {0}, and hence, limt→∞ x (t) = 0.

To prove that c = 0 using contradiction, assume that there exists a complete solution x : R≥t0 → Rn such that

c > 0. Let y : R≥t0 → Rn be a solution to (8) such that y (t) ∈ ω (x (·)) , ∀t ∈ R≥t0 . Such a solution exists since

ω (x (·)) is weakly invariant. Along the solution y, V (y (t)) = c > 0, ∀t ∈ R≥t0 , which contradicts the hypothesis

that no complete solution to (8) remains in the level set {x ∈ D | V (x) = ν} for any ν > 0. Therefore, c = 0, and

hence, every complete solution converges to the origin.

Select r > 0 such that B (0, r) ⊂ D and δ > 0 such that B (0, δ) ⊆ Lβ :=
{
x ∈ B (0, r) | V (x) ≤ β

}
, where

β ∈
[
0,min‖x‖=r V (x)

)
. Lyapunov stability of (8) at x = 0 and the fact that Lβ is strongly forward invariant on

Ix follows from Thm. 7.1. Since Lβ is compact, all solutions starting in Lβ are precompact, and hence, complete,

by Lemma 3.3. Since all complete solutions converge to the origin, x (·) ∈ S
(
B (0, δ)

)
=⇒ limt→∞ x (t) = 0;

hence, (8) is asymptotically stable at x = 0. If D = Rn and the sublevel sets {x ∈ Rn | V (x) ≤ l} are compact for

all l ∈ R≥0, then r, and hence, δ, can be selected arbitrarily large; therefore, (8) is globally asymptotically stable

at x = 0.

The following example demonstrates the utility of the developed invariance principle.

Example 7.6. Let H : R ⇒ R be defined as

H (y) :=

{0} |y| 6= 1,[
− 1

2 ,
1
2

]
|y| = 1,

and let F : R2 ⇒ R2 be defined as

F (x) :=

 {x2}+H (x2)

{−x1 − x2}+H (x1)

 ,∀x ∈ R2, (10)

and consider the differential inclusion in (8). The candidate Lyapunov function V : R2 → R is defined as V (x) :=

1/2 ‖x‖22 ,∀x ∈ R2. Since V ∈ C1
(
R2,R

)
, the set-valued derivatives V̇ in [7] and ˙̃V in [6] are bounded by

V̇ (x) , ˙̃V (x) ≤
{
−x22

}
+ x2H (x1) + x1H (x2) ,∀x ∈ R2. (11)

That is, neither ˙̃V (x) nor V̇ (x) are negative semidefinite everywhere, and hence, the inequality in (11) is

inconclusive.

Let U : R2 → R be defined as in Example 7.2. The {U}−reduced set-valued map corresponding to F is given

by

F̃{U} (x) =



F (x) |x1| 6= 1 ∧ |x2| 6= 1,[
{0} ;

(
{−1}+

[
− 1

2 ,
1
2

])]
x1 = 1 ∧ x2 = 0,[

{0} ;
(
{1}+

[
− 1

2 ,
1
2

])]
x1 = −1 ∧ x2 = 0,

∅ otherwise.
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The {U}−generalized derivative of V in the direction(s) F is then given by

V̇ {U} (x) := max
q∈F̃{U}(x)

[x1 x2] q,∀x ∈ R2

=



[x1 x2] [x2 ; −x1 − x2] |x1| 6= 1 ∧ |x2| 6= 1,

max [1 0]
[
{0} ;

[
− 3

2 ,−
1
2

]]
x1 = 1 ∧ x2 = 0,

max [−1 0]
[
{0} ;

[
1
2 ,

3
2

]]
x1 = −1 ∧ x2 = 0,

−∞ otherwise,

≤ −x22,∀x ∈ R2.

In this case, the set E in Corollary 7.4 is given by E =
{
x ∈ R2 | x2 = 0

}
. Since the level sets Ll are bounded and

connected, ∀l ∈ R≥0, and since the largest invariant set contained within E ∩Ll is {[0 ; 0]}, ∀l ∈ R≥0, Corollary

7.4 can be invoked to conclude that all solutions to (8) converge to the origin.

From Thm. 6.3, V̇ (x (t) , t) ≤ −x22 (t) for almost all t ∈ R≥0; hence, given any ν > 0, a trajectory of (8) can

remain on the level set {x ∈ Rn | V (x) = ν} if and only if x2 (t) = 0 and x1 (t) = ±
√

2ν, for all t ∈ R≥0. From

Thm. 5.3, the state [x1 ; x2] can remain constant at
[
±
√

2ν ; 0
]

for all t ∈ R≥0 only if [0 ; 0] ∈ F
([
±
√

2ν ; 0
])

,

which is not true for the inclusion in (10). Therefore, Corollary 7.5 can be invoked to conclude that the system is

globally asymptotically stable at x = 0. 4

8. STABILITY OF NONAUTONOMOUS SYSTEMS

In this section, U−generalized derivatives are used to establish the following forms of uniform and asymptotic

stability.

Definition 8.1. The differential inclusion in (1) is said to be (strongly)

(a) uniformly stable at x = 0, if ∀ε > 0 ∃δ > 0 such that every x (·) ∈ S
(
B (0, δ)× R≥0

)
is complete and

satisfies x (t) ∈ B (0, ε), ∀t ∈ R≥t0 .

(b) globally uniformly stable at x = 0, if it is uniformly stable at x = 0 and ∀ε > 0 ∃∆ > 0 such that every

x (·) ∈ S
(
B (0, ε)× R≥0

)
is complete and satisfies x (t) ∈ B (0,∆), ∀t ∈ R≥t0 .

(c) uniformly asymptotically stable at x = 0 if it is uniformly stable at x = 0 and ∃c > 0 such that ∀ε > 0 ∃T ≥ 0

such that every x (·) ∈ S
(
B (0, c)× R≥0

)
is complete and satisfies x (t) ∈ B (0, ε), ∀t ∈ R≥t0+T .

(d) globally uniformly asymptotically stable at x = 0 if it is uniformly stable at x = 0 and ∀c, ε > 0 ∃T ≥ 0 such

that every x (·) ∈ S
(
B (0, c)× R≥0

)
is complete and satisfies x (t) ∈ B (0, ε), ∀t ∈ R≥t0+T . 4

While the results in this section are stated in terms of stability of the state at the origin and uniformity with

respect to time, they extend in a straightforward manner to partial stability and uniformity with respect to a part of

the state (see, e.g., [16, Def. 4.1]), and stability of arbitrary compact sets.

A. Lyapunov stability

The following fundamental Lyapunov-based stability result demonstrates the utility of U−generalized derivatives.
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Theorem 8.2. Let 0 ∈ D and let F : Ω ⇒ Rn be a locally bounded set-valued map with compact values such

that (1) admits local solutions over Ω. If there exists a positive definite function V ∈ Lip (Ω,R), a pair of positive

definite functions W ,W ∈ C0 (D,R), and a countable collection U ⊂ Lip (Ω,R) of regular functions, such that

W (x) ≤ V (x, t) ≤W (x) , ∀ (x, t) ∈ Ω,

V̇ U (x, t) ≤ 0, for all x ∈ D, and almost all t ∈ R≥0, (12)

then (1) is uniformly stable at x = 0. In addition, if there exists a positive definite function W ∈ C0 (D,R) such

that

V̇ U (x, t) ≤ −W (x) , (13)

for all x ∈ D and almost all t ∈ R≥0, then (1) is uniformly asymptotically stable at x = 0. Furthermore, if D = Rn

and if the sublevel sets {x ∈ Rn |W (x) ≤ c} are compact ∀c ∈ R≥0, then (1) is globally uniformly asymptotically

stable at x = 0.

Proof. Select r > 0 such that B (0, r) ⊂ D. Let x (·) ∈ S (Ωc × R≥0) where Ωc :=
{
x ∈ B (0, r) |W (x) ≤ c

}
for some c ∈

[
0,min‖x‖2=rW (x)

)
. Using Thm. 6.3 and [17, Lemma 2],

V (x (t0) , t0) ≥ V (x (t) , t) , ∀t ∈ Ix. (14)

Using (14) and arguments similar to [29, Thm. 4.8], it can be shown that every x (·) ∈ S (Ωc × R≥0) satisfies

x (t) ∈ B (0, r), for all t ∈ Ix. Therefore, all solutions x (·) ∈ S (Ωc × R≥0) are precompact, and as a consequence

of Lemma 3.3, complete. Since W is continuous and positive definite, ∃δ > 0 such that B (0, δ) ⊂ Ωc. Since δ is

independent of t0, uniform stability of (1) at x = 0 is established. The rest of the proof is identical to [27, Section

5.3.2], and is therefore omitted.

In the following example, tests based on V̇ and ˙̃V are inconclusive, but Thm. 8.2 can be invoked to conclude

global uniform asymptotic stability of the origin.

Example 8.3. Let H : R ⇒ R be defined as

H (y) :=

{0} |y| 6= 1,[
− 1

2 ,
1
2

]
|y| = 1,

and let F : R2 × R≥0 ⇒ R2 be defined as

F (x, t) :=

{−x1 + x2 (1 + g (t))}+H (x2)

{−x1 − x2}+H (x1)

 ,∀ (x, t) ∈ R2 × R≥0,

where g ∈ C1 (R≥0,R), 0 ≤ g (t) ≤ 1,∀t ∈ R≥0 and ġ (t) ≤ g (t) ,∀t ∈ R≥0. Consider the differential inclusion

in (1) and the candidate Lyapunov function V : R2 × R≥0 → R defined as V (x, t) := x21 + (1 + g (t))x22.

the candidate Lyapunov function satisfies ‖x‖22 ≤ V (x, t) ≤ 2 ‖x‖22 ,∀ (x, t) ∈ R2 × R≥0. In this case, since

V ∈ C1
(
R2 × R≥0,R

)
, similar to [29, Example 4.20], the set-valued derivatives V̇ in [7] and ˙̃V in [6] satisfy

the bound V̇ (x, t) , ˙̃V (x, t) ≤
{
−2x21 − 2x22

}
+ 2x1H (x2) + 2x2h (t)H (x1), where h (t) := 1 + g (t) and the
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Fig. 2. A snapshot of the function U1 : R2 × R≥0 → R.

inequality 2 + 2g (t) − ġ (t) ≥ 2 is utilized. Therefore, neither ˙̃V (x, t) nor V̇ (x, t) can be shown to be negative

semidefinite everywhere.

The function U1 : R2 × R≥0 → R, defined as (see Fig. 2)

U1 (x, t) = max ((x1 − 1) , 0)−min ((x1 + 1) , 0) + max ((x2 − 1) , 0)−min ((x2 + 1) , 0) ,∀ (x, t) ∈ R2 × R≥0,

(15)

satisfies U1 ∈ Lip
(
R2 × R≥0,R

)
. In addition, since U1 is convex, it is also regular [26, Prop. 2.3.6]. With

sgn 1 (y) :=

0 −1 < y < 1,

sgn (y) otherwise,

the Clarke gradient of U1 is given by

∂U1 (x, t) =



[{sgn 1 (x1)} ; {sgn 1 (x2)} ; {0}] |x1| 6= 1 ∧ |x2| 6= 1,

[co {0, sgn (x1)} ; {sgn 1 (x2)} ; {0}] |x1| = 1 ∧ |x2| 6= 1,

[{sgn 1 (x1)} ; co {0, sgn (x2)} ; {0}] |x1| 6= 1 ∧ |x2| = 1,

[co {0, sgn (x1)} ; co {0, sgn (x2)} ; {0}] |x1| = 1 ∧ |x2| = 1,

The {U1}−reduced set-valued map corresponding to F is given by

F̃{U1} (x, t) =

F (x, t) |x1| 6= 1 ∧ |x2| 6= 1,

∅ otherwise.
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The {U1}−generalized derivative of V in the direction(s) F is then given by

V̇ {U1} (x, t) := max
q∈F̃{U1}(x,t)

(
∂V

∂ (x, t)
(x, t)

)T

[q ; 1] ,∀ (x, t) ∈ R2 × R≥0,

=


[
2x1 2x2h (t) ġ (t)x22

]
[−x1 + x2h (t) ; −x1 − x2 ; 1] |x1| 6= 1 ∧ |x2| 6= 1,

−∞ otherwise,

≤ −2 ‖x‖22 ,∀ (x, t) ∈ R2 × R≥0.

Thm. 8.2 can then be invoked to conclude that (1) is globally uniformly asymptotically stable at x = 0. 4

B. Invariance-like results

In applications such as adaptive control, Lyapunov methods commonly result in semidefinite Lyapunov functions

(i.e., candidate Lyapunov functions with time derivatives bounded by a negative semidefinite function of the state).

The following theorem establishes the fact that if the function W in (13) is positive semidefinite then t 7→W (x (t))

asymptotically decays to zero.

Theorem 8.4. Let 0 ∈ D, select r > 0 such that B (0, r) ⊂ D, and let F : Ω ⇒ Rn be a set-valued map with

compact values that is locally bounded, uniformly in t, over Ω,5 such that (1) admits local solutions over Ω. If

there exists a positive definite function V ∈ Lip (Ω,R), a positive semidefinite function W ∈ C0 (D,R), a pair of

positive definite functions W ,W ∈ C0 (D,R), and a countable collection U ⊂ Lip (Ω,R) of regular functions such

that (12) and (13) hold, then every solution x (·) ∈ S (Ωc × R≥0), with Ωc :=
{
x ∈ B (0, r) |W (x) ≤ c

}
and

c ∈
[
0,min‖x‖2=rW (x)

)
, is complete, bounded, and satisfies limt→∞W (x (t)) = 0.

Proof. Similar to the proof of [17, Corollary 1], it is established that the bounds on V̇ F in (5) and (6) imply that

V is nonincreasing along all the solutions to (1). The nonincreasing property of V is used to establish boundedness

of x (·), which is used to prove the existence and uniform continuity of complete solutions. Barbălat’s lemma [29,

Lemma 8.2] is then used to conclude the proof.

Let x (·) ∈ S (Ωc × R≥0). Using Thm. 6.3 and [17, Lemma 2], V (x (t0) , t0) ≥ V (x (t) , t) , ∀t ∈ Ix.

Arguments similar to [29, Thm. 4.8] can then be used to show that every x (·) ∈ S (Ωc × R≥0) satisfies x (t) ∈

B (0, r) ,∀t ∈ Ix. Therefore, all solutions x (·) ∈ S (Ωc × R≥0) are precompact, and as a consequence of Lemma

3.3, complete.

To establish uniform continuity of the solutions, it is observed that since F is locally bounded, uniformly in

t, over Ω, and x (t) ∈ B (0, r) on R≥t0 , the map t 7→ F (x (t) , t) is uniformly bounded on R≥t0 . Hence, ẋ ∈

L∞ (R≥t0 ,Rn). Since x (·) is locally absolutely continuous, ∀t1, t2 ∈ R≥t0 , ‖x (t2)− x (t1)‖2 =
∥∥∥∫ t2t1 ẋ (τ) dτ

∥∥∥
2
.

Since ẋ ∈ L∞ (R≥t0 ,Rn),
∥∥∥∫ t2t1 ẋ (τ) dτ

∥∥∥
2
≤
∫ t2
t1
M dτ , where M is a positive constant. Thus, ‖x (t2)− x (t1)‖2 ≤

M |t2 − t1|, and hence, x (·) is uniformly continuous on R≥t0 .

5A set-valued map F : Rn ×R ⇒ Rn is locally bounded, uniformly in t, over D×J for some D ⊆ Rn and J ⊆ R, if for every compact

K ⊂ D, there exists M > 0 such that ∀ (x, t, y) such that (x, t) ∈ K × J , and y ∈ F (x, t), ‖y‖2 ≤M .
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Since x 7→W (x) is continuous and B (0, r) is compact, x 7→W (x) is uniformly continuous on B (0, r). Hence,

t 7→ W (x (t)) is uniformly continuous on R≥t0 . Furthermore, t 7→
∫ t
t0
W (x (τ)) dτ is monotonically increasing

and from (13),
∫ t
t0
W (x (τ)) dτ ≤ V (x (t0) , t0) − V (x (t) , t) ≤ V (x (t0) , t0). Hence, limt→∞

∫ t
t0
W (x (τ)) dτ

exists and is finite. By Barbălat’s Lemma [29, Lemma 8.2], limt→∞W (x (t)) = 0.

In the following example V̇ and ˙̃V do not have a negative semidefinite upper bound, but Thm. 8.4 can be invoked

to conclude partial stability.

Example 8.5. Let H : R ⇒ R be defined as in Example 8.3 and let F : R2 × R≥0 ⇒ R2 be defined as

F (x, t) =

{x2 (1 + g (t))}+H (x2)

{−x1 − x2}+H (x1)

 ,
where g ∈ C1 (R≥0,R), 0 ≤ g (t) ≤ 1,∀t ∈ R≥0 and ġ (t) ≤ g (t) ,∀t ∈ R≥0. Consider the differential inclusion

in (1) and the candidate Lyapunov function V : R2 × R≥0 → R defined as V (x, t) := x21 + (1 + g (t))x22.

The candidate Lyapunov function satisfies ‖x‖22 ≤ V (x, t) ≤ 2 ‖x‖22 ,∀ (x, t) ∈ R2 × R≥0. In this case, since

V ∈ C1
(
R2 × R≥0,R

)
, the set-valued derivatives V̇ in [7] and ˙̃V in [6] are bounded by

V̇ (x, t) , ˙̃V (x, t) ≤
{
−2x22

}
+ 2x2h (t)H (x1) + 2x1H (x2) ,∀ (x, t) ∈ R2 × R≥0,

where h (t) := 1 + g (t) and the inequality 2 + 2g (t) − ġ (t) ≥ 2 is utilized. Thus, neither ˙̃V nor V̇ are negative

semidefinite everywhere.

Let U1 be defined as in (15). The {U1}−reduced set-valued map corresponding to F is given by

F̃{U1} (x, t) =



F (x, t) |x1| 6= 1 ∧ |x2| 6= 1,[
{0} ;

(
{−1}+

[
− 1

2 ,
1
2

])]
x1 = 1 ∧ x2 = 0,[

{0} ;
(
{1}+

[
− 1

2 ,
1
2

])]
x1 = −1 ∧ x2 = 0,

∅ otherwise.

The {U1}−generalized derivative of V in the direction(s) F is then given by

V̇ {U1} (x, t) := max
q∈F̃{U1}(x,t)

(
∂V

∂ (x, t)
(x, t)

)T

[q ; 1] ,∀ (x, t) ∈ R2 × R≥0,

=



[
2x1 2x2h (t) ġ (t)x22

]
[x2h (t) ; −x1 − x2 ; 1] |x1| 6= 1 ∧ |x2| 6= 1,

max [2 0 0]
[
{0} ;

[
3
2 ,−

1
2

]
; 1
]

x1 = 1 ∧ x2 = 0,

max [−2 0 0]
[
{0} ;

[
1
2 ,

3
2

]
; 1
]

x1 = −1 ∧ x2 = 0,

−∞ otherwise,

≤ −2x22,∀ (x, t) ∈ R2 × R≥0.

Thm. 8.4 can then be invoked to conclude that t 7→ x1 (t) ∈ L∞ (R≥t0 ,R) and limt→∞ x2 (t) = 0. 4

Thm. 8.4 and its counterparts are widely used in applications such as adaptive control to establish stability (but

not asymptotic stability) of the state and convergence of a part of the state (e.g., tracking errors, but not parameter
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estimation errors) to the origin. Under certain excitation conditions, asymptotic stability (and as a result, convergence

of the entire state to the origin) can be established using Matrosov theorems [18].

C. Matrosov theorems

In this section, a less conservative generalization of Matrosov results for uniform asymptotic stability of

nonautonomous systems is developed. In particular, the nonsmooth version [22, Thm. 1] of the nested Matrosov

theorem [19, Thm. 1] is generalized. The following definitions of Matrosov functions are inspired by [22].

Definition 8.6. Let γ, δ,∆ > 0 be constants. A finite set of functions {Yj}Mj=1 ⊂ C
0
(
B (0m, γ)×D (δ,∆) ,R

)
is

said to have the Matrosov property relative to (γ, δ,∆) if ∀j ∈ {0, · · · ,M},(
(z, x) ∈ B (0m, γ)×D (δ,∆)

)
∧ (Yi (z, x) = 0,∀i ∈ {0, · · · , j}) =⇒ Yj+1 (z, x) ≤ 0,

where Y0 (z, x) = 0 and YM+1 (z, x) = 1, ∀ (z, x) ∈ B (0m, γ)×D (δ,∆). 4

Definition 8.7. Let δ,∆ > 0 be constants such that D (δ,∆) ⊂ D. Let F : Ω ⇒ Rn be a set-valued map with

compact values. The functions {Wj}Mj=1 ⊂ Lip (Ω,R) are said to be U−reduced Matrosov functions for (F, δ,∆)

if ∃φ : Ω→ Rm, γ > 0, and {Yj}Mj=1 ⊂ C
0
(
B (0m, γ)×D (δ,∆) ,R

)
such that:

(a) the set of functions {Yj}Mj=1 has the Matrosov property relative to (γ, δ,∆),

(b) ∀j ∈ {1, · · · ,M} and ∀ (x, t) ∈ D (δ,∆)× R≥0, max {|Wj (x, t)| , |φ (x, t)|} ≤ γ, and

(c) ∀j ∈ {1, · · · ,M} there exists a collection of regular functions Uj ⊂ Lip (D (δ,∆)× R≥0,R) such that

∀ (x, t) ∈ D (δ,∆)× R≥0, ẆUj (x, t) ≤ Yj (φ (x, t) , x). 4

The following technical Lemmas aid the proof of the Matrosov theorem.

Lemma 8.8. Given δ > 0, ∃ε > 0 such that(
(z, x) ∈ B (0m, γ)×D (δ,∆)

)
∧ (Yj (z, x) = 0,∀j ∈ {1, · · · ,M − 1}) =⇒ YM (z, x) ≤ −ε.

Proof. See [19, Claim 1].

Lemma 8.9. Let l ∈ {2, · · · ,M}, ε̃ > 0, and Ỹl ∈ C0 (Rm × Rn,R). If(
(z, x) ∈ B (0m, γ)×D (δ,∆)

)
∧ (Yj (z, x) = 0,∀j ∈ {1, · · · , l − 1}) =⇒ Ỹl (z, x) ≤ −ε̃,

then ∃Kl−1 > 0 such that(
(z, x) ∈ B (0m, γ)×D (δ,∆)

)
∧ (Yj (z, x) = 0,∀j ∈ {1, · · · , l − 2}) =⇒ Kl−1Yl−1 (z, x) + Ỹl (z, x) ≤ − ε̃

2
.

Proof. See [19, Claim 2]

The Matrosov theorem can now be stated as follows.

Theorem 8.10. Let 0 ∈ D and let F : Ω ⇒ Rn be a set-valued map with compact values such that (1) admits

solutions over Ω and is uniformly stable at x = 0. If, for each pair of numbers δ,∆ ∈ R, such that 0 ≤ δ ≤ ∆ and
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D (δ,∆) ⊂ D, there exist U−reduced Matrosov functions for (F, δ,∆), then (1) is uniformly asymptotically stable

at x = 0. If D = Rn and if (1) is uniformly globally stable at x = 0 then (1) is uniformly globally asymptotically

stable at x = 0.

Proof. Select ∆ > 0 such that B (0,∆) ⊂ D and let r > 0 be such that

x (·) ∈ S
(
B (0, r)× R≥0

)
=⇒ x (t) ∈ B (0,∆) ,∀t ∈ R≥t0 . (16)

Let ε ∈ (0, r) and select δ > 0 such that

x (·) ∈ S
(
B (0, δ)× R≥0

)
=⇒ x (t) ∈ B (0, ε) ,∀t ∈ R≥t0 . (17)

By repeated application of Lemmas 8.8 and 8.9 it can be shown that ∀δ > 0, ∃ζ > 0 and K1, · · · ,KM−1 > 0

such that ∀ (z, x) ∈ B (0m, γ)×D (δ,∆),

Z (z, x) :=

M−1∑
j=1

KjYj (z, x) + YM (z, x) ≤ − ζ

2M−1
. (18)

Let W ∈ Lip (Ω,R) be defined as W (x, t) :=
∑M−1
j=1 KjWj (x, t) +WM (x, t) . From Def. 8.7.b,

|V (x, t)| ≤ γ

1 +

M−1∑
j=1

Kj

 =: η. (19)

Fix (x0, t0) ∈ B (0, r) × R≥0 and x (·) ∈ S ({(x0, t0)}). The selection of r in (16) implies that the solution

x (·) satisfies x (t) ∈ B (0,∆), ∀t ∈ R≥t0 . From Def. 8.7.c, V̇ Uj (x, t) ≤ Z (φ (x, t) , x), ∀ (x, t) ∈ D (δ,∆)×R≥0,

and hence, from Thm. 6.3,

V̇ (x (t) , t) ≤ Z (φ (x (t) , t) , x (t)) , (20)

for almost all t ∈ x−1 (D (δ,∆)). Using Def. 8.7.b and (18),

Z (φ (x (t) , t) , x (t)) ≤ − ζ

2M−1
, (21)

for almost all t ∈ x−1 (D (δ,∆)).

Let T > 2Mη
ζ . The claim is that ‖x (t)‖ ≤ ε, ∀t ∈ R≥t0+T . If not, then the selection of δ in (17) implies that

x (t) ∈ D (δ,∆), ∀t ∈ [t0, t0 + T ]. Hence, from (20) and (21),

V̇ (x (t) , t) ≤ − ζ

2M−1
, (22)

for almost all t ∈ [t0, t0 + T ]. Integrating (22) and using the bound in (19), Tζ
2M−1 ≤ 2η, which contradicts T > 2Mη

ζ .

Hence, ∀ε ∈ (0, r), ∃T > 0 such that x (·) ∈ S
(
B (0, r)× R≥0

)
=⇒ ‖x (t)‖ < ε, ∀t ∈ R≥t0+T , i.e., (1) is

uniformly asymptotically stable at x = 0.

If D = Rn and if (1) is uniformly globally stable at x = 0 then r can be selected arbitrarily large, and hence,

the result is global.

The following example demonstrates an application of the Matrosov theorem.

Example 8.11. Let H : R ⇒ R be defined as in Example 8.3 and let F : R2 × R≥0 ⇒ R2 be defined as in

Example 8.5. Let U1 be defined as in (15). Let W1 : R2×R≥0 → R be defined as W1 (x, t) := x21 + (1 + g (t))x22.
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Fig. 3. A snapshot of the function U2 : R2 × R≥0 → R.

It follows that Ẇ 1{U1} (x, t) ≤ −2x22, ∀ (x, t) ∈ R2 × R≥0, and uniform global stability of (1) at x = 0 can be

concluded from Thm. 8.2.

Let φ (x, t) = 0, ∀ (x, t) ∈ R2 × R≥0 and let Y1 (z, x) := −2x22, ∀ (z, x) ∈ R× R2. Let W2 (x, t) := x1x2. The

function U2 : R2 × R≥0 → R, defined as (see Fig. 3)

U2 (x, t) =


|x1| |x1| > |x2| ∧ x ∈ Sq,

|x2| |x1| ≤ |x2| ∧ x ∈ Sq,

1 + U∗ (x, t) x /∈ Sq,

where

U∗ (x, t) = max ((2x1 − 2) , 0)−min ((2x1 + 2) , 0)+max ((2x2 − 2) , 0)−min ((2x2 + 2) , 0) ,∀ (x, t) ∈ R2×R≥0

and ‘Sq’ denotes the open unit square centered at the origin, satisfies U2 ∈ Lip
(
R2 × R≥0,R

)
. In addition, since

U2 is convex, it is also regular [26, Prop. 2.3.6]. The Clarke gradient of U2 is given by

∂U2 (x, t) =


[{2 sgn 1 (x1)} ; {2 sgn 1 (x2)} ; {0}] |x1| 6= 1 ∧ |x2| 6= 1,

[co {0, 2 sgn (x1)} ; {2 sgn 1 (x2)} ; {0}] |x1| = 1 ∧ |x2| 6= 1,

[{2 sgn 1 (x1)} ; co {0, 2 sgn (x2)} ; {0}] |x1| 6= 1 ∧ |x2| = 1,

if x /∈ Sq,

∂U2 (x, t) =



[[−1, 1] ; [−1, 1] ; {0}] |x1| = 0 ∧ |x2| = 0,

[sgn (x1) ; {0} ; {0}] |x1| > |x2| ,

[{0} ; sgn (x2) ; {0}] |x1| < |x2| ,

[co {0, sgn (x1)} ; co {0, sgn (x2)} ; {0}] |x1| = |x2| > 0,
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if x ∈ Sq, and

∂U2 (x, t) =

[co {sgn 1 (x1) , 2 sgn 1 (x1)} ; co {sgn 1 (x2) , 2 sgn 1 (x2)} ; {0}] |x1| 6= |x2| ,

[co {sgn (x1) , 2 sgn (x1) , 0} ; co {sgn (x2) , 2 sgn (x2) , 0} ; {0}] |x1| = |x2| ,

if x ∈ bd (Sq). The {U2}−reduced set-valued map corresponding to F is given by

F̃{U2} (x, t) =



F (x, t) x /∈ Sq ∧ |x1| 6= 1 ∧ |x2| 6= 1,

F (x, t) x ∈ Sq ∧ |x1| 6= |x2| ,

{0} x ∈ Sq ∧ |x1| = 0 ∧ |x2| = 0,

∅ otherwise.

The {U2}−generalized derivative of W2 is then given by

Ẇ 2{U2} (x, t) =



[x2 x1 0] [x2h (t) ; −x1 − x2 ; 1]
x /∈ Sq ∧ |x1| 6= 1 ∧ |x2| 6= 1

∨x ∈ Sq ∧ |x1| 6= |x2| ,

0 x ∈ Sq ∧ |x1| = 0 ∧ |x2| = 0,

−∞ otherwise.

That is, Ẇ 2{U2} (x, t) ≤ −x21 − x2x1 + 2x22,∀ (x, t) ∈ R2 × R≥0. If Y2 (z, x) := −x21 − x2x1 + 2x22, ∀ (z, x) ∈

R×R2, then the functions {Y1, Y2} have the Matrosov property. Furthermore, since W1,W2 ∈ C0
(
R2 × R≥0,R

)
,

∀0 < δ < ∆, ∃γ > 0 such that |W (x, t)| ≤ γ, ∀ (x, t) ∈ D (δ,∆) × R≥0. Hence, {W1,W2} are U−reduced

Matrosov functions for (F, δ,∆), ∀0 < δ < ∆. Hence, by Thm. 8.10, (1) is uniformly globally asymptotically

stable at x = 0.

9. CONCLUSION

This paper demonstrates that locally Lipschitz, regular functions can be used to identify infeasible directions

in set-valued maps that define differential inclusions. The infeasible directions can then be removed to yield a

point-wise smaller (in the sense of set containment) set-valued map that defines an equivalent differential inclusion.

The reduction process results in a novel generalization of the set-valued derivative for locally Lipschitz candidate

Lyapunov functions. Statements of Lyapunov stability theorems, invariance theorems, invariance-like results, and

Matrosov theorems for differential inclusions that are less conservative than those available in the literature are

developed using reduced set-valued maps.

The fact that arbitrary locally Lipschitz, regular functions can be used to restrict differential inclusions to smaller

sets of admissible directions indicates that there may be a smallest set of admissible directions corresponding to each

differential inclusion. Further research is needed to establish the existence of such a set and to find a representation

of it that facilitates computation.
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