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Abstract

Existence of disturbances in unknown environments is a pervasive challenge in robotic locomotion 

control. Disturbance observers are a class of unknown input observers that have been extensively 

used for disturbance rejection in numerous robotics applications. In this paper, we extend a class 

of widely-used nonlinear disturbance observers to underactuated bipedal robots, which are 

controlled using hybrid zero dynamics-based control schemes. The proposed hybrid nonlinear 

disturbance observer provides the autonomous biped robot control system with disturbance 

rejection capabilities, while the underlying hybrid zero-dynamics based control law remains intact.

I. Introduction

Achieving agile and efficient bipedal locomotion for autonomous biped robots and powered 

prostheses is of paramount importance in both humanoid and rehabilitation robotics. Hybrid 

zero dynamics-based (HZD) control is a framework for stable control of underactuated biped 

robots and powered prosthetic legs with hybrid dynamics, where the system trajectories can 

flow in continuous time and also jump at discrete times due to rigid impacts of the biped leg 

with the ground [1]–[8]. In this paradigm, stable walking gaits are encoded as re-

programmable relations between the robot generalized coordinates, which are enforced via 

feedback.
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Existence of disturbances in unknown environments is a pervasive challenge in HZD-based 

control of autonomous bipedal robots [9]. Furthermore, in the context of rehabilitation 

robotics, persistent human inputs might act as disturbances on the wearable robot HZD-

based control scheme [10]. These disturbances can deteriorate the performance of the robot 

motion control systems and even adversely affect their stability. An intuitive idea to 

counteract the deteriorating effect of disturbances on motion control systems is to estimate 

unknown disturbances by using the measured outputs and the known control inputs. The 

estimated disturbance can then be employed for canceling the actual disturbances in a 

feedforward manner. A class of unknown input observers, known as disturbance observers 

(DOBs), uses this intuitive idea for improving the control system performance in the 

presence of disturbances [11]–[13].

The feedforward nature of disturbance compensation in DOB-based control has made it a 

notable candidate for being employed with previously widely used control schemes, which 

have been designed for disturbance-free operating conditions. Indeed, if DOBs are properly 

designed for the application at hand, they will provide the previously designed controller 

with disturbance rejection capabilities, without requiring to change the nominal control 

structure [12].

A special class of DOBs and its nonlinear extension, namely, nonlinear disturbance 

observers (NDOBs), due to Ohnishi, Chen, and collaborators [11]–[15], have recently 

attracted much attention in numerous robotics applications such as control of upper-limb 

robotic rehabilitation [16], robotic exoskeletons [17], and robotic teleoperation [18],[19], to 

name a few. In the context of bipedal locomotion, Sato and collaborators have employed 

DOBs to reject disturbances in zero moment point (ZMP)-based biped robot control systems 

[20], [21]. However, this prior body of work has mainly focused on fully actuated biped 

robots. In a recent article by Abe and collaborators [22], DOB-based control has been 

compared to HZD-based control of an underactuated five-link biped robot for balance 

recovery, where the two control schemes are contrasted to each other.

Using DOBs along with HZD-based controllers for legged locomotion is still lacking in the 

literature. Indeed, there exist two inherent challenges in underactuated locomotion settings. 

First, having less control inputs than degrees-of-freedom (DOFs) in underactuated robots 

makes it impossible to cancel all disturbances that are acting on the robot DOFs. Second, the 

underlying hybrid dynamics in biped locomotion necessitates the design of jump maps for 

NDOB states after each robot leg impact with the ground.

In this article, we extend the class of NDOBs in [14], [15] (also, see [23] for a survey tutorial 

on NDOBs) to underactuated robotic locomotion and demonstrate that they can provide 

HZD-based controllers with disturbance rejection capabilities. Indeed, the underlying HZD-

based controllers, which are designed under disturbance-free operating conditions, are not 

required to be changed.

Our proposed hybrid NDOB for underactuated bipedal robots extends the previous class of 

NDOBs in two important ways. First, through a geometric construction, we design a 

projection operator for the NDOB output, i.e., the lumped disturbance estimate, so that the 

Mohammadi et al. Page 2

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



projected outputs can be employed to compensate for the adverse effects of disturbances, 

which are preventing the HZD-based controller from zeroing the outputs. Second, we 

provide jump maps that update the NDOB states after each leg impact with the ground; thus, 

making the NDOB a hybrid observer. In the presence of disturbances, we prove the stability 

properties of the NDOB.

The rest of this paper is organized as follows. In Section II, we provide preliminaries from 

bipedal robotics and HZD-based control. Next, in Section III, we present the standard 

NDOB and highlight the challenges of using it in underactuated bipedal robots with hybrid 

dynamics. In Section IV, we present our hybrid NDOB for underactuated bipedal robots. 

Thereafter, in Section V, we prove the convergence properties of the proposed hybrid 

NDOB. In Section VI, we present simulation results for push recovery in a five-link biped 

robot with point feet. Finally, we conclude the article with remarks and potential research 

directions in Section VII.

Remark 1: There exists another class of hybrid observers that has been employed for 

estimating the states of bipedal robots controlled using HZD-based controllers (see, e.g., 

[24], [25]). In this article, however, we are proposing an observer for unknown input, in 

contrast to state, estimation. Notation. We denote ℝ+ =  [0,  ∞)Given two vectors (matrices) 

a, b of suitable dimensions, we denote by [a ; b] the vector (matrix) [a⊤, b⊤]⊤, where ⊤ 
denotes the transpose operator. Given an integer N, we denote by IN the identity matrix in

ℝN × N. Given a vector υ inℝN, we denote by ||υ|| its Euclidean norm. Given a set 𝒜 ⊂ ℝN

and a pointx ∈ ℝN, we denote by ∥ x ∥𝒜 = infy ∈ 𝒜 ∥ x − y ∥ the distance of x to 𝒜. Given 

an open and connected set 𝒬 ⊂ ℝN and a functionh : 𝒬 ℝN − 1, we denote by h−1(0) its 

zero level set, i.e., h−1(0) : = q ∈ 𝒬 : h(q) = 0 Given two square matricesA, B ∈ ℝN × N, 

we denote by B ≺ Athe positive semi-definiteness of the matrix A − B. Given a matrix 

A ∈ ℝM × N, we denote by Ker(A) and Im(A) its kernel and image, respectively. A function 

α : ℝ+ ℝ+ belongs to class-𝒦 if it is continuous, zero at zero, and strictly increasing. A 

function β : ℝ+ × ℝ+ ℝ+ belongs to class-𝒦ℒ if: (i) for each t ≥ 0, β( ,t) is 

nondecreasing andlims 0 + β(s, t) = 0, and (ii) for each s ≥ 0, β(s,·) is nonincreasing and 

limt ∞ + β(s, t) = 0.

II. Preliminaries

In this section we briefly review the hybrid dynamical model of underactuated planar biped 

robots with point feet, the notion of solutions for the biped robot hybrid dynamics, and some 

standard material from the HZD-based control framework (see, e.g., [1]-[3] for further 

details).

A. Hybrid Dynamical Model of Biped Robots

Given an underactuated planar biped robot with point feet that is subject to time-varying 

disturbances (see Figure 1), its equations of motion during swing phase are
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M(q)q̈ + C(q, q̇)q̇ + G(q) = Bu + d(t), (q, q̇) ∉ S, (1)

where the vectors q = [q1, ⋯, qN]⊤ ∈ 𝒬 and q̇ = [q̇1, ⋯, q̇N]⊤ ∈ ℝN denote the joint 

angles and the joint velocities, respectively. The set 𝒬, called the biped configuration space, 

is assumed to be an open and connected subset of ℝN. The state (q,q̇) of dynamical system 

(1) belongs to the state spaceχ : = 𝒬 × ℝN. Moreover, M(q), C(q, q̇), and G(q), denote the 

inertia matrix, the matrix of Coriolis/centrifugal forces, and the vector of gravitational 

forces, respectively. Having articulated joints,

v1IN ≺ M(q) ≺ v2IN (2)

is satisfied for allq ∈ 𝒬, and some positive real constants ν1 and ν2 [26]. The vector of 

control inputs u belongs to U, an open and connected subset of ℝN − 1, and B ∈ ℝN × (N − 1)

is assumed to be constant and of full rank N−1. Under this assumption, there exists a non-

zero row vector B⊥ ∈ ℝ1 × N such that B⊥B = 0. We say that system (1) has one degree of 

underactuation. In (1), the vector of time-varying disturbances, which lumps the effect of 

disturbances that are acting on the robot, is denoted by d(t). We make the following 

assumption regarding the lumped disturbance signal time derivative, which generalizes the 

bounded rate of change assumption for disturbances encountered in the NDOB literature 

(see, e.g., [23]).

DH1) We assume that the time derivative of the lumped disturbance signal d(·) is Lebesgue 

measurable and

∥ ḋ(t) ∥ ≤ ωd, (3)

for almost all t ≥ 0 (in Lebesgue sense) and some positive constant ωd. Moreover, we 

assume that jumps in the lumped disturbance happen only at biped leg impacts with the 

ground. We denote

Δd j : = d(t j
+) − d(t j

−), (4)

if there is a jump in the disturbance at the j-th impact.

The vertical height from the ground and the horizontal position of the swing leg end, with 

respect to an inertial coordinate frame, are denoted by p2
v(q) and p2

h(q) respectively. The set S, 

called the switching surface, is defined as
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𝒮 : = (q, q̇) ∈ χ : p2
v(q) = 0, p2

h(q) > 0 . (5)

The switching surface in (5) is assumed to be a smooth codimension-one embedded 

submanifold of the state space χ (see, e.g., [2], [3]). The double support phase is assumed 

to be instantaneous and modeled by the rigid impact model

[q+; q̇+] = [Δqq−; Δq̇(q−)q̇−], [q−; q̇−] ∈ 𝒮, (6)

where [q−; q̇−] and [q+; q̇+] denote the states of the robot just before and after impact, 

respectively. Furthermore, the mappings Δq(·) and Δq̇(·) are assumed to be smooth (see, e.g., 

[3]). The biped dynamics are described by the hybrid dynamical system in (1)-(6), which 

can be written as

ẋ = f (x) + g(x)u + gd(x)d(t), for x ∉ 𝒮

x+ = Δ(x−), for x− ∈ 𝒮
(7)

where x : = [q; q̇] ∈ χ, Δ(x) : = [Δqq; Δq̇q̇],

f (x) : =
IN

M−1(q) − C(q, q̇)q̇ − G(q)
,

and

g(x) : = 0; M−1(q)B , gd(x) : = 0; M−1(q) .

Suppose that a state feedback control law of the form u = ufb(x) is given for the dynamical 

system in (7) and the disturbance signal satisfies DH1. A function 

φ : t0, t f χ, t f ∈ ℝ ∪ ∞ , t f > t0, is a solution of (7) if: 1) φ(t) is right continuous on 

[t0, tf), 2) left limits exist at each point of (t0, tf), and 3) there exists a closed discrete subset 

𝒯 ⊂ t0, t f  such that: a) for every t ∉ 𝒯, φ(t) is differentiable and 

(dφ(t)/dt) = f (φ(t)) + g(φ(t))ufb(φ(t)) + gd(φ(t))d(t), and b) for t ∈ 𝒯, φ−(t) ∈ 𝒮 and 

φ+(t) = Δ(φ−(t)). A solution φ(t) of (7) is periodic if there exists a finite t* > 0 such that 

φ(t + t * ) = φ(t) for all t ∈ t0, ∞ . A set 𝒪 ⊂ χ is a hybrid periodic orbit of (7) if 

𝒪 = φ(t) t ≥ t0  for some periodic solution φ(t). We say that a solution to (7) is maximal if 

it cannot be extended. Given a disturbance signal d(t), we denote the set of all maximal 

solutions to (7) with initial condition x0 by Γd(x0).
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B. Hybrid Zero Dynamics Control Framework

HZD framework relies on the concept of virtual constraints. Virtual constraints are 

relations of the form h(q) = 0 among the joint variables of a legged robot that encode stable 

walking gaits [1]-[4]. Using a given virtual constraint, an output of the form

y = h(q) = H0q − hd ∘ θ(q), (8)

is considered for the biped hybrid dynamics (1)-(6), where H0 ∈ ℝ(N − 1) × N is a matrix of 

full rank N − 1 and H0q represents a set of body coordinates for the biped. Moreover, 

hd( ⋅ ) = [hd
1( ⋅ ); ⋯; hd

N − 1( ⋅ )] is a vector of N − 1 Bézier polynomial functions 

hd
i : 𝒬 ℝ, 1 ≤ i ≤ N − 1. Furthermore, the function θ : 𝒬 ℝ, θ(q) = c0q is called the 

phase function (see Figure 1). In the above, the row vector c0 ∈ ℝ1 × N is chosen such that 

[H0; c0] ∈ ℝN × N is invertible. Moreover, the zero level set h−1(0) is a one-dimensional 

curve in 𝒬 with no self-intersections. We make the following standard assumptions, 

following the HZD framework, regarding the output function y = h(q) in (8).

OH1) The output function y = h(q) in (8) is designed to have well-defined vector relative 

degree {2,·· , 2} for all q ∈ h−1(0). The vector well-defined relative degree condition holds 

if and only if

A(q) : = ∂h
∂q M−1(q)B, (9)

is an invertible matrix for all q ∈ h−1(0). The matrix A(q) ∈ ℝ(N − 1) × (N − 1) is called the 

decoupling matrix associated with the virtual constraint in (8). Δ OH2) The output function 

y = h(q) in (8) is designed to be invariant with respect to impacts with the ground. In 

particular, let the post-impact and pre-impact biped joint configurations and velocities be 

related to each other through (6). We say that the output function y = h(q) is hybrid 

invariant, if whenever h(q0
−) = 0 and (∂h/ ∂q)(q−)q̇− = 0, then h(q+) = 0 and 

(∂h/ ∂q)(q+)q̇+ = 0.

Once the hybrid invariant outputs in (8) are zeroed using proper control inputs, the biped 

configuration variables and joint velocities evolve in the set

Z : = (q, q̇) ∈ T𝒬 : h(q) = 0, ∂h
∂qq̇ = 0 , (10)

which is called the hybrid zero dynamics manifold associated with the outputs in (8). It 

can be shown that
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ξ1; ξ2 = Ξ([q; q̇]) : = θ(q); γ0(q)q̇ , (11)

is a valid change of coordinates on Ƶ, where γ0(q) : = B⊥M(q). Given the coordinate ξ1, the 

configuration

q(ξ1) = [H0; c0]−1 ⋅ [hd(ξ1); ξ1] (12)

zeros the output y = h(q) in (8).

Once the states are constrained to Ƶ via feedback, the resulting closed-loop motion is 

governed by lower-dimensional dynamics, called the hybrid zero dynamics (HZD). The 

HZD in [ξ1; ξ2] coordinates are given by

[ξ̇1; ξ̇2] = [κ1(ξ1)ξ2; κ2(ξ1)], for (ξ1, ξ2) ∈ [θ+, θ−) × ℝ

[ξ1
+; ξ2

+] = [θ+; δzeroξ2
−], for (ξ1

−, ξ2
−) ∈ {θ−} × ℝ

(13)

for a proper real constant δzero (see Equation (5.67) in [3]). Moreover, θ−: = θ(q0
−) and 

θ+: = θ(q0
+) are the values of the phase function just before and just after the ground impacts. 

Also, κ1(ξ1) : = B⊥M(q(ξ1))∂h
∂q q(ξ1), κ2(ξ1) : = − B⊥∂V

∂q q(ξ1)
,where q(ξ1) is given by (12) and 

V(q) is the potential energy.

The following hypothesis provides the relationship between hybrid periodic orbits that 

represent stable walking gaits with hybrid invariant outputs for the biped robot dynamics.

CH1) Given the underactuated biped robot dynamics in (1)-(6), we assume that there exists 

an output of the form y = h(q) satisfying OH1 and OH2, and an input-output feedback 

linearizing controller un(q,q̇) associated with the given output, such that when d(t) ≡ 0, un(·) 

drives the output y = h(q) to zero and by doing so makes the hybrid periodic orbit

𝒪 : = (q * (t), q̇ * (t)) 0 ≤ t < t * , (14)

with period t* > 0, exponentially stable for the resulting closed-loop hybrid dynamics. The 

hybrid periodic orbit 𝒪 in (14) represents a stable robot walking gait. Designing such 

feedback controllers and outputs has been extensively investigated in, e.g, [2]-[5]. Δ

III. Standard NDOB Structure

In this section we briefly present the structure of the standard NDOB and its limitations for 

being employed in underactuated biped robot control systems with hybrid dynamics.
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Given a nonlinear control system and a nominal control law un(x), the underlying 

mechanism of NDOB operation can be explained as follows (see also Figure 2). Using the 

state and input information, the NDOB estimates the disturbance d(t), which is deteriorating 

the performance of the nominal controller. The NDOB output d  is then added to the nominal 

control input in the following feedforward manner:

u = un(x) − d . (15)

In the ideal case, when d̂ = d(t), the disturbances acting on the system would be canceled out 

and the nominal control input un (x) would achieve the desired objectives, without the need 

to modify the nominal controller. The NDOB dynamics for the robot swing phase dynamical 

equations in (1) are given by (see [14], [15], [23] for the details of its derivation)

ż = − Ld
ε(q)z + Ld

ε(q) C(q, q̇)q̇ + G(q) − Bu − pε(q̇) , (16)

where z ∈ ℝN is the state of the NDOB. The auxiliary vector and the gain matrix of the 

NDOB are given by

pε(q̇) = Xε
−1q̇, Ld

ε(q) = Xε
−1M−1(q) . (17)

respectively, where Xε ∈ ℝN × N is a constant symmetric and positive definite matrix 

depending on a positive constant ε. For simplicity of exposition, we let Xε = (ε/v2)IN, where 

ν2 is the positive constant in (2). Finally, NDOB disturbance tracking error is defined to be

ed : = d − d(t) . (18)

When d̂ = d(t), namely, in the ideal case, ed = 0. We have the following proposition 

regarding the NDOB error dynamics.

Proposition 1 ([14], [23]): Consider the biped robot swing phase dynamics in (1). Consider 

the NDOB in (16) with auxiliary vector and gain matrix given by (17). The NDOB error 

dynamics, during the swing phase, are governed by

ėd = − Ld
ε(q)ed + ḋ . (19)

Moreover,

−ed
⊤Ld

ε(q)ed ≤ − 1
ε ∥ ed ∥2 , for all q ∈ 𝒬, ed ∈ ℰ, (20)
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where ℰ ⊂ ℝN is open, connected, and contains the origin. Limitations of the standard 

NDOB. There are two main challenges in employing the conventional NDOB in (16) for an 

underactuated biped robot with hybrid dynamics given by (1)-(6). First, the underactuated 

dynamics of the biped make it impossible to use the feedforward disturbance compensation 

according to (15) because the NDOB output d  belongs to ℝN, while there are only N − 1 

motor torque inputs. Therefore, there is a need for projecting the NDOB output onto the 

space of control inputs in a proper manner so that the disturbance components that are 

preventing the output y = h(q) to be zeroed are compensated for. Second, because of the 

hybrid nature of the biped robot dynamics, it is non-trivial how the NDOB state and output 

should be updated after each impact of the biped robot leg with the ground.

IV. Hybrid NDOB Design

In this section we extend the NDOBs, due to Chen et al. [12], [14], [15], that were 

previously used for fully actuated robots. The resulting extended hybrid NDOBs can be 

employed along with previously designed HZD-based controllers for underactuated biped 

robots subject to disturbances.

A. NDOB Output for Underactuated Robots

The following technical lemma will be useful for designing a projection operator for the 

hybrid NDOB.

Lemma 1: Consider the underactuated biped dynamics given by (1)-(6). Suppose that the 

output y = h(q) for the biped dynamics satisfies OH1. Given any v ∈ ℝN, there exists a 

neighborhood of h−1 (0) such that for all q in it, there exist vectors v⋔ ∈ ℝN − 1 and 

v ∈ Ker(∂h/ ∂q) q such that

υ = Bv⋔ + M(q)v∥ . (21)

Proof. See the Appendix.

Remark 2: The geometric interpretation of Lemma 1, when q belongs to h−1 (0), is shown in 

Figure 3.

Proposition 2: Consider the underactuated biped dynamics given by (1)-(6). Suppose that the 

output y = h(q) satisfies OH1. Consider the projection operator ∏
d

:𝒬 ℝN − 1,

Πd(q) : = A−1(q)(∂h
∂q M−1(q)), (22)

where A(q) is given by (9). Consider an arbitrary vector v ∈ ℝN with its decomposition in 

(21). There exists a neighborhood of h−1(0) such that for all q in it, we have
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v⋔ = Πd(q)v . (23)

Proof: Given an arbitrary vector υ, there exists a neighborhood of h−1(0) such that (21) 

holds, due to Lemma 1. Multiplying both sides of (21) by Πd(q), we get

Πd(q)v = A−1(q)(∂h
∂q M−1(q))(Bυ⋔ + M(q)v∥) = A−1(q)∂h

∂q M−1(q)Bυ⋔ + A−1(q)∂h
∂qυ∥ .

Since v ∈ Ker(∂h/ ∂q) q and ∂h
∂h M−1(q)B = A(q), it can be easily seen that (23) holds.

Using the projection operator in (22), we project the standard NDOB output in the following 

way

d⋔ = Πd(q)d , (24)

and apply the DOB-based control input

u(q, q̇, q⋔) = un(q, q̇) − d⋔, (25)

to the underactuated biped robot in (1)-(6). The following proposition gives the biped robot 

output error dynamics when the NDOB-based control law in (25) is used.

Proposition 3: Consider the biped robot dynamical system in (1)-(6) and the NDOB in (16), 

with the auxiliary vector and the gain matrix in (17), and the projected output given by (24). 

Given an input-output feedback linearizing control law un(q, q̇) for the output y = h(q), 

which satisfies OH1, and applying the NDOB-based control input in (25), the output error 

dynamics during the swing phase are given by

ÿ = − K py − Kdẏ − ∂h
∂q M−1(q)ed, (26)

where Kp and Kd are the PD gains of the feedback linearizing controller, and ed is the 

disturbance tracking error in (18).

Proof: We only provide a sketch of the proof. Taking two derivatives of the output y = h(q), 

we have

ÿ = ∂h
∂q M−1(q)B(un − d⋔) + ∂h

∂q M−1(q)d(t) + δ(q, q̇),
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where δ(q, q̇) is a smooth function of q and q̇ independent of un d⋔, and d. Note that 

A(q)un(q, q̇) + δ(q, q̇) is equal to −Kpy − Kdẏ for an input-output feedback linearizing 

controller un. Using the identity (23) and the definition of Πd(q) in (22), we get

ÿ = A(q)un + δ(q, q̇) − ∂h
∂q M−1(q)BΠd(q)d + ∂h

∂q M−1(q)d = − K py − Kdẏ − ∂h
∂q M−1(q)(d(t) − d ) .

Using (18) in the above identity concludes the proof.

Having obtained the output error dynamics, the following proposition shows the disturbance 

effect on the biped robot swing phase zero dynamics.

Proposition 4: Consider the biped robot hybrid dynamics in (1)-(6), and the NDOB given by 

(16), (17), and (24), and the DOB-based control law in (25), respectively. Given a 

disturbance signal d(t), consider its decomposition according to (21). The tangential 

component of the disturbance d(·) perturbs the swing phase zero dynamics in (13) according 

to

ξ̇ = κ1(ξ1)ξ2

ξ̇ = κ2(ξ1) + ς(ξ1)d∥(t)
(27)

where

ς(ξ1) : = B⊥M(q(ξ1)) (28)

and d (t) ∈ Ker(∂h/ ∂q) q(ξ1), where q(ξ1) is given by (12). Proof. See the appendix.

Remark 3: Proposition 4 should be of no surprise, as we have less control inputs than the 

biped robot DOFs and cannot cancel the disturbances in all directions. Indeed, we have 

already used all the N−1 actuated directions, according to (25), to compensate for 

disturbance components that are preventing the output y = h(q) from being zeroed.

B. Design of the NDOB Jump Map

In this section we address the issue of updating the NDOB states after each impact of the 

robot swing leg with the ground. Since C(q, q̇)q̇ + G(q) − Bu = − M(q)q̈ + Bd(t) during the 

swing phase, it can be seen from the NDOB dynamical equations in (16) that the NDOB 

states depend on the joint accelerations. Also, the biped robot joint accelerations are affected 

by impulsive forces after each rigid impact of the swing leg with the ground. Indeed, at any 

instance of time tI at which a rigid impact with the ground happens, we have 
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∫
tI
−

tI
+

q̈(τ)dτ = q̇+ − q̇−, where tI
− and tI

+ represent the time instants just before and just after 

the impact, respectively. The joint velocities q̇− and q̇+ at these two time instants are related 

to each other through (6). Before finding the relationship between the pre-impact and 

postimpact NDOB states, we assume the following regarding the NDOB states, which will 
be formally proved in the next section (see Theorem 1).

DOBH1) The NDOB states in (16) and the robot joint velocities remain essentially bounded 

for all t ≥ 0. Δ

We consider the impact time instant tI and integrate both sides of (16) from tI
− to tI

+. We have

∫
tI
−
tI
+

ż(τ)dτ = − ∫
tI
−
tI
+

Ld(q(τ))z(τ) dτ + ∫
tI
−
tI
+

Ld(q(τ)) −M(q(τ))q̈(τ) − p(q̇(τ)) + d(τ) dτ .

Due to DH1 and DOBH1, we have

z+ − z− = − ∫
tI
−
tI
+

Ld(q(τ))M(q(τ))q̈(τ) .

Since NDOB gain matrix Ld(q) is given by (17), we have

z+ − z− = − Xε
−1(q̇+ − q̇−) .

Using the above calculation, we propose to use the jump map

z+ = Δd(z−, q−, q̇−), (29a)

Δd(z−, q−, q̇−) = z− − Xε
−1(Δq̇(q−)q̇− − q̇−), (29b)

for the NDOB states after each impact of the biped swing leg with the ground, where Δq̇(·) is 

given by (6).

Using the definition of d̂, we have
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d+ = z+ + pε(q̇+) =
(17)

z− − Xε
−1(Δq̇(q−)q̇−

q̇+

− q̇−) + Xε
−1q̇+ .

Therefore, d+ = z− + Xε
−1q̇−. From (16), it can be easily seen that

d+ = d− . (30)

Moreover, given an impact time instant tj, corresponding to the j-th leg impact with the 

ground and under DH1, we can integrate both sides of (20) from tI
− to tI

+ to obtain

ed
+ = ed

− + Δd j, (31)

where Δdj is defined in (4).

V. NDOB-Based Control Stability Analysis

For the underactuated biped robot hybrid dynamical system given by (1)-(6), we have 

proposed the following hybrid NDOB, whose overall structure is depicted in Figure 4,

ż = − Ld
ε(q)z + Ld

ε(q) N − Bu − pε(q̇) , for (q, q̇) ∉ 𝒮

z+ = Δd(z−, q−, q̇−), for (q−, q̇−) ∈ 𝒮

d = z + pε(q̇)

(32)

where N : = C(q, q̇)q̇ + G(q), and pd
ε(q̇),Ld

ε(q) are given by (17). Furthermore, NDOB jump map 

Δd(·) is given by (29). Given the nominal control input un(q, q̇) in CH1, we propose to 

employ the DOB-based control law given by (25) with the projection operator Πd(q) given 

by (22) and the disturbance estimate d  given by (32).

For the closed-loop dynamics of the biped robot under the DOB-based control law in (25), 

we consider the coordinates

ηd : = [x; ed], (33)

where

x : = [η1; η2; ξ1; ξ2], (34)
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with [η1; η2]: = [y; ẏ], y = h(q) is given by (8), ẏ = (∂h/ ∂q)q̇, and [ξ1; ξ2] are the zero dynamics 

manifold coordinates given by (11). We have the following proposition regarding the closed-

loop dynamics of the biped robot.

Proposition 5: Consider the biped robot hybrid dynamics in (1)-(6), under the DOB-based 

control law in (25), with the hybrid NDOB in (32). Then, in a neighborhood of the zero 

dynamics manifold associated with the output y = h(q), [x; ed] [x; ed] is a valid change of 

coordinates and the closed-loop dynamics of the biped robot and the NDOB can be written 

as

ẋ = F(x, ed) + Gd(x)d∥(t) for (q−, q̇−) ∉ 𝒮

ėd = Fε(x, ed) + ḋ(t) for (q−, q̇−) ∉ 𝒮

x+ = Δ(x−) for (q−, q̇−) ∈ 𝒮
ed

+ = Δ(x−, ed
−) + Δd j for (q−, q̇−) ∈ 𝒮

(35)

where Δdj and x̄ are defined in (4) and (34), respectively. Furthermore, 

F(x, ed): = [η2; − K pη1 − Kdη2 − (∂h/ ∂q)M−1edκ1(ξ1); κ2(ξ1)ξ2], Gd(x): = [0; 0; 0; ζ(ξ1)] with 

ζ(ξ1) defined in (28), Fε(x, ed): = − Ld
ε(x)ed, and Δ(x−, ed

−) = ed
−.

Proof: The proof follows directly from Propositions 3, 4, and the NDOB tracking error jump 

map given by (31).

The next proposition and the theorem following it state that the biped robot and the hybrid 

NDOB interconnected dynamics have an exponentially stable periodic orbit, which is 

induced by the periodic orbit in (14), in the presence of constant disturbances with zero 

tangential component. Moreover, in the presence of time varying disturbances with bounded 

tangential component, the induced periodic orbit is locally input-to-state stable for the biped 

robot and the hybrid NDOB interconnected dynamics.

Proposition 6: Consider the biped robot and the hybrid NDOB interconnected dynamics 

given by (35). Consider the periodic orbit 𝒪 in CH1. If d (t) = 0, ḋ(t) = 0, and dj = 0, for all t 
≥ 0 and all impact moments tj, then there exists ε* such that for all ε ∈ (0,ε*], the orbit

𝒪ext : = 𝒪 × 0 ⊂ χ × ε, (36)

is an exponentially stable periodic orbit of (35).

Proof: Proof is removed for the sake of brevity.

Theorem 1: Consider the biped robot and the NDOB closed-loop hybrid dynamics given by 

(35) with disturbance inputs d(·) satisfying DH1. Consider the exponentially stable hybrid 

periodic orbit 𝒪ext in (36). Then, 𝒪ext is locally input- to-state stable for the biped robot and 
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the NDOB closed-loop dynamics. Namely, there exist r > 0 and class-𝒦ℒ function ι such 

that for each ηd, 0 ∈ ηd 𝒪ext ≤ r , the maximal solutions to (35) with initial condition 

ηd(0) = ηd, 0 satisfy

∥ ηd(t) ∥ 𝒪ext ≤ max ι( ∥ ηd(0) ∥ 𝒪ext, t), ωd , ∀t ≥ 0. (37)

Proof: The closed-loop dynamics of the biped robot and the NDOB are given by (35). From 

Proposition 6, it follows that the set 𝒪ext is pre-asymptotically stable for the dynamics in 

(35) with inputs d (t), ḋ(t), and Δdj. Using Proposition 2.4 and Definition 2.3 in [27], (37) 

follows.

VI. Simulation Studies

In this section we present simulation results for push recovery in a five-link biped robot with 

point feet corresponding to the biped robot RABBIT [28] (see Figure 1). The physical 

parameters of the robot are taken from [28] and will not be presented here for the sake of 

brevity. The hybrid invariant outputs for the biped robot dynamcis have the form given by 

(8) and are taken from [28]. Initiating the biped robot states on the hybrid periodic orbit 𝒪
induced by the outputs in (8), we start applying a push disturbance Fd(t) = [ f x(t); 0] at the 

joint connecting the torso and the two legs, where fx(t) is a trapezoidal signal that starts from 

zero at t = 2 seconds, reaches to −10 N at t = 3 seconds, lasts for three seconds, and goes 

from −10 N to zero in one second. The time-varying disturbance acting on the biped is then 

equal to d(t) = J⊤(q(t))Fd(t), where J(q) is the proper Jacobian matrix [29].

When no NDOB is used along with the nominal control law, the biped robot stops walking 

at about 5.5 sec. When the NDOB-based control law in (25) with ε = 0.1 in (32) is 

employed, however, the biped robot manages to recover from the applied push disturbance. 

Figure 5 depicts the 2- norm of the motor torques, the 2-norm of the output tracking error, 

and the 2-norm of the disturbance tracking error, when the NDOB-based control law in (32) 

is used. Figure 6 depicts phase plots of the biped robot in the absence of push disturbance 

and in the presence of push disturbance with and without NDOB.

VII. Conclusion and Further Remarks

In this paper, we extended a class of NDOBs to underactuated bipedal robots, which are 

controlled using HZD-based control schemes. The proposed hybrid NDOB addresses the 

issues of underactuation and hybrid dynamics in biped robots. The proposed extension to 

NDOBs further motivates investigation of disturbance observers for robust control of 

powered prostheses used in rehabilitation robotics. An interesting question, as first posed by 

[10], is whether to treat persistent human input as a disturbance in HZD-based control of 

powered prostheses.
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Appendix

Proof of Lemma 1. Due to OH1 and by continuity, A(q) is also invertible in a neighborhood 

of h−1(0). Consider an arbitrary point q in this neighborhood. Define v′: = M−1(q)v. First, we 

claim that Ker(∂h/ ∂q) q ∩ Im(M−1(q)B) = 0 . Suppose, by way of contradiction, that there 

exists v ≠ 0 such that v = Ker(∂h/ ∂q) q ∩ Im(M−1(q)B). Then, v = M−1(q)Bw for some w ≠ 0. 

Since v ∈ Ker(∂h/ ∂q) q, then (∂h/ ∂q)v = 0. Therefore, we have

∂h
∂q qM−1(q)Bw = 0 A(q)w = 0 .

This is a contradiction. Therefore, Ker(∂h/ ∂q) q ∩ Im(M−1(q)B) = 0 .

Moreover, dim(Im(M−1(q)B)) = N − 1 and dim(ker(∂h/ ∂q) q ) = 1. Thus, there exist vectors 

v⋔ ∈ ℝN − 1 and v ∈ Ker(∂h/ ∂q) q such that

υ′ = υ∥ + M−1(q)Bυ⋔ .

Multiplying both sides by M(q) concludes the proof.

Proof of Proposition 4. The proof can be carried out exactly to the proof of Theorem 5.1 in 

[3, Chapter 5]. We only show that ξ̇2 = κ2(ξ1) + ζ1(ξ1)d (t). Since

ξ̇2 = q̇⊤∂(B⊥M)⊤

∂q B⊥M
q̇

−M−1(q)[Cq̇ + G − d(t)]
,

(see [3, pp. 121–122]), we have

ξ̇2 = κ2(ξ1) + B⊥M(q(ξ1))M−1(q(ξ1))d(t),

where q(ξ1) is given by (12). Since d(t) = Bd⋔(t) + M(q(ξ1))d (t) on Ƶ, due to Lemma 1, we 

have

ξ̇ = κ2(ξ1) + B⊥Bd⋔(t) + B⊥M(q(ξ1))d∥(t) .
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Setting B⊥B = 0concludes the proof.
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Fig. 1: 
An example five-link underactuated planar biped robot.
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Fig. 2: 
Block diagram of a DOB-based control system.
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Fig. 3: 
Geometric interpretation of Lemma 1 when q ∈ h−1(0). The vector v|| is tangent to h−1 (0) at 

q.
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Fig. 4: 
The proposed hybrid NDOB structure.
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Fig. 5: 
The control input and tracking errors of the biped robot: (a) the 2-norm of the motor control 

torques u, (b) the 2-norm of the output tracking error, and (c) the 2-norm of the disturbance 

tracking error with the NDOB-based control law.
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Fig. 6: 
The projected phase portrait of the five-link biped robot: (a) (green) nominal controller with 

no disturbance, (black) NDOB-based control law with push disturbance, and (b) (green) 

nominal controller with no disturbance, (black) nominal control law with push disturbance.
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