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Abstract— In this article, we propose a Lyapunov stability
approach to analyze the convergence of the density operator
of a quantum system. In contrast to many previously studied
convergence analysis methods for invariant density operators
which use weak convergence, in this article we analyze the
convergence of density operators by considering the set of
density operators as a subset of Banach space. We show that
the set of invariant density operators is both closed and convex,
which implies the impossibility of having multiple isolated
invariant density operators. We then show how to analyze the
stability of this set via a candidate Lyapunov operator.

I. INTRODUCTION

There are two main approaches to design a feedback
controller for a quantum system. The more conventional
approach is to compute the feedback input based on mea-
surements of the system, which is known as measurement-
based feedback control (MBFC). This method has been well
studied in the last two decades [1], [2], [3]. Another approach
is to construct the feedback controller as a quantum system
that coherently interacts with the controlled system. This
method, which is known as coherent feedback control, has
recently received considerable interest [4], [5], [6]. There
are many conditions in which coherent feedback control
potentially offers advantages over MBFC; e.g., see [6], [7],
[8].
There have been many results on analytical tools to analyze
the convergence of quantum system dynamics based on sta-
bility analysis of quantum systems subject to measurement,
[9], [10], [11]. However, in the absence of measurement, as in
the case of coherent control, there are a few of tools available
to analyze the stability behavior of quantum dynamical
systems. Many established results on linear coherent control
of quantum systems are based on stochastic stability criteria
involving first and second moments, [5]. However, to extend
coherent control design beyond the linear case, one should
consider more general stability criteria, other than first and
second moment convergence.
From the classical probability theory point of view, we
can consider a system’s density operator as a probability
measure. Therefore, the convergence of a density operator
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can be analyzed in a similar way to the convergence of a
sequence of probability measures[12]. In fact, in the math-
ematical physics literature, the stability of quantum systems
has been analyzed using quantum Markov semigroups via
the quantum analog of probability measure convergence [13],
[14]. In essence, [14] establishes conditions of the existence
of invariant states, as well as convergence to these states
given that the invariant state ρ is faithful. That is, for any
positive operator A, tr(Aρ) = 0 if and only if A = 0.
In the classical control theory, on the other hand, the Lya-
punov approach is one of the fundamental tools to examine
the stability of classical dynamical systems without solving
the dynamic equation [15]. There are some important results
on the stability of invariance density operator convergence in
the Schrödinger picture [16], [17]. In this scheme, Lyapunov
analysis is often used, where the Lyapunov function is
defined as a function of the density operators.
Recently, [18] extended results on quantum Markov semi-
group invariant state analysis to the Heisenberg picture,
which is closely related to Lyapunov stability analysis in the
classical setting. Stability analysis in the Heisenberg picture
as given in [18] is interesting for two reasons. The first is
that since it is considered in the Heisenberg picture, the
stability condition derived is easily connected to classical
Lyapunov stability analysis, which is preferable for most
control theorists. The second is that, while the stability
condition is stated in terms of a Lyapunov observable, it leads
to the same conclusion as the quantum Markov semigroup
convergence.
The result of [18] required that for all non-trivial projection
operators P, PL†(1−P)LP 6= 0, where L is the coupling
operator of the quantum system. The weakness of this ap-
proach is that in many cases, we deal with quantum systems
which have invariant density operators which are not faithful.
Furthermore, even when the invariant density operators are
faithful, validating the inequality given in [18, Theorem 3,
Theorem 4] for all non-trivial projection operators is not
straight forward; see also [18, Example 4].
We aim to establish a stability criterion which is similar to
Lyapunov stability theory in classical systems to examine the
convergence of the system’s density operator. We show that
if there is a self-adjoint operator that has a strict minimum
value at the invariant state and its generator satisfies a
particular inequality condition, then we can infer Lyapunov,
asymptotic, and exponential stability in both local and global
settings.
We refer the reader to the following monographs for an
introduction to quantum probability [19], [20].
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A. Notation

The Identity operator will be denoted by 1. A class of
operators will be denoted by fraktur type face; e.g., the class
of bounded linear operators on a Hilbert space H B(H ).
We use ‖·‖

∞
to denote the uniform operator norm on B(H ),

and ‖X‖1 = tr(|X |) for any trace-class operator X . The set of
density operators (positive operators with unity trace) on the
Hilbert space H is denoted by S(H ). Bold letters (e.g. y)
will be used to denote a matrix whose elements are operators
on a Hilbert space. The Hilbert space adjoint is indicated by
∗, while the complex adjoint transpose will be denoted by †;
i.e., (X∗)> = X†. For single-element operators, we will use
∗ and † interchangeably. The commutator matrix of x and y
is given by [x,y] = xy>−

(
yx>

)>.

II. PRELIMINARIES

In this section, we will describe some preliminaries that
will be used in the later sections.

A. Closed and Open Quantum System Dynamics

Here, we review the basic concepts of closed and open
quantum system dynamics. This section is adapted from
[21]. For quantum systems, in contrast to classical systems
where the state is determined by a set of scalar variables, the
state of the system is described by a vector in the system’s
Hilbert space H with unit norm. Furthermore, in quantum
mechanics, physical quantities like the spin of atom, position,
and momentum, are described as self-adjoint operators in a
Hilbert space. These operators are called observables. An
inner product gives the expected values of these quantities.
For example, an observable A and a unit vector |ψ〉 ∈H
have lead to the expected value 〈ψ|A |ψ〉.
The dynamics of a closed quantum system are described
by an observable called the Hamiltonian H which acts on
the unit vector |ψ〉 ∈H , as per d|ψt 〉

dt =−iH |ψt〉 , which is
known as the Schrödinger equation. The evolution of the unit
vector |ψ〉 ∈H can be described by a unitary operator Ut ,
where |ψt〉=Ut |ψ0〉. Accordingly, the Schrödinger equation
can be rewritten as

(1)
dUt

dt
= −iHUt .

From this equation, any system observable X will evolve
according to Xt =U∗t XUt , satisfying

(2)
dXt

dt
= −i[Xt ,H],

which is called the Heisenberg equation of motion for the
observable X .
An open quantum system is a quantum system which in-
teracts with other quantum mechanical degrees of freedom.
An open quantum system P can be characterized by a
triple (S,L,H), with Hamiltonian H, coupling operator L
and scattering matrix S which are operators on the system’s
Hilbert space H . Let At = [A1,t · · · An,t ], be a vector of
annihilation operators defined on distinct copies of the Fock
space Γ [22]. For an open quantum system interacting with
n channels environmental fields, the total Hilbert space will

be given as H̃ = H ⊗Γn, where H is the system Hilbert
space, and Γn = Γ⊗

n
is n copies of the single channel Fock

space Γ. Notice that in the linear span of coherent states,
the Fock spaces Γi i = 1, · · · ,n possesses a continuous tensor
product. For any time interval 0≤ s< t, the Fock space Γi can
be decomposed into Γi = Γi,s]⊗Γi,[s,t]⊗Γi,[t ., [23, pp. 179-
180]. Therefore, we can write H̃,t] ≡ H̃[0,t] = H ⊗Γn[0,t],
and H̃[t = Γn,[t . Each annihilation operator Ai,t represents
a single channel of quantum noise input. Λ is a scattering
operator between channels. Both At and A∗t construct a
quantum version of Brownian motion processes, while on
the other hand Λ can be thought as a quantum version of
a Poissonian process [23]. In a similar way to the unitary
operator evolution in the closed quantum system (1), we
can also derive the unitary operator evolution for an open
quantum system. In contrast to the closed quantum system
unitary evolution (1), the interaction with the environment
leads to randomness in the unitary evolution of an open
quantum system P as follows [23, Corollary 26.4]:

(3)
dUt =

[
tr
[
(S− I)dΛ

>
t

]
+ dA†

t L− L†SdAt

−
(

1
2
L†L+ iH

)
dt
]

Ut , U0 = 1.

In the context of open quantum system dynamics, any system
observable X will evolve according to

(4)Xt = jt(X) ≡ U†
t (X ⊗ 1)Ut ,

where 1 is identity operator on Γn. Correspondingly, as an
analog of (2), for an open quantum system, the corresponding
Heisenberg equation of motion for a system operator X is
given by [24],

(5)
dXt = G (Xt)dt + dA†

t S
†
t [Xt ,Lt ]

> +
[
L†

t ,Xt

]>
StdAt

+ tr
[(

S†
t XtSt − Xt

)
dΛ
>
t

]
,

where all operators evolve according to (4); i.e. Lt =
U†

t (L⊗1)Ut , and G (Xt) is the quantum Markovian genera-
tor for Xt given by

(6)G (Xt) = −i [Xt ,Ht ] +
1
2
L†

t [Xt ,Lt ]
> +

1
2

[
L†

t ,Xt

]>
Lt .

We call equation (5) the QSDE for the system observable X .

III. QUANTUM DYNAMICAL SEMIGROUPS AND THEIR
CONVERGENCES

In this section, we will describe some preliminaries that
will be used in the later sections. The following definitions
are the basic notions in quantum probability and quantum
dynamical semigroups (QDS); see [25, Chapter 1].
We recall that a von Neumann algebra is a ∗− subalgebra
of B(H ) which contains the identity 1 and is closed in the
normal topology.

Definition 1: Let A be a von Neumann algebra. A linear
functional ϕ is called a state on A , ϕ : A →C if it is positive
i.e., ϕ(A∗A)≥ 0,∀A ∈A , and normal; i.e., ϕ(1) = 1.



Any positive linear functional ω on A , is called normal if
supn ω(Xn) = ω(supn Xn), where {Xn} is an upper bounded
increasing net of self adjoint operators. Notice that a linear
functional ω is normal if there is a unity trace operator
ρ such that ω(X) = tr(ρX). From this viewpoint, a unit
element |u〉 ∈ H and a density operator ρ can also be
considered as states on B(H ), by considering the following
linear functionals, ϕ(X) = 〈ψ|X |ψ〉, and ϕ(X) = tr(ρX).
If ρ ∈S(H ) is the initial density operator of the system and
Ψ∈S(Γn) is the initial density operator of the environment,
then for any bounded system observable X , the quantum
expectation of Xt in (4) is given by tr(Xt(ρ⊗Ψ)) ≡ ϕ(Xt).
Let Ψ[t ∈S(H̃[t) be a density operator on H̃[t . We can define
Et] [·] : B

(
H̃
)
→B(H̃t]) as follows:

Et] [Z]⊗1≡ E
[

Z|B
(
H̃t]
)
⊗1
]
,∀Z ∈B

(
H̃
)
, (7)

where 1 is identity operator on H̃[t and E
[

Z|B
(
H̃t]
)
⊗1
]

is
a quantum conditional expectation; see also [23, Proposition
16.6, Excercise 16.10, 16.11] and [20, Example 1.3] for the
existence of E

[
Z|B

(
H̃t]
)
⊗1
]
. In our case, we will fre-

quently consider E0] [ jt(X)], when the quantum expectation
of jt(X) is marginalized with respect to the system Hilbert
space H .

Definition 2: [20] A QDS on a von Neumann algebra A
is a family of bounded linear maps {Tt , t ≥ 0} with the
following properties

1) T0(A) = A, for all A ∈A .
2) Ts+t(A) = Ts(Tt(A)), for all s, t ≥ 0, and A ∈A .
3) Tt is a completely positive mapping for all t ≥ 0.
4) Tt is normally continuous for all t ≥ 0.

Using the conditional expectation in (7), we observe that
there exists a one-parameter semigroup Tt : B(H ) →
B(H ) given by Tt(X) = E0] [ jt(X)]. The generator of this
semigroup L (X) : D(L )→B(H ) is given by

(8)L (X) = lim
t↓0

Tt(X)− X
t

∀X ∈ D(L ),

By using the quantum conditional expectation
property ϕ(A) = ϕ(E [A|B]),∀A ∈ A and (7),
we obtain ϕ(Tt(X)⊗1) = ϕ(Xt). Therefore,
Tt(L (X)) = L (Tt(X)) = E0] [G (Xt)]. Note that there
also exists a one-parameter semigroup St such that,
ϕ(Xt) = ϕ(Tt(X)⊗1) = tr(XSt(ρ)). Explicitly, it can be
defined as St(ρ) ≡ trΓn

(
Ut(ρ⊗Ψ)U†

t

)
, where trΓn (·) is

the partial trace operation over Γn. Let us write ρt ≡St(ρ).
The generator of this semigroup is the master equation [20]

L∗(ρt)≡−i [H,ρt ]+L>ρtL∗−
1
2
L†Lρt −

1
2

ρtL†L. (9)

We restrict our discussion to the case where both of the
semigroups Tt and St are uniformly continuous. For our
development, we will also require the following definitions
[13]:

Definition 3: A density operator ρ is called invariant for
a QDS Tt if for all A ∈B(H ), tr(ρTt(A)) = tr(ρA).

Definition 4: A sequence of density operators {ρn} is said
to converge weakly to ρ ∈ S(H ) if for all A ∈ B(H ),
lim
n→∞

tr(ρnA) = tr(ρA).
We write the limit of a weakly converge sequence {ρn} as
w− lim

n→∞
ρn and ρn

w−→ ρ . We recall that the set of trace-class
Hilbert space operators I1(H ) with norm ‖·‖1 is a Banach
space [23, Prop 9.13]. Using the metric induced by the norm
d(ρA,ρB) ≡ ‖ρA−ρB‖1, we refer a closed ball with center
ρ∗ and radius ε to the set

(10)Bε(ρ∗) = {ρ ∈ S(H ) : ‖ρ − ρ∗‖1 ≤ ε}.

The normalized version of the distance d(ρA,ρB) is also
known as the Kolmogorov distance in quantum information
community [26], [27], [28].We will also refer neighborhood
N of ρ∗ to a union of balls (10) with various center points
and Bε(ρ∗) ⊆ N for some ε . The following proposition
shows a basic fact regarding the completeness of the class
of density operators under ‖·‖1.

Proposition 1: The class of density operators on the
Hilbert space H , S(H ) is a closed subset of the Banach
space (I1(H ),‖·‖1).

Proof: First we recall that a subset of a complete metric
space is closed if and only if it is complete [29, Prop 6.3.13].
Therefore, we need to show that every Cauchy sequence
of density operators {ρn} converges to a density operator
ρ∗. Since S(H ) ⊆ I1(H ), which is a Banach space with
respect to the norm ‖·‖1, then {ρn} converges to an element
in I1(H ); i.e., ρ∗ ∈ I1(H ). Therefore according to the
definition of the class of density operators, it remains to
show that ρ∗ is positive and has unity trace. The limit ρ∗
is positive, since if it is non-positive, then there exists ε > 0
such that for all n, 0 < ε < ‖ρn−ρ∗‖∞

. However, as n→∞,

0 < ε < ‖ρn−ρ∗‖∞
≤ ‖ρn−ρ∗‖1 = 0,

which is a contradiction. The limit ρ∗ also has unit trace by
the following argument. Since ρn converge to ρ∗, then for
any ε > 0 there is n such that

1 = ‖ρn‖1 ≤ ‖ρn−ρ∗‖1 +‖ρ∗‖1 ≤ ε +‖ρ∗‖1.

However, we notice also that for any ε > 0, there is an Nε ∈
N, such that for every n,m≥Nε , ‖ρn−ρm‖1 < ε . Fix n. Then
we have ‖ρn‖1 ≤ ‖ρn−ρNε

‖1 +‖ρNε
‖1. Taking the limit as

n approaches infinity, we obtain

‖ρ∗‖1 ≤ lim
n→∞
‖ρn‖1 + ‖ρn − ρ∗‖1

≤ lim
n→∞
‖ρn − ρNε

‖1 + ‖ρNε
‖1 + ‖ρn − ρ∗‖1

≤ ε + 1.

Since ε can be chosen arbitrarily, then ‖ρ∗‖1 = 1. Therefore,
ρ∗ is indeed a density operator.

IV. LYAPUNOV STABILITY CRITERION FOR THE
INVARIANCE SET OF DENSITY OPERATORS

In this section, we will introduce a Lyapunov stability
notion for the set of system invariant density operators.
Before we define the stability condition in the following



proposition, we first show that the set of invariant density
operators of the QDS Ts is both closed and convex.

Proposition 2: The set of invariant density operators C∗
is convex and closed in (I1(H ),‖·‖1).

Proof: The convexity of C∗ follows directly from
the fact that for any ρ1,ρ2 ∈ C∗, then for any λ ∈ [0,1],
tr((St(λρ1 +(1−λ )ρ2)− (λρ1 +(1−λ )ρ2))A) = 0, for all
A ∈ B(H ), and t ≥ 0. Notice that since C∗ is convex,
the closedness of C∗ on (I1(H ),‖·‖1) is equivalent to the
closedness of C∗ in the weak topology [30, Thm III.1.4 ]. To
show that C∗ is closed in the weak topology, suppose that
{ρn} is a net in C∗ that converges weakly to ρ∗, ρn

w−→ ρ∗.
Then we have to show that ρ∗ ∈ C∗. We observe that, the
linearity of the semi-group St implies that for all A∈B(H ),
ρn in the net {ρn}, and t ≥ 0

tr((St(ρ∗)− ρ∗)A) = tr((St(ρ∗ − ρn))A)

+ tr((St(ρn)− ρn)A)

+ tr((ρn − ρ∗)A)

= tr((St(ρ∗ − ρn))A) + tr((ρn − ρ∗)A)

= tr((ρ∗ − ρn)(Tt(A)− A)).

Since Tt(A)∈B(H ), then for any ε > 0, there exists a ρm ∈
{ρn} such that |tr((ρ∗−ρm)(Tt(A)−A))|< ε . However, ε >
0 can be selected arbitrarily , therefore, ρ∗ ∈ C∗.

Remark 1: The last proposition implies that in any quan-
tum system, it is impossible to have multiple isolated invari-
ant density operators, even for the case of finite dimensional
quantum systems. This phenomenon is unique to quantum
systems since classical dynamics can have multiple isolated
equilibrium points; see for example [15, §2.2 ]. The convexity
of C∗ has also been derived in [31] for the finite dimensional
case.
In what follows, we will examine the convergence to
the set of invariant density operators in a Banach space
(I1(H ),‖·‖1). The distance between a point σ ∈S(H ) and
the closed convex set C∗ ⊆S(H ) can be naturally defined
by

(11)d(σ ,C∗) = inf
ρ∈C∗
‖σ − ρ‖1.

We define the following stability notions:
Definition 5: Let C∗⊂S(H ) be a convex set of invariant

density operators of a quantum system P . Suppose that
N ⊂ S(H ), where C∗ is a strict subset of N , and the
system is initially at density operator ρ ∈N . Then, we say
the closed convex set of invariant density operators C∗ is,

1) Lyapunov stable if for every ε > 0, there exists δ (ε)>
0 such that d(ρ,C∗)< δ (ε) implies d(ρt ,C∗)< ε for
all t ≥ 0.

2) Locally asymptotically stable, if it is Lyapunov stable,
and there exists δ > 0, such that d(ρ,C∗)< δ implies
lim
t→∞

d(ρt ,C∗) = 0.
3) Locally exponentially stable, if there exists β ,γ,δ >

0 such that d(ρ,C∗) < δ implies, d(ρt ,C∗) ≤
βd(ρ,C∗)exp(−γt) for all t ≥ 0.

If N = S(H ), such that δ can be chosen arbitrarily
in 2) and 3), we say C∗ is a globally asymptotically, or
exponentially stable respectively.
Before we prove the main result, we need to establish the
following facts; see [32] for the proof.

Lemma 1: [32] Suppose there exists a self-adjoint opera-
tor A ∈B(H ) where spectrum of A is non decreasing such
that for a closed convex set of density operators C∗, and a
neighborhood N of C∗,

inf
ρ∗∈C∗

tr(A(ρ−ρ∗))> 0, ∀ρ ∈N \C∗. (12)

Then there exists κ > 0 such that κd(ρ,C∗)
2 ≤

infρ∗∈C∗ tr(A(ρ−ρ∗)), for all ρ ∈N \C∗.
Lemma 2: [32] Let C∗ be a closed convex set of invariant

density operators and N be a neighborhood of C∗. Suppose
{ρn} is a sequence of density operators in N \C∗. If there
exists a self-adjoint operator A∈B(H ) satisfying condition
in Lemma 1 and lim

n→∞
tr(A(ρn−ρ∗)) = 0 for a ρ∗ ∈ C∗, then

lim
n→∞

d(ρn,C∗) = 0.
The following theorem is the main result of this article,

which relates the stability notions defined above to an in-
equality for the generator of a candidate Lyapunov operator.

Theorem 1: Let V ∈ B(H ) be a self-adjoint operator
with non decreasing spectrum value such that

(13)inf
ρ∗ ∈C∗

tr(V (ρ − ρ∗)) > 0,∀ρ ∈ S(H )\C∗.

where C is a real constant. Using the notation of Definition
5

1) If
tr(L (V )ρ)≤ 0, ∀ρ ∈N \C∗, (14)

then C∗ is Lyapunov stable.
2) If

tr(L (V )ρ)< 0, ∀ρ ∈N \C∗, (15)

then C∗ is locally asymptotically stable.
3) If there exists γ > 0 and ζ ∈ R such that

tr(L (V )ρ)≤−γ tr(V ρ)+ζ < 0 ∀ρ ∈N \C∗, (16)

then C∗ is locally exponentially stable.
Proof: Let us begin by proving the first part. Suppose

ε > 0 is selected. Then, we can take ε ′ ∈ (0,ε] such that
Bε ′(C∗) ⊆ N . Observe that by (13) and Lemma 1, there
exists a κ > 0 such that for any ρ ∈Bε ′(C∗)

(17)κd(ρ,C∗)
2 ≤ inf

ρ∗∈C∗
tr(V (ρ − ρ∗)).

Let V∗ = supρ∗∈C∗ tr(V ρ∗). Therefore, if we select V∗ < β <

V∗+ κ(ε ′)2 then the set Nβ = {ρ ∈N : tr(V ρ)≤ β} is a
strict subset of Bε ′(ρ∗). Furthermore, since β > V∗ and
tr(V ρ) ≤ V∗+ ‖V‖∞

d(ρ,C∗), selecting δ < (β −V∗)/‖V‖∞

implies tr(V ρ)< β for all ρ ∈Bδ (C∗). Therefore, we have
the following relation

Bδ (C∗) ⊂ Nβ ⊂ Bε ′(C∗).

Therefore, ρ ∈Bδ (C∗) implies ρ ∈Nβ . Since tr(L (V )ρ)≤
0 for all ρ ∈N \C∗, if system density operator ρ is initially



in Nβ , then the expected value of operator V will be non-
increasing, tr(V ρt)≤ tr(V ρ)≤ β ,∀t ≥ 0. This implies that
ρt ∈ Nβ ,∀t ≥ 0, which shows ρt ∈ Bε ′(C∗). Furthermore,
this last implication implies that if initially d(ρ,C∗)< δ (ε),
then d(ρt ,C∗)< ε for all t ≥ 0.
For the second part, using the same argument as in the
previous part, we may choose δ > 0 such that initially
ρ ∈Bδ (C∗)⊂Nβ ⊂N , for some β >V∗. Therefore, since
tr(L (V )ρ)< 0 for all ρ ∈N \C∗, tr(V ρt) is monotonically
decreasing. Therefore tr(V ρt) < tr(V ρs) < tr(V ρ) < β for
any 0 < s < t. Hence ρs,ρt also belongs to Nβ . This implies
that there exists a sequence of density operators {ρn}, such
that tr(V (ρm−ρn)) < 0 for any m > n, where ρn ≡Stn(ρ)
and 0 ≤ t0 < t1 < · · · < tn, tn → ∞ as n → ∞. Since the
spectrum of V is non-decreasing, tr(V ρn) is lower bounded.
Hence, there exists a ρc ∈Nβ such that lim

n→∞
tr(V (ρn−ρc))=

0 and tr(V (ρc−ρn)) < 0 for all n. Suppose ρc /∈ C∗. Then
for any s> 0, tr(VSs(ρc))< tr(V ρc). Therefore, there exists
an n such that tr(V (ρc−ρn))> 0, which is a contradiction.
Therefore, ρc ∈ C∗. Lemma 2 and (11) then imply that
lim
n→∞

d(ρn,C∗)≤ lim
n→∞
‖ρn−ρc‖1 = 0.

For the global exponentially stable condition, the previ-
ous part shows that the negativity of tr(L (V )ρ) for all
ρ ∈ N \C∗ implies the existence of a ρc ∈ C∗ such that
lim
t→∞
‖ρt −ρc‖1 = 0. Using the First Fundamental Lemma of

Quantum Stochastic Calculus [23, Prop 25.1] to switch the
order of the integration and quantum expectation; see also
[23, Prop 26.6], we obtain

tr(V ρt)− tr(V ρs) = ϕ(Vt)− ϕ(Vs)

= ϕ

(∫ t

s
G (Vτ)dτ

)
=
∫ t

s
ϕ(G (Vτ))dτ.

Therefore, by (16) we obtain

tr(V ρt) ≤
(

tr(V ρs)−
ζ

γ

)
eγ(s−t) +

ζ

γ
.

Taking s = 0, there exists κ > 0 such that
κd(ρt ,C∗)2 ≤ κ‖ρt −ρc‖2

1 ≤ tr(V (ρt −ρc))≤ tr(V ρt)− ζ

γ
≤(

tr(V ρ)− ζ

γ

)
e−γt . Consequently, we obtain

kd(ρt ,C∗)
2 ≤

(
tr(V ρ)− ζ

γ

)
e−γt ,

which completes the proof.
Remark 2: In contrast to the stability conditions given in

[18], we do not require V to be coercive, nor we demand
it to commute with the Hamiltonian of the system [33].
We show in Theorem 1 that less restrictive conditions on
both V and L (V ), (13),(15) are sufficient to guarantee the
convergence of the density operator evolution to the set of
invariant density operators.

Remark 3: We can use Theorem 1 to strengthen many
results in the coherent control of quantum systems. In fact,
the differential dissipative inequality given in [34, Thm 3.5]
and those which is given as an LMI in [5, Thm 4.2] explicitly

imply global exponential and asymptotic stability conditions,
provided that the storage function in [34] and in [5] have
global minima at the invariant density operator ρ∗.

A. Examples

To illustrate the application of the Lyapunov stability con-
ditions we have derived, we consider the following examples.

Example 1: Consider a linear quantum system P , with
H = (a−α1)†(a−α1),α ∈ C, L =

√
κ(a−α1), and S =

1. Evaluating the steady state of (9) we know that the
invariant density operator is a coherent density operator with
amplitude α; i.e., ρ∗ = |α〉〈α|. Now, choose the Lyapunov
observable V = H. Straightforward calculation of L (V )
using (6) gives,

L (V ) =−κ(N− 1
2
(
αa† +α

∗a
)
+ |α|21).

Notice that tr(L (V )ρ) < 0 for all density operators other
than ρ∗ = |α〉〈α|. To verify this inequality, it is sufficient
to take ρ = |β 〉〈β | with β 6= α . This follows since every
state vector |ψ〉 can be expressed as a limit of infinite
sums of coherent state vectors; i.e., the set of coherent state
vectors is total in H ; see [35, §3.5]. Therefore, for ρt =
|β 〉〈β |, we obtain tr(V ρt) = |β |2 + |α|2− (α∗β +β ∗α) and
tr(L (V )ρt) = −κ tr(V ρt) + κ/2(α∗β +β ∗α) < 0. Hence,
Theorem 1 indicates that the invariant density operator is
exponentially stable.

Example 2: Consider a nonlinear quantum system with
zero Hamiltonian and a coupling operator L = (a2−α21),
where α is a complex constant. To find the invariant density
operators of this quantum system we need to find the
eigenvectors of a2. Without loss of generality, let |z〉 be
one of the eigenvectors of a2, such that a2 |z〉 = α2 |z〉.
Expanding |z〉 in the number state orthogonal basis, we
can write, a2 |z〉 = ∑

∞
n=0 a2cn |n〉. Therefore, we find that,

α2cn−2 = cn
√

n(n−1). By mathematical induction, we have
for n even, cn = c0αn/

√
n!, and for n odd, cn = c1αn/

√
n!.

Therefore, we can write the eigenvector of a2 as,

|z〉=c0

∞

∑
n=0,neven

αn
√

n!
|n〉+ c1

∞

∑
n=1,nodd

αn
√

n!
|n〉 .

By observing that a coherent vector with magnitude α ,
is given by |α〉 = exp

(
− |α|

2

2

)
∑

∞
n=0

αn
√

n!
|n〉 , we can write

|z〉 = c0 exp
(
|α|2

2

)
(|α〉+|−α〉)

2 + c1 exp
(
|α|2

2

)
(|α〉−|−α〉)

2 . Nor-
malization of |z〉 shows that c0 and c1 satisfy an elliptic
equation, |c0|2 cosh

(
|α|2

)
+ |c1|2 sinh

(
|α|2

)
= 1. Therefore,

we can write the solution of L |z〉= 0 |z〉 by the following set:
Z∗ =

{
|z〉 ∈H : |z〉=C0

(|α〉+|−α〉)
2 +C1

(|α〉−|−α〉)
2

}
, where

C0 = c0 exp
(
|α|2

2

)
and C1 = c1 exp

(
|α|2

2

)
. The set of invariant

density operators of this quantum system is a convex set C∗
which is given by C∗ = {∑i λi |βi〉〈βi| : |βi〉 ∈Z∗}, where
λi ≥ 0,∑i λi = 1. Suppose we select a Lyapunov candidate
V =L†L. One can verify that tr(ρV ) = 0 for all ρ belonging
to C∗, and has a positive value outside of this set. Straightfor-
ward calculation of the quantum Markovian generator of V



using (6) gives us the following G (Vt) =−
(

4L†
t NtLt +2Vt

)
.

Outside the set C∗, the generator G (Vt) has a negative value.
Therefore, Theorem 1 implies that the set C∗ is globally
exponentially stable.
Figure 1 illustrates the phase-space of the system correspond-
ing to various initial density operators. This figure shows
that each distinct trajectory converges to a different invariant
density operator, all belonging to the set of invariant density
operators C∗. Moreover, Figure 2 shows the Lyapunov opera-
tor expected values. This figure also shows that although each
trajectory converges to a distinct invariant density operator,
their Lyapunov expected values all converge to zero.
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Fig. 1. Trajectories of the quantum system in Example 2, simulated using
the corresponding master equations. Each line corresponds to a different
initial density operator.
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Fig. 2. Lyapunov operator expected value of the quantum system in
Example 2.

V. CONCLUSION

In this article, we have proposed a Lyapunov stability
approach for open quantum systems to investigate the con-

vergence of the system’s density operator in ‖·‖1. This
stability condition is stronger compared to the finite moment
convergence that has been considered for quantum systems
previously.
We have proven that the set of invariant density operators of
any open quantum system is both closed and convex. Further,
we have shown how to analyze the stability of this set via a
Lyapunov candidate operator.
We have also demonstrated that a quantum system where
the generator of its Lyapunov observable is non-negative
has at least one invariant density operator. This connection
offers a straightforward approach to verify both the Lyapunov
stability condition and the existence of an invariant density
operator.
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