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Abstract— This paper considers the non-convex problem of
finding the nearest Metzler matrix to a given possibly unstable
matrix. Linear systems whose state vector evolves according to
a Metzler matrix have many desirable properties in analysis
and control with regard to scalability. This motivates the
question, how close (in the Frobenius norm of coefficients)
to the nearest Metzler matrix are we? Dropping the Metzler
constraint, this problem has recently been studied using the
theory of dissipative Hamiltonian (DH) systems, which provide
a helpful characterization of the feasible set of stable matrices.
This work uses the DH theory to provide a block coordinate
descent consisting of a quadratic program with favourable
structural properties and a semidefinite program for which
recent diagonal dominance results can be used to improve
tractability.

I. INTRODUCTION

A. Introduction

In this paper we consider the problem of finding the near-
est stable Metzler matrix to a given non-Metzler (possibly
unstable) matrix. Metzler matrices and the related class of
positive systems have become very popular in the systems
and control community as they can model a wide class of
physically important systems, e.g. population vectors in eco-
logical networks, transportation systems, chemical reaction
networks, etc. Moreover, such systems have nice theoretical
properties that lend themselves well to scalable computa-
tional analysis. Positive systems have been studied from a
variety of perspectives, including stability and performance
analysis [1], robust synthesis [2], model reduction [3], and
optimization [4].

Thus, it seems that given a matrix which is not Metzler,
it may be worth the effort to determine whether it is ‘close’
to being Metzler in some sense. Distance problems arise fre-
quently in the control literature. For example, the structured
singular value µ, a cornerstone of modern robust analysis,
is a measure of the distance to instability when considering
structured perturbations [5], [6]. The classical Nehari prob-
lem measures the shortest distance in L∞ between a causal
and an anti-causal transfer matrix, and arises in optimal
model reduction [7] and the classical Youla approach toH∞-
synthesis [8, Ch. 17]. Of particular relevance to this paper is
the real stability radius [9] problem, which can be thought
of as a dual to the problem considered here, where we wish
to find the smallest perturbation to a stable square matrix
that renders it unstable.
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The problem of finding the nearest stable matrix (with
no Metzler constraints) to an unstable one is in general a
difficult problem. One of the main reasons for this is that
the set of stable matrices does not form a convex set [10],
and thus formulating an optimization problem over the set
is not trivial. Secondly, the spectrum of a stable matrix
depends in a complicated manner on the coefficients of the
matrix that defines it. For both of these reasons analytic
solutions to the problem appear to be out of reach for
anything but trivial cases. In this work we use the theory
of dissipative Hamiltonian systems [11] and build on the
framework developed in [12], [13] to provide a convex
approximation of the set of stable Metzler matrices.

In Section I we introduce the problem we are trying to
solve and some now well-known system-theoretic properties
of positive systems. In Section II the concept of (stable) dis-
sipative Hamiltonian systems and some useful characterising
properties are described, and then in Section III we present
the main results and two algorithms that solve the relevant
optimization problem. In Section IV illustrative numerical
examples are presented.

Notation

The notation used in this paper is standard. Let H be
a symmetric square matrix, then H is said to be positive
semidefinite, denoted H � 0, if xTHx ≥ 0 for all x ∈ Rn.
Further, H is positive definite, denoted H � 0, if xTHx > 0
for all x 6= 0. The inequality ≥ acts element-wise on a (not
necessarily square) matrix, i.e. H ≥ 0 implies Hij ≥ 0 for all
i, j. Given a convex set C, the operator that projects a vector
z onto C is denoted by PCz. Finally, Sn+ and Gn denote
the set of n × n positive semidefinite and skew-symmetric
matrices; their dimension will be clear from context and so
is omitted from the notation.

B. Problem Setup

Assume that we are given a matrix A ∈ Rn×n, and we are
interested in computing the distance to the ‘nearest’ Metzler
matrix, where a Metzler matrix is any square n × n matrix
with non-negative entries on the off-diagonal elements, and
the set of n × n Metzler matrices is denoted by Mn.
We will restrict our attention to a search for the nearest
asymptotically stable Metzler matrix. Denote by Sn the set
of all asymptotically stable matrices of dimension n, i.e.
A ∈ Sn iff <(λi) < 0 for i = 1, . . . , n. Note that this is
an open set. Denote the set of asymptotically stable Metzler
matrices of dimension n by MSn. The following theorem
from [1] summarises some key Lyapunov stability results for
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systems of the form

ẋ(t) = Ax(t), A ∈Mn.

Theorem 1: Given a Metzler matrix A ∈Mn, the follow-
ing statements are equivalent:

1) A is Hurwitz, i.e. A ∈MSn.
2) There exists a vector ζ ∈ Rn such that Aζ < 0 with

ζ > 0.
3) There exists a vector z ∈ Rn such that zTA < 0 with

z > 0.
4) There exists a diagonal matrix P � 0 such that ATP+

PA ≺ 0. One such P is given by Pii = zi
ζi

for i =
1, . . . , n.

5) Lyapunov functions corresponding to statements 2) and
3) are given by V (x) = maxi xi/ζi and V (x) = zTx
respectively.

From Theorem 1, the computational advantages of dealing
with Metzler matrices should be clear – the most prominent
being that Lyapunov stability analysis can be carried out
by solving an LP instead of a more intractable SDP. Thus,
a reasonable question to ask is: how large is the smallest
perturbation to a matrix that results in a Metzler matrix?

A question which is broader than the one we seek to solve,
but which we will build on, is to find the nearest stable matrix
to a given unstable one. In posing this question the notion
of distance must be defined. In this setting the Frobenius-
norm seems natural as it is a measure directly related to
the matrices’ coefficients. The Frobenius norm of a matrix
Z ∈ Rm×n is defined as

‖Z‖F =
√

tr(ZTZ) =

√√√√ m∑
i=1

n∑
j=1

|Zij |2.

The general problem can then be stated as follows: Given a
matrix A ∈ Rn×n where A /∈ Sn, solve

inf
X∈Sn

‖A−X‖2F (1)

where the optimal decision variable is denoted by X?. Note
that we have to search for an infimum rather than a minimum
since the set of stable matrices is an open set, owing to
the fact that eigenvalues depend continuously on the matrix
elements. Furthermore, the set of stable matrices does not
form a convex set, at least not in the space of coefficients.

An equivalent way of stating problem (1) is based on a
Lyapunov stability argument. The matrix A is asymptotically
stable if and only if there exists a P � 0 such that the
Lyapunov operator

LA(P ) , AP + PAT

satisfies LA(P ) ≺ 0 (and stable if LA(P ) � 0). We can now
restate (1) as

inf
P�0, X∈Sn

‖A−X‖2F (2)

s.t. LX(P ) ≺ 0

where it can clearly be seen that (2) is not convex in X
and P . In [10] Orbandexivry, Nesterov, and Van Dooren use
the theory of self-concordant barrier functions and the Dikin
ellipsoid to compute a sequence of improving suboptimal
approximations of X?.

We now state the specific problem we would like to solve:
Given a matrix A ∈ Rn×n (not necessarily belonging to Sn
or Mn), compute the distance in terms of the Frobenius-
norm of the coefficients to the nearest stable Metzler matrix,
i.e. solve

inf
X∈MSn

‖A−X‖2F

= inf
P�0,X∈MSn

‖A−X‖2F s.t. LX(P ) ≺ 0

= inf
P�0,X∈Mn

‖A−X‖2F s.t. LX(P ) ≺ 0.

Finally, in light of Theorem 1, the problem can be further
reduced to

p? := inf
ζ>0, X∈Mn

‖A−X‖2F s.t. Xζ < 0. (3)

To the best of our knowledge, this question has not been
addressed in the literature. The contribution of this paper is
to describe an iterative algorithm that comprises two convex
optimization subproblems whose solution provides an upper
bound to this non-convex problem.

II. DISSIPATIVE HAMILTONIAN SYSTEMS

Consider the linear dynamical system

ẋ(t) = Ax(t), x(0) = x0 ∈ Rn, (4)

where in this case there is no assumption on the structure
of A. From [13] we say that the system (4) is said to be a
dissipative Hamiltonian (DH) system if and only if it can be
expressed as

ẋ(t) = (J −R)Qx(t), (5)

where Q = QT � 0, R = RT � 0, and J = −JT
are fixed matrices of appropriate dimension. The physical
interpretation is as follows: the Hamiltonian function xTQx
describes the energy of the system, R describes the energy
dissipation or loss of the system, and J describes the energy
flux between storage elements in the system. The following
lemma from [13] will prove useful in the sequel.

Lemma 1: If the eigenvalues of A lie in the closed left
half of the complex plane and all eigenvalues on the jω-axis
are semisimple (in which case LA(P ) � 0), then A has a
DH representation.

From Lemma 1 we now have an equivalent characterisa-
tion of stable matrices in terms of the n× n matrices J,Q,
an R:

Sn :=
{

(J −R)Q | J = −JT , Q � 0, R � 0
}
.

Note that the triple {J,Q,R} that satisfies the above con-
straints is neither open or closed due to the mixture of
definite and semidefinite constraints. However, the above



formulation allows us to restate the problem of finding the
nearest stable matrix (problem (1)) as follows:

inf
X∈Sn

‖A−X‖2F = inf
J=−JT ,R�0,Q�0

‖A− (J −R)Q‖2F

= inf
J=−JT ,R�0,Q�0

‖A− (J −R)Q‖2F ,

(6)

where the final inequality is from Theorem 1 in [13]. More-
over, the authors in [13] describe a selection of algorithms
to solve the optimization problem on the right hand side
of (6). An alternative approach that doesn’t use the DH
framework is provided in [10]. Finally, we will make use of
the following lemma from [13] that characterizes imaginary
axis eigenvalues:

Lemma 2: Let J,Q,R ∈ Rn×n be such that J =
−JT , Q � 0, R � 0, then:

1) The spectrum of (J −R)Q lies in the closed left half
of the complex plane. Furthermore, (J −R)Q has an
eigenvalue on the jω-axis if and only if RQx = 0 for
some eigenvector x of JQ.

2) All non-zero purely imaginary eigenvalues of (J−R)Q
are semisimple.

Note that lemma 2 allows for Q to be rank deficient. For
notational convenience, the triple {J,Q,R} satisfying the
DH constraints will be denoted by

D := {J,Q,R ∈ Rn×n | J = −JT , Q � 0, R � 0}.

III. RESULTS

In this section an iterative method is presented that com-
putes sub-optimal solutions to problem (6) in the DH setting,
subject to the additional constraint that X is Metzler.

A. Block Coordinate Descenct Algorithm

We now focus on solving (6) subject to the constraints that
X = (J − R)Q ∈ MSn with {J,Q,R} ∈ D. This results
in the following optimization problem:

inf
J=−JT ,R�0,Q�0

‖A− (J −R)Q‖2F (7)

s.t. (J −R)Q ∈MSn.

To begin with we will focus on the stable Metzler constraint.
Clearly this is not a convex constraint as it requires finding
matrices J,R,Q, P such that

[(J −R)Q]P + P [(J −R)Q]T ≺ 0,

P � 0,

{J,Q,R} ∈ D.

Furthermore, the DH framework is stated in terms of a
stability result, not an asymptotic stability result. Ideally,
we would like to avoid matrices with semisimple jω-
eigenvalues. The following result addresses the asymptotic
stability issue and uses diagonal stability in order to provide
additional constraints to obtain a Metzler matrix. A block
descent algorithm will decouple the problem into two convex
subproblems that provide an approximate solution to (7).

Proposition 1: Let X = (J − R)Q be a stable matrix
with {J,Q,R} ∈ D. If, additionally, R � 0, then X is
asymptotically stable. Furthermore, if [J − R]ij ≥ 0 for all
i, j 6= 0 and Q is diagonal, then X is Metzler.

Proof: By Lemma 1, X being stable implies it has a DH
representation. Additionally, X stable satisfies LX(P ) � 0,
for P � 0. Now set J = XP−PXT

2 , R = −XP−PXT

2 ,
Q = P−1 and we arrive at one DH representation of X .
From 1) in Lemma 2, for there to be no eigenvalues on
the jω-axis we require RQx 6= 0 for any x (note, this is
a stronger requirement than in Lemma 2 ). By Sylvester’s
inequality (Lemma 3 below with m = n) we have that RQ is
full rank. Moreover, R � 0 implies LX(P ) ≺ 0, and thus we
have asymptotic stability. Imposing the constraints on (J−R)
as in the theorem and the diagonal consraint on Q it is clear
that the elements on the off-diagonal of (J − R)Q will be
non-negative thus we have a Metzler matrix. As the resulting
matrix is Metzler, the diagonal constraint on Q imposes no
additional conservatism.

Lemma 3 (Sylvester’s Inequality): Let A ∈ Rm×n and
B ∈ Rn×p, then rank(A) + rank(B)− n ≤ rank(AB).

Based on Proposition 1 the following non-convex opti-
mization problem will provide a solution to the nearest stable
Metzler matrix problem described by (7):

inf
J=−JT ,R�0,Q�0

‖A− (J −R)Q‖2F

s.t. Qij = 0 ∀i 6= j (8)
[J −R]ij ≥ 0 ∀i 6= j.

Ignoring the constraints for the moment, it should be noted
that restricting attention to the case where Q � 0 and
right-multiplying the expression inside the norm operator by
Q−1 will convexify the problem. Unfortunately, it will also
push towards a trivial solution with the smallest allowable
spectrum of Q. Instead we will pursue a block coordinate
descent method [14] that freezes a subset of the variables,
rendering the resultant problem convex, and then optimizes
over the remaining subset with the previously computed
variables held constant. From (8), a natural partition to
choose is {J,R} and {Q}. Algorithm 1 below provides the
details of such an implementation.

The two subproblems (9) and (10) are both convex and
have nice structural properties, and Algorithm 1 is guaranteed
to converge as it is a two-block problem [15]. For the non-
Metzler version of this problem, the work in [13] goes even
further than the two-block approach given above: they are
able to implement a fast projected gradient scheme which
outperforms the two-block descent method. This is possible
due to the fact that analytic projections onto S+, as well as
the set of skew-symmetric matrices, are easily derivable. For
the case of Algorithm 1 it is not immediately obvious how to
derive the projections to take into account the element-wise
positivity constraints on J − R and the diagonal constraint
on Q. However, in Sections III-B and III-C respectively we
will exploit a computational relaxation for (9) and the data
structure in the case of subproblem (10).



Algorithm 1 Find Nearest Metzler: Coordinate Descent
Initialize: J = −JT , Q � 0, R � 0 and maxiter.

1: iter ← 1
2: while iter ≤ maxiter do
3: Fix Q and solve

inf
J′=−J′T ,R′�0

‖A− (J ′ −R′)Q‖2F (9)

s.t. [J ′ −R′]ij ≥ 0 ∀i 6= j

4: J ← J ′, R← R′

5: Fix J,R and solve

inf
Q′�0

‖A− (J −R)Q′‖2F (10)

s.t. Q′ij = 0 if i 6= j

6: Q← Q′

7: iter ← iter + 1
8: end while

Return: J,R,Q such that X = (J −R)Q is asymptotically
stable and Metzler.

B. Optimizing over J,R

The authors in [13] note that the subproblems in Algo-
rithm 1 are implementable by first-order methods and thus
may scale well with problem size. In this work we will
solve subproblem (9) in its natural form and also look at
improving scaling by relaxing the semidefinite constraint to
a more simple cone constraint.

The convex optimization subproblem (9) is a semidefinite
optimization problem (SDP) – or at least is trivially con-
vertible to one. Such problems have been shown to have a
polynomial time complexity (see [16] for a review of the
subject and a description of their numerical implementation).
Dropping the element-wise inequality from (9), the methods
of [13] reduce the problem to a projected gradient descent
where the projections PG and PS+ are defined by

PG(X) =
X −XT

2
and PS+(X) = UDUT ,

where D = diag(max(0, λ1), . . . ,max(0, λn)), U is or-
thonormal, and λi is the ith eigenvalue of X . Unfortunately,
the constraint [J − R] ≥ 0 on the off-diagonal elements of
J − R prohibits the use of these projections. As a result
we will either solve (9) as it is specified, or, at the cost of
finding suboptimal solutions, introduce two relaxations of the
problem that have more attractive computational tractability.

Definition 1: A symmetric matrix F ∈ Rn×n is diag-
onally dominant if Fii ≥

∑
j 6=i |Fij | for i = 1, . . . , n.

Furthermore, if there exists a positive definite diagonal
matrix D such that DFD if diagonally dominant then we
say that F is scaled diagonally dominant.
Denoting the set of n × n diagonally dominant and scaled
diagonally dominant matrices by DDn and sDDn respec-
tively, it is straightforward to show that the cone of pos-
itive definite matrices contains DDn and sDDn and that
DDn ⊆ sDDn. What is particularly useful about this is

that the constraints which enforce diagonal dominance are
linear, whilst the sDD constraints can be enforced via a
second-order cone constraint [17], [18]. To see this, note
that F ∈ sDDn if and only if it admits a decomposition
F =

∑
i<jM

ij , where M ij is a symmetric n×n matrix with
zeros everywhere apart from at Mii,Mij and Mij = Mji,

which together make the matrix
[
Mii Mij

Mij Mjj

]
positive

semidefinite. Such constraints are called rotated quadratic
cone constraints and are imposed as∥∥∥∥( 2Mij

Mii −Mjj

)∥∥∥∥ ≤Mii +Mjj , Mii ≥ 0.

For the case of DDn matrices, let M = MT , then M ∈
DDn and consequently M � 0 if the linear constraints

Mii > 0, Mii >

n∑
j 6=i

yij , i = 1, . . . , n,

−yij ≤Mij ≤ yij , with yij = yij ∀i 6= j

are feasible. Applying either of these relaxations to (9) gives

inf
J=−JT

‖A− (J −R)Q‖2F

s.t. [J −R]ij ≥ 0 ∀i 6= j

R ∈ DDn

where DDn is chosen to be either DDn or sDDn.

C. Optimizing over Q

The optimization subproblem (10) is a quadratic program
(QP) with linear constraints [19, Ch. 4.4]. The general form
of such a problem is

minimize
1

2
xTPx+ qT0 x+ r0 (11)

s.t. qTi x+ ri ≤ 0, i = 1, . . . ,m,

where x ∈ Rn is the decision vector and P ∈ Rn×n, qi ∈
Rn, and ri ∈ R with P � 0 are given. In the case of
optimization (10) there is significant structure to be taken
advantage of. Specifically the objective function matrices
take the form

P =


∑n
i=1B

2
i1 0 0

0
. . . 0

0 0
∑n
i=1B

2
in

 ,

q0 = −2


∑n
i=1Ai1Bi1

...∑n
i=1AinBin

 , r0 =

n∑
i,j

A2
ij = ‖A‖2F ,

where B := J − R. The constraints of (10) map to the
constraints of (11) via m = 1, qTi = −11×n and ri = ε. By
default ε = 0, but if one wanted to fix positive definiteness
of Q it could be set to some arbitrarily small positive scalar.
Given the structure described, we now propose a simple first-
order method to solve (10) using the Alternating Direction
Method of Multipliers (ADMM) [20]. Problem (10) can be
regarded as minimizing a convex function subject to the



constraint that x ∈ C where C is a convex set. In this case
C = Rn+. The ADMM approach solves such a problem by
introducing a second decision vector z ∈ Rn, and solves

minimize f(x) + g(z)

s.t x = z,

where g is the indicator function for C. The augmented
Lagrangian function with penalty factor ρ > 1 is defined
as

Lρ(x, z, u) = f(x) + g(z) +
ρ

2
‖x− z + u‖22.

The simplest form of ADMM iterates over minimizing Lρ
for fixed x, then fixed z. The scaled ADMM (c.f. [20, p.15])
formulation iterates as follows:

xk+1 := arg min
x

[
f(x) +

ρ

2
‖x− zk + uk‖22

]
zk+1 := PC(xk+1 + uk)

uk+1 := uk + xk+1 − zk+1.

For subproblem (10) the x update has an analytic formula
derivable from the KKT-conditions, and the projection in the
z-update is particularly simple. The resulting iterates are

xk+1 = (P + ρI)−1q0 − ρ(P + ρI)−1(zk − uk)

zk+1 = (xk+1 + uk)+.

Note that P + ρI is a diagonal matrix, hence its inversion
simply involves n scalar division operations. Additionally,
the matrix (P + ρI)−1 can be computed offline a priori.
Under the assumptions that i) the extended functions f, g :
Rn → R ∪ {+∞} are closed proper and convex, and ii)
there exists a saddle point of the un-augmented Lagrangian
L0, then the ADMM iterates will converge and the residual
xk + zk → 0 as k →∞ (c.f. [20, p. 17]).

D. Duality
In order to assess the performance of the algorithm pre-

sented above we will compare its solutions to the global
lower bound computed by solving the dual to problem (3).
The derivation and analysis of the dual are the focus of
ongoing work, however for completeness it is given below:

sup
λ∈Rn×n

− 1

4
‖Λ‖2F − 〈Λ, A〉

s.t. Λii = 0, i = 1, . . . , n (12)
Λij ≥ ∀i 6= j

and the optimal value is denoted by d?.
Proposition 2: There is a non-zero duality gap for prob-

lems (3) and (12), i.e. p? > d?.

IV. NUMERICAL EXAMPLES

In the first example we consider finding the nearest stable
Metzler matrix to that of a stable 5 × 5 matrix generated
using Matlab’s rss command. The matrix generated was

A1 =


−1.733 1.295 −0.497 0.765 0.763

0.481 −1.472 −0.945 1.381 0.146
0.680 0.326 −1.392 −0.536 1.957
−1.442 −1.127 −0.355 −1.079 1.375

0.566 0.008 1.849 1.607 −6.299



given to 3dp. The SDP solver chosen was SeDuMi [21],
which was used in conjunction with the modelling tool
YALMIP [22]. Applying Algorithm 1 produces the Metzler
matrix

X1 =


−1.807 1.234 0 0.717 0.720

0.402 −1.536 0 1.330 0.101
0.582 0.245 −1.507 0 1.901

0 0 0 −1.216 1.252
0.487 0 1.756 1.556 −6.344

 ,
where ‖A1 − X1‖2F = 5.019, d? = 1.223, and X1 is
asymptotically stable with eigenvalues

λ(X1) = {−7.281,−0.005,−2.433,−1.346± 0.578j}.

Next we consider the problem of finding the nearest Metzler
matrix to that of an unstable matrix A2 where

A2 =


0.647 0.172 −0.749 0.728 0.717
−0.354 −0.062 −0.936 −0.773 −0.778

0.046 1.199 −1.269 0.837 0.316
−0.793 0.802 0.498 −1.128 1.407
−1.551 1.053 2.789 −1.425 0.401

 .
First Algorithm 1 is run using the default constraint of Q �
0. The result is the stable Metzler matrix

X2 =


−0.059 0.170 0.003 0.665 0.6552

0 −0.173 0.03 0 0
0 1.180 −1.316 0.008 0
0 0.801 0.495 −1.178 1.357
0 1.040 2.756 0 −0.183

 ,
where ‖A2 − X2‖2F = 9.485, d? = 1.957, and X2 has
eigenvalues

λ(X2) = {−0.059,−0.175,−0.155,−1.26± 0.139j}.

A plot of the convergence for both subproblems is shown
in black in Figure 1. Note that the overall objective function
is equal to the objective of the second subproblem, in this
case minimizing Q. In this example the convergence of the
SDP step is particularly slow.

Next we take the same matrix A2 but constrain R to be
diagonally dominant. With this constraint we obtain‖A2 −
X3‖2F = 11.903 > ‖A2 −X2‖2F as expected. The resulting
Metzler matrix X3 is given below

X3 =


−0.011 0 0 0.713 0.216

0 −0.895 0 0 0
0 0.769 −1.542 0 0
0 0.385 0.361 −1.145 0.901
0 0.636 2.645 0 −0.580

 ,
with λ(X3) = {−0.011,−0.895,−0.580,−1.542,−1.145}.
The convergence of the iterates is shown in red in Figure 1.

The algorithms described were implemented on test cases
of full matrices up to order n = 35, beyond which the num-
ber of iterations required to converge became prohibitive.
For sparse matrices we were able to solve larger but not
significantly larger problems. The main reason for this is
that we are not taking full advantage of sparsity with the



Fig. 1. The objective values for the subproblems in Algorithm 1. Top:
Subproblem (9), optimizing over J and R. Iterates in black correspond
to J being a positive semidefinte constraint. Iterates in red correspond
to a relaxed diagonally dominant constraint. Bottom: Q solved as a QP
corresponding to a SDP constraint on J (black) and a diagonally dominant
constraint (red).

solver; recent methods such as those proposed in [23] may
improve this. In addition, the penalty function ρ in the QP
subproblem was not optimized, but further performance may
be achievable by implementing the results from [24].

V. CONCLUSION

An iterative method for obtaining suboptimal solutions to
the nearest Metzler matrix problem has been presented. The
proposed algorithm decomposes the problem into two convex
problems: an SDP, and a convex QP for which a first-order
optimization scheme with analytic iterates is described. In
the case of the SDP, a simple relaxation to an LP or SOCP
was described that comes with a suboptimality trade-off.

An alternative approach to solving this problem would be
to adapt the method from [10] which uses the Dikin ellipsoid
method to directly solve infX,P ‖A − X‖2F s.t. LX(P ) ≺
0, P � 0 and adapt it to take advantage of the diagonal
stability result of Theorem 1. As noted in [25], there is a
much richer set of matrices that admit diagonal Lyapunov
functions than Metzler matrices alone. It would be interesting
to extend this work to take this fact into account.

Current work is underway to construct a more useful dual
problem and characterize the nature of the duality gap for
this problem and the case where X is no longer constrained
to be Metzler.
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